
1

Proview 4.2 Getting Started Guide
A step-by-step guide to set up a minimal Proview system

Jonas Haulin, Proview/R <info@proview.se>

Table of Contents
1. About this guide .. 1

1.1. Conventions used in this document ... 1
2. Open the administrator environment .. 1
3. Create a project in the ProjectList .. 2
4. Create a volume in the VolumeList ... 3

4.1. Configuring the volume .. 3
5. Setting up plant and node hierarchies in the Volume Navigator 5

5.1. Plant Hierarchy and Plc Programs ... 6
6. Process graphics and User Interfaces ... 7
7. Runtime ... 9

1. About this guide
This guide will take you through the steps of configuring, developing, simulating and running a small
Proview project, on a single-computer system. The guide does not intend to be comprehensive. For
detailed documentation, please consult the Designer's Guide or the GE (graphical editor) Manual.
These documents are available at the Proview [http://www.proview.se] site.

1.1. Conventions used in this document

This document follows general conventions for content formatting, e.g.

• System items: filename, user, ENVIRON_VARIABLE

• Commands: To use the pwrs command, type pwrs at the terminal.

• Screen listing

bash$ cd src
bash$ ls -al

• Menu choices: Edit → Change value (Ctrl-Q).

In addition, the following Proview add-ons are used:

• Proview Environments are currently displayed in small caps or sans serif (PDF version), e.g. Pro-
jectList.

• Proview Classes are currently displayed in boldface, e.g. ProjectReg.

• Attributes of Proview Classes are currently displayed in italics, e.g. ObjectName.

• Values of attributes are currently displayed in monospace, e.g. 56.4 in the case of numbers, or as
“Demoprojects” in the case of strings.

2. Open the administrator environment
During installation, the user pwrp with password “pwrp” is added to the system. Log in as pwrp and
use pwra at the prompt to start the Project Administrator. To start Proview as another user, just add
the contents of the .bashrc file in the pwrp home/ directory to that of your user.

http://www.proview.se
http://www.proview.se

Proview 4.2 Getting Started Guide

2

The ProjectList administrator environment will open up in a new window. Switch to and from Edit

mode with Edit → Edit mode (Ctrl-E). Make sure NumLock is not set on the keyboard, as Ctrl
commands with NumLock enabled are not yet supported in Proview.

Tip

In some cases, you have to gain the Administrator privilege to enter edit mode. Login as
administrator with the command login /administrator. (use Ctrl-B, to get a command line).

3. Create a project in the ProjectList

Once in Edit mode, an object palette will appear to the left in the window. The ProjectList at first only
contains the “Bases” hierarchy. To create a hierarchy for the projects, select Hier in the palette, move
the cursor to the “Bases” hierarchy and middle click. A new, empty Hier object is inserted below the
existing one.

The hierarchy object is a container for arbitrary objects and it has two attributes: an ObjectName and a
Description. To expand the object and expose the attributes, select the object and use the right arrow

key. Now, to edit an attribute, select the attribute and use Edit → Change value (Ctrl-Q).

Use set adv

A more convenient way to edit an attribute is to give the command set adv in the Navigator
(use Ctrl-B, to get a command line). Then object attributes may be open for editing with
the right arrow key. In the case of an object with children, right arrow opens the next
level of the hierarchy, and Shift-right arrow opens the object itself for editing.

The project list navigator.

We choose the name “Demoprojects” for our hierarchy. We then add a ProjectReg object to the “De-
moprojects” hierarchy and name it “Demo”. We want to add the ProjectReg as a child and not as
a sibling. To do this, middle click directly on the desired parent leaf, which is our “Demoprojects”
hierarchy in this case. An object can be moved or copied in the hierarchy by selecting it and Right-
clicking at the desired location. We need to define the project and path attributes. The project name
is written in lower case. We use the name “demo”. The path attribute should just reflect the chosen
project name. Save the changes to the ProjectList and exit Edit mode.

Proview 4.2 Getting Started Guide

3

4. Create a volume in the VolumeList

In the VolumeList, select File → Open.. → GlobalVolumeList to open the VolumeList. Request Edit
mode. In the “ProjectVolumes” hierarchy, add a VolumeReg object. We name our VolumeReg object
“VolDEMO” and assign it to the right project by writing demo in its project attribute. A project may
have several volumes assigned to it, but not the other way around. A unique VolumeId must be given.
We choose 0.1.1.1, see the Designer's Guide for a specification of the numbers. Save the changes
to the volume list and go out of edit mode.

The volume list navigator.

4.1. Configuring the volume

When a volume is created, open the Directory Navigator by right clicking the ProjectReg object in

the ProjectList, and choosing Popup menu → Open Project... An alternative way is to type

bash$ sdf demo

The sdf command sets up environment variables for the project with default values. The Directory
Navigator is then started with pwrs. In the Navigator, request Edit mode as before (Ctrl-E), and a
two-window view (Ctrl-W). The upper window corresponds to Volume configuration, and the lower
window to Node configuration. In the Volume window, we add a RootVolumeConfig object and
name it “VolDEMO”. In the Node window we add a System and two BusConfig objects.

In the System object, the SystemName attribute is the same as the project name, i e “demo”. The
SystemGroup attribute should be set to “Common”, which gives us authorization to edit the project
later.

The two BusConfig objects are for production and simulation, respectively. We name the objects after
their bus numbers, choosing 507 for production, and 999 for simulation. These values must be set in
the BusNumber attributes of the objects. To each of the BusConfig objects, we add a NodeConfig ob-
ject. The NodeConfig attributes to be set are ObjectName, NodeName and BootNode, which are set to
the name of the runtime machine in question. We only use the development machine susetest, and
it is not possible to have separate buses for simulation and production. Therefore, we set up a dummy
node on the production bus and put susetest on the simulation bus. Finally, the OperatingSystem
(normally “Linux on x86”) and Address (IP-address) of the node need to be specified.

Proview 4.2 Getting Started Guide

4

The directory volume navigator.

Proview 4.2 Getting Started Guide

5

The directory volume navigator (again).

With each of the NodeConfig objects follows two children, a RootVolumeLoad object and a Dis-
tribute object. The ObjectName of the RootVolumeLoad object needs to be set. It is the same as the
corresponding volume, “VolDEMO” in this case.

Save the changes and exit edit mode.

Tip

The process of configuring project and volumes can be automatated in a script, called
from the command line in the Navigator. See the Designer's Guide, at the Proview [http://
www.proview.se/] site.

5. Setting up plant and node hierarchies in the Volume
Navigator

Open the Directory Navigator with pwrs from a terminal window (you may have to type sdf demo

at the terminal first). Right click on the RootVolumeConfig object and choose Popup menu → Open
volume.. to open the Volume Navigator. It is also possible to open the volume directly from the
terminal, by passing the volume name as an argument to pwrs, i.e.

bash$ pwrs VolDEMO

http://www.proview.se/
http://www.proview.se/
http://www.proview.se/

Proview 4.2 Getting Started Guide

6

Enter Edit mode and choose a two-window view. Make sure that the OperatingSystem attribute is set

correctly in File → Volume attributes...

Now, add a PlantHier object to the top window, and a NodeHier object to the bottom window. To
the NodeHier, we add a Node object, and name it “SUSETEST”. The plant hierarchy is a logical
representation of the physical system to be controlled. It will contain the various signals and parame-
ters needed, as well as the plc programs that perform the control operations. The node hierarchy is a
representation of the hardware, with I/O-channels and system-level configurations. Proview currently
supports the Profibus/DP fieldbus standard, as well as a number of less widespread QBUS I/O cards.
To keep this demonstration example general, we will leave out I/O configuration, and use internal
signals only.

5.1. Plant Hierarchy and Plc Programs

We will now set up the plant hierarchy, which is a logical model of our physical system, and create
the plc programs that will perform the control operations. We start by adding some analog and digital
signals (Av and Dv) to the plant hierarchy from the palette on the left-hand side. The palette is visible
in Edit mode, only. Then we add a PlcPgm to the hierarchy (this is the plc program object). We need
to connect it to the right PlcThread in the node hierarchy. Select the default “100ms” PlcThread
under the PlcProcess object in the node hierarchy. Then connect it to the ThreadObject attribute of
the newly created PlcPgm in the plant hierarchy. To do this, select the PlcThread and Ctrl-Double
click on the ThreadObject attribute. Connections between other objects, e.g. I/O channels and signals,
are created with Ctrl-Double click in a similar way.

We need to set the thread priority of the PlcThread, as the default priority of 0 will give poor real
time performance. This is done in the Prio attribute of the PlcThread. A priority of 20 is suitable.
Save the changes made to the volume, and exit Edit mode.

Proview 4.2 Getting Started Guide

7

The volume navigator.

To edit the plc program, make sure the Volume Navigator is not in edit mode. Then select the PlcPgm

and choose Functions → Open program (Ctrl-L). The plc editor opens in a new window. Enter Edit
mode. Now, add objects to the program by choosing from the left-hand side palette and middle clicking
in the program area. We build a small example program consisting of a Ramp object, with analog
input and output signals. Save the program and exit the editor.

The plc editor.

We now need to compile the program and create a load file and a boot file. This is done in the Volume

Navigator. Choose Functions → Build Node in the menu. Check the outcome of the command in the
terminal window where you started the Navigator.

Note

A lock-file is created when opening Navigator to prevent other users from opening the same
database. After an uncontrolled termination of the Navigator, the lock might remain, and
has to be removed manually.

bash$ rm $pwrp_db/*.db.lock

6. Process graphics and User Interfaces

To make a small GUI, open the Graphical Editor (GE) with Functions → Open graphical editor (Ctrl-
K) To control the example system, add a slider with background and a trendcurve for the analog input
and output. Open the object attribute windows, and connect the relevant attributes to the corresponding
signals in the plant hierarchy. This is done by selecting the signal, and Ctrl-Double click the attribute.

Proview 4.2 Getting Started Guide

8

The Graphical Editor (GE).

We need to set the size of the image in File → Graph attributes.... Place the cursor in the lower right
corner of the image to read off suitable values for the x1 and y1 coordinates.

The graph attributes window.

Save the process image file as demo.pwg. To use it in runtime we need to copy it from the default

location in $pwrp_pop/ to $pwrp_exe/. 1 When we have a lot of process graphics for a project
the easiest way is to type

bash$ cp $pwrp_pop/*.pwg $pwrp_exe

1The initial sdf sets $pwrp_pop/ and $pwrp_exe/ to point to certain directories in the project tree. These are projectpath/common/
src/pop/ and projectpath/x86_linux/exe/, respectively.

Proview 4.2 Getting Started Guide

9

7. Runtime

Now our program is compiled, and we have created a load file and a boot file for the volume. To start
the runtime system on the development machine, type

bash$ rt_ini &

To stop the runtime processes, type rt_ini -s, or . pwr_stop.sh (while this holds for a
development machine, the commands differ slightly on a runtime-only node, with a pwrrt package
installed - see separate documentation).

Note

For the runtime system to work correctly, you may have to mount an mqueue on your
system. This can be done by

bash$ su
bash$ mkdir /dev/mqueue
bash$ mount -t mqueue none /dev/mqueue

The mqueue thus mounted will disappear after reboot. For a permanent mount, edit the
/etc/fstab file.

You may also want to control that the $PWR_BUS_ID environment variable is set up cor-
rectly (it should match the chosen bus number, which is 999 in this case).

If everything goes well, we can now open the Xtt Runtime Navigator from the terminal with rt_xtt.

The Xtt navigator.

To open the process image in Xtt, use Ctrl-B to get a command line in the navigator, and then type
open graph demo.

Proview 4.2 Getting Started Guide

10

The graph in the runtime environment.

	Proview 4.2 Getting Started Guide
	Table of Contents
	1. About this guide
	1.1. Conventions used in this document

	2. Open the administrator environment
	3. Create a project in the ProjectList
	4. Create a volume in the VolumeList
	4.1. Configuring the volume

	5. Setting up plant and node hierarchies in the Volume Navigator
	5.1. Plant Hierarchy and Plc Programs

	6. Process graphics and User Interfaces
	7. Runtime

