# # Pyrex - Parse tree nodes # import string, sys, os, time, copy import Code from Errors import error, warning, InternalError import Naming import PyrexTypes import TypeSlots from PyrexTypes import py_object_type, error_type, CTypedefType, CFuncType from Symtab import ModuleScope, LocalScope, GeneratorLocalScope, \ StructOrUnionScope, PyClassScope, CClassScope from Cython.Utils import open_new_file, replace_suffix, EncodedString import Options import ControlFlow from DebugFlags import debug_disposal_code absolute_path_length = 0 def relative_position(pos): """ We embed the relative filename in the generated C file, since we don't want to have to regnerate and compile all the source code whenever the Python install directory moves (which could happen, e.g,. when distributing binaries.) INPUT: a position tuple -- (absolute filename, line number column position) OUTPUT: relative filename line number AUTHOR: William Stein """ global absolute_path_length if absolute_path_length==0: absolute_path_length = len(os.path.abspath(os.getcwd())) return (pos[0].get_filenametable_entry()[absolute_path_length+1:], pos[1]) def embed_position(pos, docstring): if not Options.embed_pos_in_docstring: return docstring pos_line = u'File: %s (starting at line %s)' % relative_position(pos) if docstring is None: # unicode string return EncodedString(pos_line) # make sure we can encode the filename in the docstring encoding # otherwise make the docstring a unicode string encoding = docstring.encoding if encoding is not None: try: encoded_bytes = pos_line.encode(encoding) except UnicodeEncodeError: encoding = None if not docstring: # reuse the string encoding of the original docstring doc = EncodedString(pos_line) else: doc = EncodedString(pos_line + u'\\n' + docstring) doc.encoding = encoding return doc class Node(object): # pos (string, int, int) Source file position # is_name boolean Is a NameNode # is_literal boolean Is a ConstNode is_name = 0 is_literal = 0 temps = None # All descandants should set child_attrs to a list of the attributes # containing nodes considered "children" in the tree. Each such attribute # can either contain a single node or a list of nodes. See Visitor.py. child_attrs = None def __init__(self, pos, **kw): self.pos = pos self.__dict__.update(kw) gil_message = "Operation" def gil_check(self, env): if env.nogil: self.gil_error() def gil_error(self): error(self.pos, "%s not allowed without gil" % self.gil_message) def clone_node(self): """Clone the node. This is defined as a shallow copy, except for member lists amongst the child attributes (from get_child_accessors) which are also copied. Lists containing child nodes are thus seen as a way for the node to hold multiple children directly; the list is not treated as a seperate level in the tree.""" result = copy.copy(self) for attrname in result.child_attrs: value = getattr(result, attrname) if isinstance(value, list): setattr(result, attrname, [x for x in value]) return result # # There are 4 phases of parse tree processing, applied in order to # all the statements in a given scope-block: # # (0) analyse_control_flow # Create the control flow tree into which state can be asserted and # queried. # # (1) analyse_declarations # Make symbol table entries for all declarations at the current # level, both explicit (def, cdef, etc.) and implicit (assignment # to an otherwise undeclared name). # # (2) analyse_expressions # Determine the result types of expressions and fill in the # 'type' attribute of each ExprNode. Insert coercion nodes into the # tree where needed to convert to and from Python objects. # Allocate temporary locals for intermediate results. Fill # in the 'result_code' attribute of each ExprNode with a C code # fragment. # # (3) generate_code # Emit C code for all declarations, statements and expressions. # Recursively applies the 3 processing phases to the bodies of # functions. # def analyse_control_flow(self, env): pass def analyse_declarations(self, env): pass def analyse_expressions(self, env): raise InternalError("analyse_expressions not implemented for %s" % \ self.__class__.__name__) def generate_code(self, code): raise InternalError("generate_code not implemented for %s" % \ self.__class__.__name__) def annotate(self, code): # mro does the wrong thing if isinstance(self, BlockNode): self.body.annotate(code) def end_pos(self): if not self.child_attrs: return self.pos try: return self._end_pos except AttributeError: pos = self.pos for attr in self.child_attrs: child = getattr(self, attr) # Sometimes lists, sometimes nodes if child is None: pass elif isinstance(child, list): for c in child: pos = max(pos, c.end_pos()) else: pos = max(pos, child.end_pos()) self._end_pos = pos return pos def dump(self, level=0, filter_out=("pos",)): def dump_child(x, level): if isinstance(x, Node): return x.dump(level) elif isinstance(x, list): return "[%s]" % ", ".join([dump_child(item, level) for item in x]) else: return repr(x) attrs = [(key, value) for key, value in self.__dict__.iteritems() if key not in filter_out] if len(attrs) == 0: return "<%s (%d)>" % (self.__class__.__name__, id(self)) else: indent = " " * level res = "<%s (%d)\n" % (self.__class__.__name__, id(self)) for key, value in attrs: res += "%s %s: %s\n" % (indent, key, dump_child(value, level + 1)) res += "%s>" % indent return res class BlockNode: # Mixin class for nodes representing a declaration block. def generate_const_definitions(self, env, code): if env.const_entries: code.putln("") for entry in env.const_entries: if not entry.is_interned: code.put_var_declaration(entry, static = 1) def generate_interned_string_decls(self, env, code): entries = env.global_scope().new_interned_string_entries if entries: code.putln("") for entry in entries: code.put_var_declaration(entry, static = 1) code.putln("") for entry in entries: code.putln( "static PyObject *%s;" % entry.pystring_cname) del entries[:] def generate_py_string_decls(self, env, code): if env is None: return # earlier error entries = env.pystring_entries if entries: code.putln("") for entry in entries: if not entry.is_interned: code.putln( "static PyObject *%s;" % entry.pystring_cname) def generate_interned_num_decls(self, env, code): # Flush accumulated interned nums from the global scope # and generate declarations for them. genv = env.global_scope() entries = genv.interned_nums if entries: code.putln("") for entry in entries: code.putln( "static PyObject *%s;" % entry.cname) del entries[:] def generate_cached_builtins_decls(self, env, code): entries = env.global_scope().undeclared_cached_builtins if len(entries) > 0: code.putln("") for entry in entries: code.putln("static PyObject *%s;" % entry.cname) del entries[:] class StatListNode(Node): # stats a list of StatNode child_attrs = ["stats"] def create_analysed(pos, env, *args, **kw): node = StatListNode(pos, *args, **kw) return node # No node-specific analysis necesarry create_analysed = staticmethod(create_analysed) def analyse_control_flow(self, env): for stat in self.stats: stat.analyse_control_flow(env) def analyse_declarations(self, env): #print "StatListNode.analyse_declarations" ### for stat in self.stats: stat.analyse_declarations(env) def analyse_expressions(self, env): #print "StatListNode.analyse_expressions" ### for stat in self.stats: stat.analyse_expressions(env) def generate_function_definitions(self, env, code, transforms): #print "StatListNode.generate_function_definitions" ### for stat in self.stats: stat.generate_function_definitions(env, code, transforms) def generate_execution_code(self, code): #print "StatListNode.generate_execution_code" ### for stat in self.stats: code.mark_pos(stat.pos) stat.generate_execution_code(code) def annotate(self, code): for stat in self.stats: stat.annotate(code) class StatNode(Node): # # Code generation for statements is split into the following subphases: # # (1) generate_function_definitions # Emit C code for the definitions of any structs, # unions, enums and functions defined in the current # scope-block. # # (2) generate_execution_code # Emit C code for executable statements. # def generate_function_definitions(self, env, code, transforms): pass def generate_execution_code(self, code): raise InternalError("generate_execution_code not implemented for %s" % \ self.__class__.__name__) class CDefExternNode(StatNode): # include_file string or None # body StatNode child_attrs = ["body"] def analyse_declarations(self, env): if self.include_file: env.add_include_file(self.include_file) old_cinclude_flag = env.in_cinclude env.in_cinclude = 1 self.body.analyse_declarations(env) env.in_cinclude = old_cinclude_flag def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass def annotate(self, code): self.body.annotate(code) class CDeclaratorNode(Node): # Part of a C declaration. # # Processing during analyse_declarations phase: # # analyse # Returns (name, type) pair where name is the # CNameDeclaratorNode of the name being declared # and type is the type it is being declared as. # # calling_convention string Calling convention of CFuncDeclaratorNode # for which this is a base child_attrs = [] calling_convention = "" class CNameDeclaratorNode(CDeclaratorNode): # name string The Pyrex name being declared # cname string or None C name, if specified # default ExprNode or None the value assigned on declaration child_attrs = ['default'] default = None def analyse(self, base_type, env, nonempty = 0): if nonempty and self.name == '': # May have mistaken the name for the type. if base_type.is_ptr or base_type.is_array or base_type.is_buffer: error(self.pos, "Missing argument name") elif base_type.is_void: error(self.pos, "Use spam() rather than spam(void) to declare a function with no arguments.") self.name = base_type.declaration_code("", for_display=1, pyrex=1) base_type = py_object_type self.type = base_type return self, base_type class CPtrDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode child_attrs = ["base"] def analyse(self, base_type, env, nonempty = 0): if base_type.is_pyobject: error(self.pos, "Pointer base type cannot be a Python object") ptr_type = PyrexTypes.c_ptr_type(base_type) return self.base.analyse(ptr_type, env, nonempty = nonempty) class CArrayDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode # dimension ExprNode child_attrs = ["base", "dimension"] def analyse(self, base_type, env, nonempty = 0): if self.dimension: self.dimension.analyse_const_expression(env) if not self.dimension.type.is_int: error(self.dimension.pos, "Array dimension not integer") size = self.dimension.result_code else: size = None if not base_type.is_complete(): error(self.pos, "Array element type '%s' is incomplete" % base_type) if base_type.is_pyobject: error(self.pos, "Array element cannot be a Python object") if base_type.is_cfunction: error(self.pos, "Array element cannot be a function") array_type = PyrexTypes.c_array_type(base_type, size) return self.base.analyse(array_type, env, nonempty = nonempty) class CFuncDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode # args [CArgDeclNode] # has_varargs boolean # exception_value ConstNode # exception_check boolean True if PyErr_Occurred check needed # nogil boolean Can be called without gil # with_gil boolean Acquire gil around function body child_attrs = ["base", "args", "exception_value"] overridable = 0 optional_arg_count = 0 def analyse(self, return_type, env, nonempty = 0): if nonempty: nonempty -= 1 func_type_args = [] for arg_node in self.args: name_declarator, type = arg_node.analyse(env, nonempty = nonempty) name = name_declarator.name if name_declarator.cname: error(self.pos, "Function argument cannot have C name specification") # Turn *[] argument into ** if type.is_array: type = PyrexTypes.c_ptr_type(type.base_type) # Catch attempted C-style func(void) decl if type.is_void: error(arg_node.pos, "Use spam() rather than spam(void) to declare a function with no arguments.") # if type.is_pyobject and self.nogil: # error(self.pos, # "Function with Python argument cannot be declared nogil") func_type_args.append( PyrexTypes.CFuncTypeArg(name, type, arg_node.pos)) if arg_node.default: self.optional_arg_count += 1 elif self.optional_arg_count: error(self.pos, "Non-default argument follows default argument") if self.optional_arg_count: scope = StructOrUnionScope() scope.declare_var('%sn' % Naming.pyrex_prefix, PyrexTypes.c_int_type, self.pos) for arg in func_type_args[len(func_type_args)-self.optional_arg_count:]: scope.declare_var(arg.name, arg.type, arg.pos, allow_pyobject = 1) struct_cname = env.mangle(Naming.opt_arg_prefix, self.base.name) self.op_args_struct = env.global_scope().declare_struct_or_union(name = struct_cname, kind = 'struct', scope = scope, typedef_flag = 0, pos = self.pos, cname = struct_cname) self.op_args_struct.defined_in_pxd = 1 self.op_args_struct.used = 1 exc_val = None exc_check = 0 if return_type.is_pyobject \ and (self.exception_value or self.exception_check) \ and self.exception_check != '+': error(self.pos, "Exception clause not allowed for function returning Python object") else: if self.exception_value: self.exception_value.analyse_const_expression(env) if self.exception_check == '+': exc_val_type = self.exception_value.type if not exc_val_type.is_error and \ not exc_val_type.is_pyobject and \ not (exc_val_type.is_cfunction and not exc_val_type.return_type.is_pyobject and len(exc_val_type.args)==0): error(self.exception_value.pos, "Exception value must be a Python exception or cdef function with no arguments.") exc_val = self.exception_value else: exc_val = self.exception_value.result_code if not return_type.assignable_from(self.exception_value.type): error(self.exception_value.pos, "Exception value incompatible with function return type") exc_check = self.exception_check if return_type.is_array: error(self.pos, "Function cannot return an array") if return_type.is_cfunction: error(self.pos, "Function cannot return a function") func_type = PyrexTypes.CFuncType( return_type, func_type_args, self.has_varargs, optional_arg_count = self.optional_arg_count, exception_value = exc_val, exception_check = exc_check, calling_convention = self.base.calling_convention, nogil = self.nogil, with_gil = self.with_gil, is_overridable = self.overridable) if self.optional_arg_count: func_type.op_arg_struct = PyrexTypes.c_ptr_type(self.op_args_struct.type) return self.base.analyse(func_type, env) class CArgDeclNode(Node): # Item in a function declaration argument list. # # base_type CBaseTypeNode # declarator CDeclaratorNode # not_none boolean Tagged with 'not None' # default ExprNode or None # default_entry Symtab.Entry Entry for the variable holding the default value # default_result_code string cname or code fragment for default value # is_self_arg boolean Is the "self" arg of an extension type method # is_kw_only boolean Is a keyword-only argument child_attrs = ["base_type", "declarator", "default"] is_self_arg = 0 is_generic = 1 def analyse(self, env, nonempty = 0): #print "CArgDeclNode.analyse: is_self_arg =", self.is_self_arg ### base_type = self.base_type.analyse(env) return self.declarator.analyse(base_type, env, nonempty = nonempty) def annotate(self, code): if self.default: self.default.annotate(code) class CBaseTypeNode(Node): # Abstract base class for C base type nodes. # # Processing during analyse_declarations phase: # # analyse # Returns the type. pass class CSimpleBaseTypeNode(CBaseTypeNode): # name string # module_path [string] Qualifying name components # is_basic_c_type boolean # signed boolean # longness integer # is_self_arg boolean Is self argument of C method child_attrs = [] def analyse(self, env): # Return type descriptor. #print "CSimpleBaseTypeNode.analyse: is_self_arg =", self.is_self_arg ### type = None if self.is_basic_c_type: type = PyrexTypes.simple_c_type(self.signed, self.longness, self.name) if not type: error(self.pos, "Unrecognised type modifier combination") elif self.name == "object" and not self.module_path: type = py_object_type elif self.name is None: if self.is_self_arg and env.is_c_class_scope: #print "CSimpleBaseTypeNode.analyse: defaulting to parent type" ### type = env.parent_type else: type = py_object_type else: scope = env.find_imported_module(self.module_path, self.pos) if scope: if scope.is_c_class_scope: scope = scope.global_scope() entry = scope.find(self.name, self.pos) if entry and entry.is_type: type = entry.type else: error(self.pos, "'%s' is not a type identifier" % self.name) if type: return type else: return PyrexTypes.error_type class CBufferAccessTypeNode(Node): # After parsing: # positional_args [ExprNode] List of positional arguments # keyword_args DictNode Keyword arguments # base_type_node CBaseTypeNode # After PostParse: # dtype_node CBaseTypeNode # ndim int # After analysis: # type PyrexType.PyrexType child_attrs = ["base_type_node", "positional_args", "keyword_args", "dtype_node"] dtype_node = None def analyse(self, env): base_type = self.base_type_node.analyse(env) dtype = self.dtype_node.analyse(env) self.type = PyrexTypes.BufferType(base_type, dtype=dtype, ndim=self.ndim, mode=self.mode) return self.type class CComplexBaseTypeNode(CBaseTypeNode): # base_type CBaseTypeNode # declarator CDeclaratorNode child_attrs = ["base_type", "declarator"] def analyse(self, env): base = self.base_type.analyse(env) _, type = self.declarator.analyse(base, env) return type class CVarDefNode(StatNode): # C variable definition or forward/extern function declaration. # # visibility 'private' or 'public' or 'extern' # base_type CBaseTypeNode # declarators [CDeclaratorNode] # in_pxd boolean # api boolean # need_properties [entry] child_attrs = ["base_type", "declarators"] need_properties = () def analyse_declarations(self, env, dest_scope = None): if not dest_scope: dest_scope = env self.dest_scope = dest_scope base_type = self.base_type.analyse(env) if (dest_scope.is_c_class_scope and self.visibility == 'public' and base_type.is_pyobject and (base_type.is_builtin_type or base_type.is_extension_type)): self.need_properties = [] need_property = True visibility = 'private' else: need_property = False visibility = self.visibility for declarator in self.declarators: name_declarator, type = declarator.analyse(base_type, env) if not type.is_complete(): if not (self.visibility == 'extern' and type.is_array): error(declarator.pos, "Variable type '%s' is incomplete" % type) if self.visibility == 'extern' and type.is_pyobject: error(declarator.pos, "Python object cannot be declared extern") name = name_declarator.name cname = name_declarator.cname if name == '': error(declarator.pos, "Missing name in declaration.") return if type.is_cfunction: entry = dest_scope.declare_cfunction(name, type, declarator.pos, cname = cname, visibility = self.visibility, in_pxd = self.in_pxd, api = self.api) else: if self.in_pxd and self.visibility != 'extern': error(self.pos, "Only 'extern' C variable declaration allowed in .pxd file") entry = dest_scope.declare_var(name, type, declarator.pos, cname = cname, visibility = visibility, is_cdef = 1) if need_property: self.need_properties.append(entry) entry.needs_property = 1 class CStructOrUnionDefNode(StatNode): # name string # cname string or None # kind "struct" or "union" # typedef_flag boolean # visibility "public" or "private" # in_pxd boolean # attributes [CVarDefNode] or None # entry Entry child_attrs = ["attributes"] def analyse_declarations(self, env): scope = None if self.attributes is not None: scope = StructOrUnionScope(self.name) self.entry = env.declare_struct_or_union( self.name, self.kind, scope, self.typedef_flag, self.pos, self.cname, visibility = self.visibility) if self.attributes is not None: if self.in_pxd and not env.in_cinclude: self.entry.defined_in_pxd = 1 for attr in self.attributes: attr.analyse_declarations(env, scope) def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class CEnumDefNode(StatNode): # name string or None # cname string or None # items [CEnumDefItemNode] # typedef_flag boolean # visibility "public" or "private" # in_pxd boolean # entry Entry child_attrs = ["items"] def analyse_declarations(self, env): self.entry = env.declare_enum(self.name, self.pos, cname = self.cname, typedef_flag = self.typedef_flag, visibility = self.visibility) if self.items is not None: if self.in_pxd and not env.in_cinclude: self.entry.defined_in_pxd = 1 for item in self.items: item.analyse_declarations(env, self.entry) def analyse_expressions(self, env): if self.visibility == 'public': self.temp = env.allocate_temp_pyobject() env.release_temp(self.temp) def generate_execution_code(self, code): if self.visibility == 'public': for item in self.entry.enum_values: code.putln("%s = PyInt_FromLong(%s); %s" % ( self.temp, item.cname, code.error_goto_if_null(self.temp, item.pos))) code.putln('if (PyObject_SetAttrString(%s, "%s", %s) < 0) %s' % ( Naming.module_cname, item.name, self.temp, code.error_goto(item.pos))) code.putln("%s = 0;" % self.temp) class CEnumDefItemNode(StatNode): # name string # cname string or None # value ExprNode or None child_attrs = ["value"] def analyse_declarations(self, env, enum_entry): if self.value: self.value.analyse_const_expression(env) if not self.value.type.is_int: self.value = self.value.coerce_to(PyrexTypes.c_int_type, env) self.value.analyse_const_expression(env) value = self.value.result_code else: value = self.name entry = env.declare_const(self.name, enum_entry.type, value, self.pos, cname = self.cname, visibility = enum_entry.visibility) enum_entry.enum_values.append(entry) class CTypeDefNode(StatNode): # base_type CBaseTypeNode # declarator CDeclaratorNode # visibility "public" or "private" # in_pxd boolean child_attrs = ["base_type", "declarator"] def analyse_declarations(self, env): base = self.base_type.analyse(env) name_declarator, type = self.declarator.analyse(base, env) name = name_declarator.name cname = name_declarator.cname entry = env.declare_typedef(name, type, self.pos, cname = cname, visibility = self.visibility) if self.in_pxd and not env.in_cinclude: entry.defined_in_pxd = 1 def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class FuncDefNode(StatNode, BlockNode): # Base class for function definition nodes. # # return_type PyrexType # #filename string C name of filename string const # entry Symtab.Entry # needs_closure boolean Whether or not this function has inner functions/classes/yield py_func = None assmt = None needs_closure = False def analyse_default_values(self, env): genv = env.global_scope() for arg in self.args: if arg.default: if arg.is_generic: if not hasattr(arg, 'default_entry'): arg.default.analyse_types(env) arg.default = arg.default.coerce_to(arg.type, genv) if arg.default.is_literal: arg.default_entry = arg.default arg.default_result_code = arg.default.calculate_result_code() if arg.default.type != arg.type and not arg.type.is_int: arg.default_result_code = arg.type.cast_code(arg.default_result_code) else: arg.default.allocate_temps(genv) arg.default_entry = genv.add_default_value(arg.type) arg.default_entry.used = 1 arg.default_result_code = arg.default_entry.cname else: error(arg.pos, "This argument cannot have a default value") arg.default = None def need_gil_acquisition(self, lenv): return 0 def create_local_scope(self, env): genv = env while env.is_py_class_scope or env.is_c_class_scope: env = env.outer_scope if self.needs_closure: lenv = GeneratorLocalScope(name = self.entry.name, outer_scope = genv) else: lenv = LocalScope(name = self.entry.name, outer_scope = genv) lenv.return_type = self.return_type type = self.entry.type if type.is_cfunction: lenv.nogil = type.nogil and not type.with_gil self.local_scope = lenv return lenv def generate_function_definitions(self, env, code, transforms): import Buffer lenv = self.local_scope # Generate C code for header and body of function code.enter_cfunc_scope() code.return_from_error_cleanup_label = code.new_label() # ----- Top-level constants used by this function code.mark_pos(self.pos) self.generate_interned_num_decls(lenv, code) self.generate_interned_string_decls(lenv, code) self.generate_py_string_decls(lenv, code) self.generate_cached_builtins_decls(lenv, code) #code.putln("") #code.put_var_declarations(lenv.const_entries, static = 1) self.generate_const_definitions(lenv, code) # ----- Function header code.putln("") if self.py_func: self.py_func.generate_function_header(code, with_pymethdef = env.is_py_class_scope, proto_only=True) self.generate_function_header(code, with_pymethdef = env.is_py_class_scope) # ----- Local variable declarations lenv.mangle_closure_cnames(Naming.cur_scope_cname) self.generate_argument_declarations(lenv, code) if self.needs_closure: code.putln("/* TODO: declare and create scope object */") code.put_var_declarations(lenv.var_entries) init = "" if not self.return_type.is_void: code.putln( "%s%s;" % (self.return_type.declaration_code( Naming.retval_cname), init)) tempvardecl_code = code.insertion_point() self.generate_keyword_list(code) # ----- Extern library function declarations lenv.generate_library_function_declarations(code) # ----- GIL acquisition acquire_gil = self.need_gil_acquisition(lenv) if acquire_gil: code.putln("PyGILState_STATE _save = PyGILState_Ensure();") # ----- Fetch arguments self.generate_argument_parsing_code(env, code) # If an argument is assigned to in the body, we must # incref it to properly keep track of refcounts. for entry in lenv.arg_entries: if entry.type.is_pyobject and lenv.control_flow.get_state((entry.name, 'source')) != 'arg': code.put_var_incref(entry) if entry.type.is_buffer: Buffer.put_acquire_arg_buffer(entry, code, self.pos) # ----- Initialise local variables for entry in lenv.var_entries: if entry.type.is_pyobject and entry.init_to_none and entry.used: code.put_init_var_to_py_none(entry) # ----- Check and convert arguments self.generate_argument_type_tests(code) # ----- Function body self.body.generate_execution_code(code) # ----- Default return value code.putln("") if self.return_type.is_pyobject: #if self.return_type.is_extension_type: # lhs = "(PyObject *)%s" % Naming.retval_cname #else: lhs = Naming.retval_cname code.put_init_to_py_none(lhs, self.return_type) else: val = self.return_type.default_value if val: code.putln("%s = %s;" % (Naming.retval_cname, val)) # ----- Error cleanup if code.error_label in code.labels_used: code.put_goto(code.return_label) code.put_label(code.error_label) code.put_var_xdecrefs(lenv.temp_entries) # Clean up buffers -- this calls a Python function # so need to save and restore error state buffers_present = len(lenv.buffer_entries) > 0 if buffers_present: code.putln("{ PyObject *__pyx_type, *__pyx_value, *__pyx_tb;") code.putln("PyErr_Fetch(&__pyx_type, &__pyx_value, &__pyx_tb);") for entry in lenv.buffer_entries: code.putln("%s;" % Buffer.get_release_buffer_code(entry)) #code.putln("%s = 0;" % entry.cname) code.putln("PyErr_Restore(__pyx_type, __pyx_value, __pyx_tb);}") err_val = self.error_value() exc_check = self.caller_will_check_exceptions() if err_val is not None or exc_check: code.putln('__Pyx_AddTraceback("%s");' % self.entry.qualified_name) else: warning(self.entry.pos, "Unraisable exception in function '%s'." \ % self.entry.qualified_name, 0) code.putln( '__Pyx_WriteUnraisable("%s");' % self.entry.qualified_name) env.use_utility_code(unraisable_exception_utility_code) default_retval = self.return_type.default_value if err_val is None and default_retval: err_val = default_retval if err_val is not None: code.putln( "%s = %s;" % ( Naming.retval_cname, err_val)) if buffers_present: # Else, non-error return will be an empty clause code.put_goto(code.return_from_error_cleanup_label) # ----- Non-error return cleanup # PS! If adding something here, modify the conditions for the # goto statement in error cleanup above code.put_label(code.return_label) for entry in lenv.buffer_entries: code.putln("%s;" % Buffer.get_release_buffer_code(entry)) # ----- Return cleanup for both error and no-error return code.put_label(code.return_from_error_cleanup_label) if not Options.init_local_none: for entry in lenv.var_entries: if lenv.control_flow.get_state((entry.name, 'initalized')) is not True: entry.xdecref_cleanup = 1 code.put_var_decrefs(lenv.var_entries, used_only = 1) # Decref any increfed args for entry in lenv.arg_entries: if entry.type.is_pyobject and lenv.control_flow.get_state((entry.name, 'source')) != 'arg': code.put_var_decref(entry) self.put_stararg_decrefs(code) if acquire_gil: code.putln("PyGILState_Release(_save);") # code.putln("/* TODO: decref scope object */") # ----- Return if not self.return_type.is_void: code.putln("return %s;" % Naming.retval_cname) code.putln("}") # ----- Go back and insert temp variable declarations tempvardecl_code.put_var_declarations(lenv.temp_entries) tempvardecl_code.put_temp_declarations(code.func) # ----- Python version code.exit_cfunc_scope() if self.py_func: self.py_func.generate_function_definitions(env, code, transforms) self.generate_optarg_wrapper_function(env, code) def put_stararg_decrefs(self, code): pass def declare_argument(self, env, arg): if arg.type.is_void: error(arg.pos, "Invalid use of 'void'") elif not arg.type.is_complete() and not arg.type.is_array: error(arg.pos, "Argument type '%s' is incomplete" % arg.type) return env.declare_arg(arg.name, arg.type, arg.pos) def generate_optarg_wrapper_function(self, env, code): pass def generate_execution_code(self, code): # Evaluate and store argument default values for arg in self.args: default = arg.default if default: if not default.is_literal: default.generate_evaluation_code(code) default.make_owned_reference(code) code.putln( "%s = %s;" % ( arg.default_entry.cname, default.result_as(arg.default_entry.type))) if default.is_temp and default.type.is_pyobject: code.putln( "%s = 0;" % default.result_code) # For Python class methods, create and store function object if self.assmt: self.assmt.generate_execution_code(code) class CFuncDefNode(FuncDefNode): # C function definition. # # modifiers ['inline'] # visibility 'private' or 'public' or 'extern' # base_type CBaseTypeNode # declarator CDeclaratorNode # body StatListNode # api boolean # # with_gil boolean Acquire GIL around body # type CFuncType # py_func wrapper for calling from Python child_attrs = ["base_type", "declarator", "body", "py_func"] def unqualified_name(self): return self.entry.name def analyse_declarations(self, env): base_type = self.base_type.analyse(env) # The 2 here is because we need both function and argument names. name_declarator, type = self.declarator.analyse(base_type, env, nonempty = 2 * (self.body is not None)) if not type.is_cfunction: error(self.pos, "Suite attached to non-function declaration") # Remember the actual type according to the function header # written here, because the type in the symbol table entry # may be different if we're overriding a C method inherited # from the base type of an extension type. self.type = type type.is_overridable = self.overridable declarator = self.declarator while not hasattr(declarator, 'args'): declarator = declarator.base self.args = declarator.args for formal_arg, type_arg in zip(self.args, type.args): formal_arg.type = type_arg.type formal_arg.cname = type_arg.cname name = name_declarator.name cname = name_declarator.cname self.entry = env.declare_cfunction( name, type, self.pos, cname = cname, visibility = self.visibility, defining = self.body is not None, api = self.api) self.return_type = type.return_type if self.overridable: import ExprNodes py_func_body = self.call_self_node(is_module_scope = env.is_module_scope) self.py_func = DefNode(pos = self.pos, name = self.entry.name, args = self.args, star_arg = None, starstar_arg = None, doc = self.doc, body = py_func_body, is_wrapper = 1) self.py_func.is_module_scope = env.is_module_scope self.py_func.analyse_declarations(env) self.entry.as_variable = self.py_func.entry # Reset scope entry the above cfunction env.entries[name] = self.entry self.py_func.interned_attr_cname = env.intern_identifier( self.py_func.entry.name) if not env.is_module_scope or Options.lookup_module_cpdef: self.override = OverrideCheckNode(self.pos, py_func = self.py_func) self.body = StatListNode(self.pos, stats=[self.override, self.body]) def call_self_node(self, omit_optional_args=0, is_module_scope=0): import ExprNodes args = self.type.args if omit_optional_args: args = args[:len(args) - self.type.optional_arg_count] arg_names = [arg.name for arg in args] if is_module_scope: cfunc = ExprNodes.NameNode(self.pos, name=self.entry.name) else: self_arg = ExprNodes.NameNode(self.pos, name=arg_names[0]) cfunc = ExprNodes.AttributeNode(self.pos, obj=self_arg, attribute=self.entry.name) skip_dispatch = not is_module_scope or Options.lookup_module_cpdef c_call = ExprNodes.SimpleCallNode(self.pos, function=cfunc, args=[ExprNodes.NameNode(self.pos, name=n) for n in arg_names[1-is_module_scope:]], wrapper_call=skip_dispatch) return ReturnStatNode(pos=self.pos, return_type=PyrexTypes.py_object_type, value=c_call) def declare_arguments(self, env): for arg in self.type.args: if not arg.name: error(arg.pos, "Missing argument name") self.declare_argument(env, arg) def need_gil_acquisition(self, lenv): type = self.type with_gil = self.type.with_gil if type.nogil and not with_gil: if type.return_type.is_pyobject: error(self.pos, "Function with Python return type cannot be declared nogil") for entry in lenv.var_entries + lenv.temp_entries: if entry.type.is_pyobject: error(self.pos, "Function declared nogil has Python locals or temporaries") return with_gil def analyse_expressions(self, env): self.analyse_default_values(env) if self.overridable: self.py_func.analyse_expressions(env) def generate_function_header(self, code, with_pymethdef, with_opt_args = 1): arg_decls = [] type = self.type visibility = self.entry.visibility for arg in type.args[:len(type.args)-type.optional_arg_count]: arg_decls.append(arg.declaration_code()) if type.optional_arg_count and with_opt_args: arg_decls.append(type.op_arg_struct.declaration_code(Naming.optional_args_cname)) if type.has_varargs: arg_decls.append("...") if not arg_decls: arg_decls = ["void"] cname = self.entry.func_cname if not with_opt_args: cname += Naming.no_opt_args entity = type.function_header_code(cname, string.join(arg_decls, ", ")) if visibility == 'public': dll_linkage = "DL_EXPORT" else: dll_linkage = None header = self.return_type.declaration_code(entity, dll_linkage = dll_linkage) if visibility != 'private': storage_class = "%s " % Naming.extern_c_macro else: storage_class = "static " code.putln("%s%s %s {" % ( storage_class, ' '.join(self.modifiers).upper(), # macro forms header)) def generate_argument_declarations(self, env, code): for arg in self.args: if arg.default: code.putln('%s = %s;' % (arg.type.declaration_code(arg.cname), arg.default_result_code)) def generate_keyword_list(self, code): pass def generate_argument_parsing_code(self, env, code): i = 0 if self.type.optional_arg_count: code.putln('if (%s) {' % Naming.optional_args_cname) for arg in self.args: if arg.default: code.putln('if (%s->%sn > %s) {' % (Naming.optional_args_cname, Naming.pyrex_prefix, i)) declarator = arg.declarator while not hasattr(declarator, 'name'): declarator = declarator.base code.putln('%s = %s->%s;' % (arg.cname, Naming.optional_args_cname, declarator.name)) i += 1 for _ in range(self.type.optional_arg_count): code.putln('}') code.putln('}') def generate_argument_conversion_code(self, code): pass def generate_argument_type_tests(self, code): # Generate type tests for args whose type in a parent # class is a supertype of the declared type. for arg in self.type.args: if arg.needs_type_test: self.generate_arg_type_test(arg, code) def generate_arg_type_test(self, arg, code): # Generate type test for one argument. if arg.type.typeobj_is_available(): typeptr_cname = arg.type.typeptr_cname arg_code = "((PyObject *)%s)" % arg.cname code.putln( 'if (unlikely(!__Pyx_ArgTypeTest(%s, %s, %d, "%s", %s))) %s' % ( arg_code, typeptr_cname, not arg.not_none, arg.name, type.is_builtin_type, code.error_goto(arg.pos))) else: error(arg.pos, "Cannot test type of extern C class " "without type object name specification") def error_value(self): if self.return_type.is_pyobject: return "0" else: #return None return self.entry.type.exception_value def caller_will_check_exceptions(self): return self.entry.type.exception_check def generate_optarg_wrapper_function(self, env, code): if self.type.optional_arg_count and \ self.type.original_sig and not self.type.original_sig.optional_arg_count: code.putln() self.generate_function_header(code, 0, with_opt_args = 0) if not self.return_type.is_void: code.put('return ') args = self.type.args arglist = [arg.cname for arg in args[:len(args)-self.type.optional_arg_count]] arglist.append('NULL') code.putln('%s(%s);' % (self.entry.func_cname, ', '.join(arglist))) code.putln('}') class PyArgDeclNode(Node): # Argument which must be a Python object (used # for * and ** arguments). # # name string # entry Symtab.Entry child_attrs = [] class DecoratorNode(Node): # A decorator # # decorator NameNode or CallNode child_attrs = ['decorator'] class DefNode(FuncDefNode): # A Python function definition. # # name string the Python name of the function # decorators [DecoratorNode] list of decorators # args [CArgDeclNode] formal arguments # star_arg PyArgDeclNode or None * argument # starstar_arg PyArgDeclNode or None ** argument # doc EncodedString or None # body StatListNode # # The following subnode is constructed internally # when the def statement is inside a Python class definition. # # assmt AssignmentNode Function construction/assignment child_attrs = ["args", "star_arg", "starstar_arg", "body", "decorators"] assmt = None num_kwonly_args = 0 num_required_kw_args = 0 reqd_kw_flags_cname = "0" is_wrapper = 0 decorators = None def __init__(self, pos, **kwds): FuncDefNode.__init__(self, pos, **kwds) k = rk = r = 0 for arg in self.args: if arg.kw_only: k += 1 if not arg.default: rk += 1 if not arg.default: r += 1 self.num_kwonly_args = k self.num_required_kw_args = rk self.num_required_args = r entry = None def analyse_declarations(self, env): for arg in self.args: base_type = arg.base_type.analyse(env) name_declarator, type = \ arg.declarator.analyse(base_type, env) arg.name = name_declarator.name if name_declarator.cname: error(self.pos, "Python function argument cannot have C name specification") arg.type = type.as_argument_type() arg.hdr_type = None arg.needs_conversion = 0 arg.needs_type_test = 0 arg.is_generic = 1 if arg.not_none and not arg.type.is_extension_type: error(self.pos, "Only extension type arguments can have 'not None'") self.declare_pyfunction(env) self.analyse_signature(env) self.return_type = self.entry.signature.return_type() if self.signature_has_generic_args(): if self.star_arg: env.use_utility_code(get_stararg_utility_code) elif self.signature_has_generic_args(): env.use_utility_code(raise_argtuple_too_long_utility_code) if not self.signature_has_nongeneric_args(): env.use_utility_code(get_keyword_string_check_utility_code) elif self.starstar_arg: env.use_utility_code(get_splitkeywords_utility_code) if self.num_required_kw_args: env.use_utility_code(get_checkkeywords_utility_code) def analyse_signature(self, env): any_type_tests_needed = 0 # Use the simpler calling signature for zero- and one-argument functions. if not self.entry.is_special and not self.star_arg and not self.starstar_arg: if self.entry.signature is TypeSlots.pyfunction_signature and Options.optimize_simple_methods: if len(self.args) == 0: self.entry.signature = TypeSlots.pyfunction_noargs elif len(self.args) == 1: if self.args[0].default is None and not self.args[0].kw_only: self.entry.signature = TypeSlots.pyfunction_onearg elif self.entry.signature is TypeSlots.pymethod_signature: if len(self.args) == 1: self.entry.signature = TypeSlots.unaryfunc elif len(self.args) == 2: if self.args[1].default is None and not self.args[1].kw_only: self.entry.signature = TypeSlots.ibinaryfunc elif self.entry.is_special: self.entry.trivial_signature = len(self.args) == 1 and not (self.star_arg or self.starstar_arg) sig = self.entry.signature nfixed = sig.num_fixed_args() for i in range(nfixed): if i < len(self.args): arg = self.args[i] arg.is_generic = 0 if sig.is_self_arg(i): arg.is_self_arg = 1 arg.hdr_type = arg.type = env.parent_type arg.needs_conversion = 0 else: arg.hdr_type = sig.fixed_arg_type(i) if not arg.type.same_as(arg.hdr_type): if arg.hdr_type.is_pyobject and arg.type.is_pyobject: arg.needs_type_test = 1 any_type_tests_needed = 1 else: arg.needs_conversion = 1 if arg.needs_conversion: arg.hdr_cname = Naming.arg_prefix + arg.name else: arg.hdr_cname = Naming.var_prefix + arg.name else: self.bad_signature() return if nfixed < len(self.args): if not sig.has_generic_args: self.bad_signature() for arg in self.args: if arg.is_generic and \ (arg.type.is_extension_type or arg.type.is_builtin_type): arg.needs_type_test = 1 any_type_tests_needed = 1 elif arg.type is PyrexTypes.c_py_ssize_t_type: # Want to use __index__ rather than __int__ method # that PyArg_ParseTupleAndKeywords calls arg.needs_conversion = 1 arg.hdr_type = PyrexTypes.py_object_type arg.hdr_cname = Naming.arg_prefix + arg.name if any_type_tests_needed: env.use_utility_code(arg_type_test_utility_code) def bad_signature(self): sig = self.entry.signature expected_str = "%d" % sig.num_fixed_args() if sig.has_generic_args: expected_str = expected_str + " or more" name = self.name if name.startswith("__") and name.endswith("__"): desc = "Special method" else: desc = "Method" error(self.pos, "%s %s has wrong number of arguments " "(%d declared, %s expected)" % ( desc, self.name, len(self.args), expected_str)) def signature_has_nongeneric_args(self): argcount = len(self.args) if argcount == 0 or (argcount == 1 and self.args[0].is_self_arg): return 0 return 1 def signature_has_generic_args(self): return self.entry.signature.has_generic_args def declare_pyfunction(self, env): #print "DefNode.declare_pyfunction:", self.name, "in", env ### name = self.name entry = env.lookup_here(self.name) if entry and entry.type.is_cfunction and not self.is_wrapper: warning(self.pos, "Overriding cdef method with def method.", 5) entry = env.declare_pyfunction(self.name, self.pos) self.entry = entry prefix = env.scope_prefix entry.func_cname = \ Naming.pyfunc_prefix + prefix + name entry.pymethdef_cname = \ Naming.pymethdef_prefix + prefix + name if Options.docstrings: entry.doc = embed_position(self.pos, self.doc) entry.doc_cname = \ Naming.funcdoc_prefix + prefix + name else: entry.doc = None def declare_arguments(self, env): for arg in self.args: if not arg.name: error(arg.pos, "Missing argument name") if arg.needs_conversion: arg.entry = env.declare_var(arg.name, arg.type, arg.pos) env.control_flow.set_state((), (arg.name, 'source'), 'arg') env.control_flow.set_state((), (arg.name, 'initalized'), True) if arg.type.is_pyobject: arg.entry.init = "0" arg.entry.init_to_none = 0 else: arg.entry = self.declare_argument(env, arg) arg.entry.used = 1 arg.entry.is_self_arg = arg.is_self_arg if arg.hdr_type: if arg.is_self_arg or \ (arg.type.is_extension_type and not arg.hdr_type.is_extension_type): arg.entry.is_declared_generic = 1 self.declare_python_arg(env, self.star_arg) self.declare_python_arg(env, self.starstar_arg) def declare_python_arg(self, env, arg): if arg: entry = env.declare_var(arg.name, PyrexTypes.py_object_type, arg.pos) entry.used = 1 entry.init = "0" entry.init_to_none = 0 entry.xdecref_cleanup = 1 arg.entry = entry env.control_flow.set_state((), (arg.name, 'initalized'), True) def analyse_expressions(self, env): self.analyse_default_values(env) if env.is_py_class_scope: self.synthesize_assignment_node(env) def synthesize_assignment_node(self, env): import ExprNodes self.assmt = SingleAssignmentNode(self.pos, lhs = ExprNodes.NameNode(self.pos, name = self.name), rhs = ExprNodes.UnboundMethodNode(self.pos, class_cname = env.class_obj_cname, function = ExprNodes.PyCFunctionNode(self.pos, pymethdef_cname = self.entry.pymethdef_cname))) self.assmt.analyse_declarations(env) self.assmt.analyse_expressions(env) def generate_function_header(self, code, with_pymethdef, proto_only=0): arg_code_list = [] sig = self.entry.signature if sig.has_dummy_arg: arg_code_list.append( "PyObject *%s" % Naming.self_cname) for arg in self.args: if not arg.is_generic: if arg.is_self_arg: arg_code_list.append("PyObject *%s" % arg.hdr_cname) else: arg_code_list.append( arg.hdr_type.declaration_code(arg.hdr_cname)) if not self.entry.is_special and sig.method_flags() == [TypeSlots.method_noargs]: arg_code_list.append("PyObject *unused") if sig.has_generic_args: arg_code_list.append( "PyObject *%s, PyObject *%s" % (Naming.args_cname, Naming.kwds_cname)) arg_code = ", ".join(arg_code_list) dc = self.return_type.declaration_code(self.entry.func_cname) header = "static %s(%s)" % (dc, arg_code) code.putln("%s; /*proto*/" % header) if proto_only: return if self.entry.doc and Options.docstrings: code.putln( 'static char %s[] = "%s";' % ( self.entry.doc_cname, self.entry.doc)) if with_pymethdef: code.put( "static PyMethodDef %s = " % self.entry.pymethdef_cname) code.put_pymethoddef(self.entry, ";") code.putln("%s {" % header) def generate_argument_declarations(self, env, code): for arg in self.args: if arg.is_generic: # or arg.needs_conversion: if arg.needs_conversion: code.putln("PyObject *%s = 0;" % arg.hdr_cname) else: code.put_var_declaration(arg.entry) def generate_keyword_list(self, code): if self.signature_has_generic_args() and \ self.signature_has_nongeneric_args(): reqd_kw_flags = [] has_reqd_kwds = False code.put( "static char *%s[] = {" % Naming.kwdlist_cname) for arg in self.args: if arg.is_generic: code.put( '"%s",' % arg.name) if arg.kw_only and not arg.default: has_reqd_kwds = 1 flag = "1" else: flag = "0" reqd_kw_flags.append(flag) code.putln( "0};") if has_reqd_kwds: flags_name = Naming.reqd_kwds_cname self.reqd_kw_flags_cname = flags_name code.putln( "static char %s[] = {%s};" % ( flags_name, ",".join(reqd_kw_flags))) def generate_argument_parsing_code(self, env, code): # Generate PyArg_ParseTuple call for generic # arguments, if any. if self.entry.signature.has_dummy_arg: # get rid of unused argument warning code.putln("%s = %s;" % (Naming.self_cname, Naming.self_cname)) old_error_label = code.new_error_label() our_error_label = code.error_label end_label = code.new_label() has_kwonly_args = self.num_kwonly_args > 0 has_star_or_kw_args = self.star_arg is not None \ or self.starstar_arg is not None or has_kwonly_args if not self.signature_has_generic_args(): if has_star_or_kw_args: error(self.pos, "This method cannot have * or keyword arguments") self.generate_argument_conversion_code(code) elif not self.signature_has_nongeneric_args(): # func(*args) or func(**kw) or func(*args, **kw) self.generate_stararg_copy_code(code) else: arg_addrs = [] arg_formats = [] positional_args = [] default_seen = 0 for arg in self.args: arg_entry = arg.entry if arg.is_generic: if arg.default: code.putln( "%s = %s;" % ( arg_entry.cname, arg.default_result_code)) if not default_seen: arg_formats.append("|") default_seen = 1 if not arg.is_self_arg and not arg.kw_only: positional_args.append(arg) elif arg.kw_only: if not default_seen: arg_formats.append("|") default_seen = 1 elif default_seen: error(arg.pos, "Non-default argument following default argument") elif not arg.is_self_arg: positional_args.append(arg) if arg.needs_conversion: arg_addrs.append("&" + arg.hdr_cname) format = arg.hdr_type.parsetuple_format else: arg_addrs.append("&" + arg_entry.cname) format = arg_entry.type.parsetuple_format if format: arg_formats.append(format) else: error(arg.pos, "Cannot convert Python object argument to type '%s' (when parsing input arguments)" % arg.type) if has_star_or_kw_args: self.generate_stararg_getting_code(code) self.generate_argument_tuple_parsing_code( positional_args, arg_formats, arg_addrs, code) code.error_label = old_error_label if code.label_used(our_error_label): code.put_goto(end_label) code.put_label(our_error_label) if has_star_or_kw_args: self.put_stararg_decrefs(code) self.generate_arg_decref(self.star_arg, code) if self.starstar_arg: if self.starstar_arg.entry.xdecref_cleanup: code.put_var_xdecref(self.starstar_arg.entry) else: code.put_var_decref(self.starstar_arg.entry) code.putln('__Pyx_AddTraceback("%s");' % self.entry.qualified_name) code.putln("return %s;" % self.error_value()) code.put_label(end_label) def generate_argument_tuple_parsing_code(self, positional_args, arg_formats, arg_addrs, code): # Unpack inplace if it's simple if not self.num_required_kw_args: min_positional_args = self.num_required_args - self.num_required_kw_args max_positional_args = len(positional_args) if len(self.args) > 0 and self.args[0].is_self_arg: min_positional_args -= 1 if max_positional_args == min_positional_args: count_cond = "likely(PyTuple_GET_SIZE(%s) == %s)" % ( Naming.args_cname, max_positional_args) else: count_cond = "likely(%s <= PyTuple_GET_SIZE(%s)) && likely(PyTuple_GET_SIZE(%s) <= %s)" % ( min_positional_args, Naming.args_cname, Naming.args_cname, max_positional_args) code.putln( 'if (likely(!%s) && %s) {' % (Naming.kwds_cname, count_cond)) i = 0 closing = 0 for arg in positional_args: if arg.default: code.putln('if (PyTuple_GET_SIZE(%s) > %s) {' % (Naming.args_cname, i)) closing += 1 item = "PyTuple_GET_ITEM(%s, %s)" % (Naming.args_cname, i) if arg.type.is_pyobject: if arg.is_generic: item = PyrexTypes.typecast(arg.type, PyrexTypes.py_object_type, item) code.putln("%s = %s;" % (arg.entry.cname, item)) else: func = arg.type.from_py_function if func: code.putln("%s = %s(%s); %s" % ( arg.entry.cname, func, item, code.error_goto_if(arg.type.error_condition(arg.entry.cname), arg.pos))) else: error(arg.pos, "Cannot convert Python object argument to type '%s'" % arg.type) i += 1 for _ in range(closing): code.putln('}') code.putln( '}') code.putln('else {') argformat = '"%s"' % string.join(arg_formats, "") pt_arglist = [Naming.args_cname, Naming.kwds_cname, argformat, Naming.kwdlist_cname] + arg_addrs pt_argstring = string.join(pt_arglist, ", ") code.putln( 'if (unlikely(!PyArg_ParseTupleAndKeywords(%s))) %s' % ( pt_argstring, code.error_goto(self.pos))) self.generate_argument_conversion_code(code) if not self.num_required_kw_args: code.putln('}') def put_stararg_decrefs(self, code): if self.star_arg: code.put_decref(Naming.args_cname, py_object_type) if self.starstar_arg: code.put_xdecref(Naming.kwds_cname, py_object_type) def generate_arg_xdecref(self, arg, code): if arg: code.put_var_xdecref(arg.entry) def generate_arg_decref(self, arg, code): if arg: code.put_var_decref(arg.entry) def arg_address(self, arg): if arg: return "&%s" % arg.entry.cname else: return 0 def generate_stararg_copy_code(self, code): if not self.star_arg: self.generate_positional_args_check(code, 0) self.generate_keyword_args_check(code) if self.starstar_arg: code.putln("%s = (%s) ? PyDict_Copy(%s) : PyDict_New();" % ( self.starstar_arg.entry.cname, Naming.kwds_cname, Naming.kwds_cname)) code.putln("if (unlikely(!%s)) return %s;" % ( self.starstar_arg.entry.cname, self.error_value())) self.starstar_arg.entry.xdecref_cleanup = 0 self.starstar_arg = None if self.star_arg: code.put_incref(Naming.args_cname, py_object_type) code.putln("%s = %s;" % ( self.star_arg.entry.cname, Naming.args_cname)) self.star_arg.entry.xdecref_cleanup = 0 self.star_arg = None def generate_stararg_getting_code(self, code): num_kwonly = self.num_kwonly_args fixed_args = self.entry.signature.num_fixed_args() nargs = len(self.args) - num_kwonly - fixed_args error_return = "return %s;" % self.error_value() if self.star_arg: star_arg_cname = self.star_arg.entry.cname code.putln("if (likely(PyTuple_GET_SIZE(%s) <= %d)) {" % ( Naming.args_cname, nargs)) code.put_incref(Naming.args_cname, py_object_type) code.put("%s = %s; " % (star_arg_cname, Naming.empty_tuple)) code.put_incref(Naming.empty_tuple, py_object_type) code.putln("}") code.putln("else {") code.putln( "if (unlikely(__Pyx_SplitStarArg(&%s, %d, &%s) < 0)) return %s;" % ( Naming.args_cname, nargs, star_arg_cname, self.error_value())) code.putln("}") self.star_arg.entry.xdecref_cleanup = 0 elif self.signature_has_generic_args(): # make sure supernumerous positional arguments do not run # into keyword-only arguments and provide a more helpful # message than PyArg_ParseTupelAndKeywords() self.generate_positional_args_check(code, nargs) handle_error = 0 if self.starstar_arg: handle_error = 1 code.put( "if (unlikely(__Pyx_SplitKeywords(&%s, %s, &%s, %s) < 0)) " % ( Naming.kwds_cname, Naming.kwdlist_cname, self.starstar_arg.entry.cname, self.reqd_kw_flags_cname)) self.starstar_arg.entry.xdecref_cleanup = 0 elif self.num_required_kw_args: handle_error = 1 code.put("if (unlikely(__Pyx_CheckRequiredKeywords(%s, %s, %s) < 0)) " % ( Naming.kwds_cname, Naming.kwdlist_cname, self.reqd_kw_flags_cname)) if handle_error: if self.star_arg: code.putln("{") code.put_decref(Naming.args_cname, py_object_type) code.put_decref(self.star_arg.entry.cname, py_object_type) code.putln(error_return) code.putln("}") else: code.putln(error_return) def generate_positional_args_check(self, code, nargs): code.putln("if (unlikely(PyTuple_GET_SIZE(%s) > %d)) {" % ( Naming.args_cname, nargs)) code.putln("__Pyx_RaiseArgtupleTooLong(%d, PyTuple_GET_SIZE(%s));" % ( nargs, Naming.args_cname)) code.putln("return %s;" % self.error_value()) code.putln("}") def generate_keyword_args_check(self, code): code.putln("if (unlikely(%s)) {" % Naming.kwds_cname) code.putln("if (unlikely(!__Pyx_CheckKeywordStrings(%s, \"%s\", %d))) return %s;" % ( Naming.kwds_cname, self.name, bool(self.starstar_arg), self.error_value())) code.putln("}") def generate_argument_conversion_code(self, code): # Generate code to convert arguments from # signature type to declared type, if needed. for arg in self.args: if arg.needs_conversion: self.generate_arg_conversion(arg, code) def generate_arg_conversion(self, arg, code): # Generate conversion code for one argument. old_type = arg.hdr_type new_type = arg.type if old_type.is_pyobject: if arg.default: code.putln("if (%s) {" % arg.hdr_cname) else: code.putln("assert(%s); {" % arg.hdr_cname) self.generate_arg_conversion_from_pyobject(arg, code) code.putln("}") elif new_type.is_pyobject: self.generate_arg_conversion_to_pyobject(arg, code) else: if new_type.assignable_from(old_type): code.putln( "%s = %s;" % (arg.entry.cname, arg.hdr_cname)) else: error(arg.pos, "Cannot convert 1 argument from '%s' to '%s'" % (old_type, new_type)) def generate_arg_conversion_from_pyobject(self, arg, code): new_type = arg.type func = new_type.from_py_function # copied from CoerceFromPyTypeNode if func: code.putln("%s = %s(%s); %s" % ( arg.entry.cname, func, arg.hdr_cname, code.error_goto_if(new_type.error_condition(arg.entry.cname), arg.pos))) else: error(arg.pos, "Cannot convert Python object argument to type '%s'" % new_type) def generate_arg_conversion_to_pyobject(self, arg, code): old_type = arg.hdr_type func = old_type.to_py_function if func: code.putln("%s = %s(%s); %s" % ( arg.entry.cname, func, arg.hdr_cname, code.error_goto_if_null(arg.entry.cname, arg.pos))) else: error(arg.pos, "Cannot convert argument of type '%s' to Python object" % old_type) def generate_argument_type_tests(self, code): # Generate type tests for args whose signature # type is PyObject * and whose declared type is # a subtype thereof. for arg in self.args: if arg.needs_type_test: self.generate_arg_type_test(arg, code) def generate_arg_type_test(self, arg, code): # Generate type test for one argument. if arg.type.typeobj_is_available(): typeptr_cname = arg.type.typeptr_cname arg_code = "((PyObject *)%s)" % arg.entry.cname code.putln( 'if (unlikely(!__Pyx_ArgTypeTest(%s, %s, %d, "%s", %s))) %s' % ( arg_code, typeptr_cname, not arg.not_none, arg.name, arg.type.is_builtin_type, code.error_goto(arg.pos))) else: error(arg.pos, "Cannot test type of extern C class " "without type object name specification") def error_value(self): return self.entry.signature.error_value def caller_will_check_exceptions(self): return 1 class OverrideCheckNode(StatNode): # A Node for dispatching to the def method if it # is overriden. # # py_func # # args # func_temp # body child_attrs = ['body'] body = None def analyse_expressions(self, env): self.args = env.arg_entries if self.py_func.is_module_scope: first_arg = 0 else: first_arg = 1 import ExprNodes self.func_node = ExprNodes.PyTempNode(self.pos, env) call_tuple = ExprNodes.TupleNode(self.pos, args=[ExprNodes.NameNode(self.pos, name=arg.name) for arg in self.args[first_arg:]]) call_node = ExprNodes.SimpleCallNode(self.pos, function=self.func_node, args=[ExprNodes.NameNode(self.pos, name=arg.name) for arg in self.args[first_arg:]]) self.body = ReturnStatNode(self.pos, value=call_node) self.body.analyse_expressions(env) def generate_execution_code(self, code): # Check to see if we are an extension type if self.py_func.is_module_scope: self_arg = "((PyObject *)%s)" % Naming.module_cname else: self_arg = "((PyObject *)%s)" % self.args[0].cname code.putln("/* Check if called by wrapper */") code.putln("if (unlikely(%s)) %s = 0;" % (Naming.skip_dispatch_cname, Naming.skip_dispatch_cname)) code.putln("/* Check if overriden in Python */") if self.py_func.is_module_scope: code.putln("else {") else: code.putln("else if (unlikely(Py_TYPE(%s)->tp_dictoffset != 0)) {" % self_arg) err = code.error_goto_if_null(self.func_node.result_code, self.pos) # need to get attribute manually--scope would return cdef method code.putln("%s = PyObject_GetAttr(%s, %s); %s" % (self.func_node.result_code, self_arg, self.py_func.interned_attr_cname, err)) # It appears that this type is not anywhere exposed in the Python/C API is_builtin_function_or_method = '(strcmp(Py_TYPE(%s)->tp_name, "builtin_function_or_method") == 0)' % self.func_node.result_code is_overridden = '(PyCFunction_GET_FUNCTION(%s) != (void *)&%s)' % (self.func_node.result_code, self.py_func.entry.func_cname) code.putln('if (!%s || %s) {' % (is_builtin_function_or_method, is_overridden)) self.body.generate_execution_code(code) code.putln('}') code.put_decref_clear(self.func_node.result_code, PyrexTypes.py_object_type) code.putln("}") class ClassDefNode(StatNode, BlockNode): pass class PyClassDefNode(ClassDefNode): # A Python class definition. # # name EncodedString Name of the class # doc string or None # body StatNode Attribute definition code # entry Symtab.Entry # scope PyClassScope # # The following subnodes are constructed internally: # # dict DictNode Class dictionary # classobj ClassNode Class object # target NameNode Variable to assign class object to child_attrs = ["body", "dict", "classobj", "target"] def __init__(self, pos, name, bases, doc, body): StatNode.__init__(self, pos) self.name = name self.doc = doc self.body = body import ExprNodes self.dict = ExprNodes.DictNode(pos, key_value_pairs = []) if self.doc and Options.docstrings: doc = embed_position(self.pos, self.doc) doc_node = ExprNodes.StringNode(pos, value = doc) else: doc_node = None self.classobj = ExprNodes.ClassNode(pos, name = name, bases = bases, dict = self.dict, doc = doc_node) self.target = ExprNodes.NameNode(pos, name = name) def create_scope(self, env): genv = env while env.is_py_class_scope or env.is_c_class_scope: env = env.outer_scope cenv = self.scope = PyClassScope(name = self.name, outer_scope = genv) return cenv def analyse_declarations(self, env): self.target.analyse_target_declaration(env) cenv = self.create_scope(env) cenv.class_obj_cname = self.target.entry.cname self.body.analyse_declarations(cenv) def analyse_expressions(self, env): self.dict.analyse_expressions(env) self.classobj.analyse_expressions(env) genv = env.global_scope() cenv = self.scope cenv.class_dict_cname = self.dict.result_code cenv.namespace_cname = cenv.class_obj_cname = self.classobj.result_code self.body.analyse_expressions(cenv) self.target.analyse_target_expression(env, self.classobj) self.dict.release_temp(env) #self.classobj.release_temp(env) #self.target.release_target_temp(env) def generate_function_definitions(self, env, code, transforms): self.generate_py_string_decls(self.scope, code) self.body.generate_function_definitions( self.scope, code, transforms) def generate_execution_code(self, code): self.dict.generate_evaluation_code(code) self.classobj.generate_evaluation_code(code) self.body.generate_execution_code(code) self.target.generate_assignment_code(self.classobj, code) self.dict.generate_disposal_code(code) class CClassDefNode(ClassDefNode): # An extension type definition. # # visibility 'private' or 'public' or 'extern' # typedef_flag boolean # api boolean # module_name string or None For import of extern type objects # class_name string Unqualified name of class # as_name string or None Name to declare as in this scope # base_class_module string or None Module containing the base class # base_class_name string or None Name of the base class # objstruct_name string or None Specified C name of object struct # typeobj_name string or None Specified C name of type object # in_pxd boolean Is in a .pxd file # doc string or None # body StatNode or None # entry Symtab.Entry # base_type PyExtensionType or None child_attrs = ["body"] def analyse_declarations(self, env): #print "CClassDefNode.analyse_declarations:", self.class_name #print "...visibility =", self.visibility #print "...module_name =", self.module_name if env.in_cinclude and not self.objstruct_name: error(self.pos, "Object struct name specification required for " "C class defined in 'extern from' block") self.base_type = None # Now that module imports are cached, we need to # import the modules for extern classes. if self.module_name: self.module = None for module in env.cimported_modules: if module.name == self.module_name: self.module = module if self.module is None: self.module = ModuleScope(self.module_name, None, env.context) self.module.has_extern_class = 1 env.cimported_modules.append(self.module) if self.base_class_name: if self.base_class_module: base_class_scope = env.find_module(self.base_class_module, self.pos) else: base_class_scope = env if base_class_scope: base_class_entry = base_class_scope.find(self.base_class_name, self.pos) if base_class_entry: if not base_class_entry.is_type: error(self.pos, "'%s' is not a type name" % self.base_class_name) elif not base_class_entry.type.is_extension_type: error(self.pos, "'%s' is not an extension type" % self.base_class_name) elif not base_class_entry.type.is_complete(): error(self.pos, "Base class '%s' is incomplete" % self.base_class_name) else: self.base_type = base_class_entry.type has_body = self.body is not None if self.module_name and self.visibility != 'extern': module_path = self.module_name.split(".") home_scope = env.find_imported_module(module_path, self.pos) if not home_scope: return else: home_scope = env self.entry = home_scope.declare_c_class( name = self.class_name, pos = self.pos, defining = has_body and self.in_pxd, implementing = has_body and not self.in_pxd, module_name = self.module_name, base_type = self.base_type, objstruct_cname = self.objstruct_name, typeobj_cname = self.typeobj_name, visibility = self.visibility, typedef_flag = self.typedef_flag, api = self.api) if home_scope is not env and self.visibility == 'extern': env.add_imported_entry(self.class_name, self.entry, pos) scope = self.entry.type.scope if self.doc and Options.docstrings: scope.doc = embed_position(self.pos, self.doc) if has_body and not self.in_pxd: # transforms not yet run on pxd files from ParseTreeTransforms import AnalyseDeclarationsTransform transform = AnalyseDeclarationsTransform(None) for entry in scope.var_entries: if hasattr(entry, 'needs_property'): property = transform.create_Property(entry) self.body.stats.append(property) if has_body: self.body.analyse_declarations(scope) if self.in_pxd: scope.defined = 1 else: scope.implemented = 1 env.allocate_vtable_names(self.entry) def analyse_expressions(self, env): if self.body: scope = self.entry.type.scope self.body.analyse_expressions(scope) def generate_function_definitions(self, env, code, transforms): self.generate_py_string_decls(self.entry.type.scope, code) if self.body: self.body.generate_function_definitions( self.entry.type.scope, code, transforms) def generate_execution_code(self, code): # This is needed to generate evaluation code for # default values of method arguments. if self.body: self.body.generate_execution_code(code) def annotate(self, code): if self.body: self.body.annotate(code) class PropertyNode(StatNode): # Definition of a property in an extension type. # # name string # doc EncodedString or None Doc string # body StatListNode child_attrs = ["body"] def analyse_declarations(self, env): entry = env.declare_property(self.name, self.doc, self.pos) if entry: if self.doc and Options.docstrings: doc_entry = env.get_string_const( self.doc, identifier = False) entry.doc_cname = doc_entry.cname self.body.analyse_declarations(entry.scope) def analyse_expressions(self, env): self.body.analyse_expressions(env) def generate_function_definitions(self, env, code, transforms): self.body.generate_function_definitions(env, code, transforms) def generate_execution_code(self, code): pass def annotate(self, code): self.body.annotate(code) class GlobalNode(StatNode): # Global variable declaration. # # names [string] child_attrs = [] def analyse_declarations(self, env): for name in self.names: env.declare_global(name, self.pos) def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class ExprStatNode(StatNode): # Expression used as a statement. # # expr ExprNode child_attrs = ["expr"] def analyse_expressions(self, env): self.expr.analyse_expressions(env) self.expr.release_temp(env) def generate_execution_code(self, code): self.expr.generate_evaluation_code(code) if not self.expr.is_temp and self.expr.result_code: code.putln("%s;" % self.expr.result_code) self.expr.generate_disposal_code(code) def annotate(self, code): self.expr.annotate(code) class AssignmentNode(StatNode): # Abstract base class for assignment nodes. # # The analyse_expressions and generate_execution_code # phases of assignments are split into two sub-phases # each, to enable all the right hand sides of a # parallel assignment to be evaluated before assigning # to any of the left hand sides. def analyse_expressions(self, env): self.analyse_types(env) self.allocate_rhs_temps(env) self.allocate_lhs_temps(env) # def analyse_expressions(self, env): # self.analyse_expressions_1(env) # self.analyse_expressions_2(env) def generate_execution_code(self, code): self.generate_rhs_evaluation_code(code) self.generate_assignment_code(code) class SingleAssignmentNode(AssignmentNode): # The simplest case: # # a = b # # lhs ExprNode Left hand side # rhs ExprNode Right hand side # first bool Is this guaranteed the first assignment to lhs? child_attrs = ["lhs", "rhs"] first = False def analyse_declarations(self, env): self.lhs.analyse_target_declaration(env) def analyse_types(self, env, use_temp = 0): self.rhs.analyse_types(env) self.lhs.analyse_target_types(env) self.lhs.gil_assignment_check(env) self.rhs = self.rhs.coerce_to(self.lhs.type, env) if use_temp: self.rhs = self.rhs.coerce_to_temp(env) def allocate_rhs_temps(self, env): self.rhs.allocate_temps(env) def allocate_lhs_temps(self, env): self.lhs.allocate_target_temps(env, self.rhs) #self.lhs.release_target_temp(env) #self.rhs.release_temp(env) # def analyse_expressions_1(self, env, use_temp = 0): # self.rhs.analyse_types(env) # self.lhs.analyse_target_types(env) # self.rhs = self.rhs.coerce_to(self.lhs.type, env) # if use_temp: # self.rhs = self.rhs.coerce_to_temp(env) # self.rhs.allocate_temps(env) # # def analyse_expressions_2(self, env): # self.lhs.allocate_target_temps(env) # self.lhs.release_target_temp(env) # self.rhs.release_temp(env) def generate_rhs_evaluation_code(self, code): self.rhs.generate_evaluation_code(code) def generate_assignment_code(self, code): self.lhs.generate_assignment_code(self.rhs, code) def annotate(self, code): self.lhs.annotate(code) self.rhs.annotate(code) class CascadedAssignmentNode(AssignmentNode): # An assignment with multiple left hand sides: # # a = b = c # # lhs_list [ExprNode] Left hand sides # rhs ExprNode Right hand sides # # Used internally: # # coerced_rhs_list [ExprNode] RHS coerced to type of each LHS child_attrs = ["lhs_list", "rhs", "coerced_rhs_list"] coerced_rhs_list = None def analyse_declarations(self, env): for lhs in self.lhs_list: lhs.analyse_target_declaration(env) def analyse_types(self, env, use_temp = 0): self.rhs.analyse_types(env) if use_temp: self.rhs = self.rhs.coerce_to_temp(env) else: self.rhs = self.rhs.coerce_to_simple(env) from ExprNodes import CloneNode self.coerced_rhs_list = [] for lhs in self.lhs_list: lhs.analyse_target_types(env) lhs.gil_assignment_check(env) rhs = CloneNode(self.rhs) rhs = rhs.coerce_to(lhs.type, env) self.coerced_rhs_list.append(rhs) def allocate_rhs_temps(self, env): self.rhs.allocate_temps(env) def allocate_lhs_temps(self, env): for lhs, rhs in zip(self.lhs_list, self.coerced_rhs_list): rhs.allocate_temps(env) lhs.allocate_target_temps(env, rhs) #lhs.release_target_temp(env) #rhs.release_temp(env) self.rhs.release_temp(env) # def analyse_expressions_1(self, env, use_temp = 0): # self.rhs.analyse_types(env) # if use_temp: # self.rhs = self.rhs.coerce_to_temp(env) # else: # self.rhs = self.rhs.coerce_to_simple(env) # self.rhs.allocate_temps(env) # # def analyse_expressions_2(self, env): # from ExprNodes import CloneNode # self.coerced_rhs_list = [] # for lhs in self.lhs_list: # lhs.analyse_target_types(env) # rhs = CloneNode(self.rhs) # rhs = rhs.coerce_to(lhs.type, env) # self.coerced_rhs_list.append(rhs) # rhs.allocate_temps(env) # lhs.allocate_target_temps(env) # lhs.release_target_temp(env) # rhs.release_temp(env) # self.rhs.release_temp(env) def generate_rhs_evaluation_code(self, code): self.rhs.generate_evaluation_code(code) def generate_assignment_code(self, code): for i in range(len(self.lhs_list)): lhs = self.lhs_list[i] rhs = self.coerced_rhs_list[i] rhs.generate_evaluation_code(code) lhs.generate_assignment_code(rhs, code) # Assignment has disposed of the cloned RHS self.rhs.generate_disposal_code(code) def annotate(self, code): for i in range(len(self.lhs_list)): lhs = self.lhs_list[i].annotate(code) rhs = self.coerced_rhs_list[i].annotate(code) self.rhs.annotate(code) class ParallelAssignmentNode(AssignmentNode): # A combined packing/unpacking assignment: # # a, b, c = d, e, f # # This has been rearranged by the parser into # # a = d ; b = e ; c = f # # but we must evaluate all the right hand sides # before assigning to any of the left hand sides. # # stats [AssignmentNode] The constituent assignments child_attrs = ["stats"] def analyse_declarations(self, env): for stat in self.stats: stat.analyse_declarations(env) def analyse_expressions(self, env): for stat in self.stats: stat.analyse_types(env, use_temp = 1) stat.allocate_rhs_temps(env) for stat in self.stats: stat.allocate_lhs_temps(env) # def analyse_expressions(self, env): # for stat in self.stats: # stat.analyse_expressions_1(env, use_temp = 1) # for stat in self.stats: # stat.analyse_expressions_2(env) def generate_execution_code(self, code): for stat in self.stats: stat.generate_rhs_evaluation_code(code) for stat in self.stats: stat.generate_assignment_code(code) def annotate(self, code): for stat in self.stats: stat.annotate(code) class InPlaceAssignmentNode(AssignmentNode): # An in place arithmatic operand: # # a += b # a -= b # ... # # lhs ExprNode Left hand side # rhs ExprNode Right hand side # op char one of "+-*/%^&|" # dup (ExprNode) copy of lhs used for operation (auto-generated) # # This code is a bit tricky because in order to obey Python # semantics the sub-expressions (e.g. indices) of the lhs must # not be evaluated twice. So we must re-use the values calculated # in evaluation phase for the assignment phase as well. # Fortunately, the type of the lhs node is fairly constrained # (it must be a NameNode, AttributeNode, or IndexNode). child_attrs = ["lhs", "rhs"] dup = None def analyse_declarations(self, env): self.lhs.analyse_target_declaration(env) def analyse_types(self, env): self.dup = self.create_dup_node(env) # re-assigns lhs to a shallow copy self.rhs.analyse_types(env) self.lhs.analyse_target_types(env) if Options.incref_local_binop and self.dup.type.is_pyobject: self.dup = self.dup.coerce_to_temp(env) def allocate_rhs_temps(self, env): import ExprNodes if self.lhs.type.is_pyobject: self.rhs = self.rhs.coerce_to_pyobject(env) elif self.rhs.type.is_pyobject: self.rhs = self.rhs.coerce_to(self.lhs.type, env) if self.lhs.type.is_pyobject: self.result = ExprNodes.PyTempNode(self.pos, env).coerce_to(self.lhs.type, env) self.result.allocate_temps(env) # if use_temp: # self.rhs = self.rhs.coerce_to_temp(env) self.rhs.allocate_temps(env) self.dup.allocate_subexpr_temps(env) self.dup.allocate_temp(env) def allocate_lhs_temps(self, env): self.lhs.allocate_target_temps(env, self.rhs) # self.lhs.release_target_temp(env) self.dup.release_temp(env) if self.dup.is_temp: self.dup.release_subexpr_temps(env) # self.rhs.release_temp(env) if self.lhs.type.is_pyobject: self.result.release_temp(env) def generate_execution_code(self, code): self.rhs.generate_evaluation_code(code) self.dup.generate_subexpr_evaluation_code(code) self.dup.generate_result_code(code) if self.operator == "**": extra = ", Py_None" else: extra = "" if self.lhs.type.is_pyobject: code.putln( "%s = %s(%s, %s%s); %s" % ( self.result.result_code, self.py_operation_function(), self.dup.py_result(), self.rhs.py_result(), extra, code.error_goto_if_null(self.result.py_result(), self.pos))) self.result.generate_evaluation_code(code) # May be a type check... self.rhs.generate_disposal_code(code) self.dup.generate_disposal_code(code) self.lhs.generate_assignment_code(self.result, code) else: c_op = self.operator if c_op == "//": c_op = "/" elif c_op == "**": if self.lhs.type.is_int and self.rhs.type.is_int: error(self.pos, "** with two C int types is ambiguous") else: error(self.pos, "No C inplace power operator") # have to do assignment directly to avoid side-effects code.putln("%s %s= %s;" % (self.lhs.result_code, c_op, self.rhs.result_code) ) self.rhs.generate_disposal_code(code) if self.dup.is_temp: self.dup.generate_subexpr_disposal_code(code) def create_dup_node(self, env): import ExprNodes self.dup = self.lhs self.dup.analyse_types(env) if isinstance(self.lhs, ExprNodes.NameNode): target_lhs = ExprNodes.NameNode(self.dup.pos, name = self.dup.name, is_temp = self.dup.is_temp, entry = self.dup.entry) elif isinstance(self.lhs, ExprNodes.AttributeNode): target_lhs = ExprNodes.AttributeNode(self.dup.pos, obj = ExprNodes.CloneNode(self.lhs.obj), attribute = self.dup.attribute, is_temp = self.dup.is_temp) elif isinstance(self.lhs, ExprNodes.IndexNode): target_lhs = ExprNodes.IndexNode(self.dup.pos, base = ExprNodes.CloneNode(self.dup.base), index = ExprNodes.CloneNode(self.lhs.index), is_temp = self.dup.is_temp) self.lhs = target_lhs return self.dup def py_operation_function(self): return self.py_functions[self.operator] py_functions = { "|": "PyNumber_InPlaceOr", "^": "PyNumber_InPlaceXor", "&": "PyNumber_InPlaceAnd", "+": "PyNumber_InPlaceAdd", "-": "PyNumber_InPlaceSubtract", "*": "PyNumber_InPlaceMultiply", "/": "PyNumber_InPlaceDivide", "%": "PyNumber_InPlaceRemainder", "<<": "PyNumber_InPlaceLshift", ">>": "PyNumber_InPlaceRshift", "**": "PyNumber_InPlacePower", "//": "PyNumber_InPlaceFloorDivide", } def annotate(self, code): self.lhs.annotate(code) self.rhs.annotate(code) self.dup.annotate(code) class PrintStatNode(StatNode): # print statement # # arg_tuple TupleNode # append_newline boolean child_attrs = ["arg_tuple"] def analyse_expressions(self, env): self.arg_tuple.analyse_expressions(env) self.arg_tuple = self.arg_tuple.coerce_to_pyobject(env) self.arg_tuple.release_temp(env) env.use_utility_code(printing_utility_code) self.gil_check(env) gil_message = "Python print statement" def generate_execution_code(self, code): self.arg_tuple.generate_evaluation_code(code) code.putln( "if (__Pyx_Print(%s, %d) < 0) %s" % ( self.arg_tuple.py_result(), self.append_newline, code.error_goto(self.pos))) self.arg_tuple.generate_disposal_code(code) def annotate(self, code): self.arg_tuple.annotate(code) class DelStatNode(StatNode): # del statement # # args [ExprNode] child_attrs = ["args"] def analyse_declarations(self, env): for arg in self.args: arg.analyse_target_declaration(env) def analyse_expressions(self, env): for arg in self.args: arg.analyse_target_expression(env, None) if arg.type.is_pyobject: self.gil_check(env) else: error(arg.pos, "Deletion of non-Python object") #arg.release_target_temp(env) gil_message = "Deleting Python object" def generate_execution_code(self, code): for arg in self.args: if arg.type.is_pyobject: arg.generate_deletion_code(code) # else error reported earlier def annotate(self, code): for arg in self.args: arg.annotate(code) class PassStatNode(StatNode): # pass statement child_attrs = [] def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class BreakStatNode(StatNode): child_attrs = [] def analyse_expressions(self, env): pass def generate_execution_code(self, code): if not code.break_label: error(self.pos, "break statement not inside loop") else: #code.putln( # "goto %s;" % # code.break_label) code.put_goto(code.break_label) class ContinueStatNode(StatNode): child_attrs = [] def analyse_expressions(self, env): pass def generate_execution_code(self, code): if code.in_try_finally: error(self.pos, "continue statement inside try of try...finally") elif not code.continue_label: error(self.pos, "continue statement not inside loop") else: code.put_goto(code.continue_label) class ReturnStatNode(StatNode): # return statement # # value ExprNode or None # return_type PyrexType # temps_in_use [Entry] Temps in use at time of return child_attrs = ["value"] def analyse_expressions(self, env): return_type = env.return_type self.return_type = return_type self.temps_in_use = env.temps_in_use() if not return_type: error(self.pos, "Return not inside a function body") return if self.value: self.value.analyse_types(env) if return_type.is_void or return_type.is_returncode: error(self.value.pos, "Return with value in void function") else: self.value = self.value.coerce_to(env.return_type, env) self.value.allocate_temps(env) self.value.release_temp(env) else: if (not return_type.is_void and not return_type.is_pyobject and not return_type.is_returncode): error(self.pos, "Return value required") if return_type.is_pyobject: self.gil_check(env) gil_message = "Returning Python object" def generate_execution_code(self, code): code.mark_pos(self.pos) if not self.return_type: # error reported earlier return if self.value: self.value.generate_evaluation_code(code) self.value.make_owned_reference(code) code.putln( "%s = %s;" % ( Naming.retval_cname, self.value.result_as(self.return_type))) self.value.generate_post_assignment_code(code) else: if self.return_type.is_pyobject: code.put_init_to_py_none(Naming.retval_cname, self.return_type) elif self.return_type.is_returncode: code.putln( "%s = %s;" % ( Naming.retval_cname, self.return_type.default_value)) for entry in self.temps_in_use: code.put_var_decref_clear(entry) #code.putln( # "goto %s;" % # code.return_label) code.put_goto(code.return_label) def annotate(self, code): if self.value: self.value.annotate(code) class RaiseStatNode(StatNode): # raise statement # # exc_type ExprNode or None # exc_value ExprNode or None # exc_tb ExprNode or None child_attrs = ["exc_type", "exc_value", "exc_tb"] def analyse_expressions(self, env): if self.exc_type: self.exc_type.analyse_types(env) self.exc_type = self.exc_type.coerce_to_pyobject(env) self.exc_type.allocate_temps(env) if self.exc_value: self.exc_value.analyse_types(env) self.exc_value = self.exc_value.coerce_to_pyobject(env) self.exc_value.allocate_temps(env) if self.exc_tb: self.exc_tb.analyse_types(env) self.exc_tb = self.exc_tb.coerce_to_pyobject(env) self.exc_tb.allocate_temps(env) if self.exc_type: self.exc_type.release_temp(env) if self.exc_value: self.exc_value.release_temp(env) if self.exc_tb: self.exc_tb.release_temp(env) env.use_utility_code(raise_utility_code) self.gil_check(env) gil_message = "Raising exception" def generate_execution_code(self, code): if self.exc_type: self.exc_type.generate_evaluation_code(code) type_code = self.exc_type.py_result() else: type_code = 0 if self.exc_value: self.exc_value.generate_evaluation_code(code) value_code = self.exc_value.py_result() else: value_code = "0" if self.exc_tb: self.exc_tb.generate_evaluation_code(code) tb_code = self.exc_tb.py_result() else: tb_code = "0" if self.exc_type or self.exc_value or self.exc_tb: code.putln( "__Pyx_Raise(%s, %s, %s);" % ( type_code, value_code, tb_code)) else: code.putln( "__Pyx_ReRaise();") if self.exc_type: self.exc_type.generate_disposal_code(code) if self.exc_value: self.exc_value.generate_disposal_code(code) if self.exc_tb: self.exc_tb.generate_disposal_code(code) code.putln( code.error_goto(self.pos)) def annotate(self, code): if self.exc_type: self.exc_type.annotate(code) if self.exc_value: self.exc_value.annotate(code) if self.exc_tb: self.exc_tb.annotate(code) class ReraiseStatNode(StatNode): child_attrs = [] def analyse_expressions(self, env): self.gil_check(env) env.use_utility_code(raise_utility_code) gil_message = "Raising exception" def generate_execution_code(self, code): vars = code.exc_vars if vars: code.putln("__Pyx_Raise(%s, %s, %s);" % tuple(vars)) code.putln(code.error_goto(self.pos)) else: error(self.pos, "Reraise not inside except clause") class AssertStatNode(StatNode): # assert statement # # cond ExprNode # value ExprNode or None child_attrs = ["cond", "value"] def analyse_expressions(self, env): self.cond = self.cond.analyse_boolean_expression(env) if self.value: self.value.analyse_types(env) self.value = self.value.coerce_to_pyobject(env) self.value.allocate_temps(env) self.cond.release_temp(env) if self.value: self.value.release_temp(env) self.gil_check(env) #env.recycle_pending_temps() # TEMPORARY gil_message = "Raising exception" def generate_execution_code(self, code): code.putln("#ifndef PYREX_WITHOUT_ASSERTIONS") self.cond.generate_evaluation_code(code) code.putln( "if (unlikely(!%s)) {" % self.cond.result_code) if self.value: self.value.generate_evaluation_code(code) code.putln( "PyErr_SetObject(PyExc_AssertionError, %s);" % self.value.py_result()) self.value.generate_disposal_code(code) else: code.putln( "PyErr_SetNone(PyExc_AssertionError);") code.putln( code.error_goto(self.pos)) code.putln( "}") self.cond.generate_disposal_code(code) code.putln("#endif") def annotate(self, code): self.cond.annotate(code) if self.value: self.value.annotate(code) class IfStatNode(StatNode): # if statement # # if_clauses [IfClauseNode] # else_clause StatNode or None child_attrs = ["if_clauses", "else_clause"] def analyse_control_flow(self, env): env.start_branching(self.pos) for if_clause in self.if_clauses: if_clause.analyse_control_flow(env) env.next_branch(if_clause.end_pos()) if self.else_clause: self.else_clause.analyse_control_flow(env) env.finish_branching(self.end_pos()) def analyse_declarations(self, env): for if_clause in self.if_clauses: if_clause.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): for if_clause in self.if_clauses: if_clause.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) def generate_execution_code(self, code): code.mark_pos(self.pos) end_label = code.new_label() for if_clause in self.if_clauses: if_clause.generate_execution_code(code, end_label) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(end_label) def annotate(self, code): for if_clause in self.if_clauses: if_clause.annotate(code) if self.else_clause: self.else_clause.annotate(code) class IfClauseNode(Node): # if or elif clause in an if statement # # condition ExprNode # body StatNode child_attrs = ["condition", "body"] def analyse_control_flow(self, env): self.body.analyse_control_flow(env) def analyse_declarations(self, env): self.condition.analyse_declarations(env) self.body.analyse_declarations(env) def analyse_expressions(self, env): self.condition = \ self.condition.analyse_temp_boolean_expression(env) self.condition.release_temp(env) self.body.analyse_expressions(env) def generate_execution_code(self, code, end_label): self.condition.generate_evaluation_code(code) code.putln( "if (%s) {" % self.condition.result_code) self.body.generate_execution_code(code) #code.putln( # "goto %s;" % # end_label) code.put_goto(end_label) code.putln("}") def annotate(self, code): self.condition.annotate(code) self.body.annotate(code) class SwitchCaseNode(StatNode): # Generated in the optimization of an if-elif-else node # # conditions [ExprNode] # body StatNode child_attrs = ['conditions', 'body'] def generate_execution_code(self, code): for cond in self.conditions: code.putln("case %s:" % cond.calculate_result_code()) self.body.generate_execution_code(code) code.putln("break;") def annotate(self, code): for cond in self.conditions: cond.annotate(code) body.annotate(code) class SwitchStatNode(StatNode): # Generated in the optimization of an if-elif-else node # # test ExprNode # cases [SwitchCaseNode] # else_clause StatNode or None child_attrs = ['test', 'cases', 'else_clause'] def generate_execution_code(self, code): code.putln("switch (%s) {" % self.test.calculate_result_code()) for case in self.cases: case.generate_execution_code(code) if self.else_clause is not None: code.putln("default:") self.else_clause.generate_execution_code(code) code.putln("}") def annotate(self, code): self.test.annotate(code) for case in self.cases: case.annotate(code) self.else_clause.annotate(code) class LoopNode: def analyse_control_flow(self, env): env.start_branching(self.pos) self.body.analyse_control_flow(env) env.next_branch(self.body.end_pos()) if self.else_clause: self.else_clause.analyse_control_flow(env) env.finish_branching(self.end_pos()) class WhileStatNode(LoopNode, StatNode): # while statement # # condition ExprNode # body StatNode # else_clause StatNode child_attrs = ["condition", "body", "else_clause"] def analyse_declarations(self, env): self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): self.condition = \ self.condition.analyse_temp_boolean_expression(env) self.condition.release_temp(env) #env.recycle_pending_temps() # TEMPORARY self.body.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) def generate_execution_code(self, code): old_loop_labels = code.new_loop_labels() code.putln( "while (1) {") self.condition.generate_evaluation_code(code) code.putln( "if (!%s) break;" % self.condition.result_code) self.body.generate_execution_code(code) code.put_label(code.continue_label) code.putln("}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) def annotate(self, code): self.condition.annotate(code) self.body.annotate(code) if self.else_clause: self.else_clause.annotate(code) def ForStatNode(pos, **kw): if kw.has_key('iterator'): return ForInStatNode(pos, **kw) else: return ForFromStatNode(pos, **kw) class ForInStatNode(LoopNode, StatNode): # for statement # # target ExprNode # iterator IteratorNode # body StatNode # else_clause StatNode # item NextNode used internally child_attrs = ["target", "iterator", "body", "else_clause"] item = None def analyse_declarations(self, env): self.target.analyse_target_declaration(env) self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_range_step(self, args): import ExprNodes # The direction must be determined at compile time to set relations. # Otherwise, return False. if len(args) < 3: self.step = ExprNodes.IntNode(pos = args[0].pos, value='1') self.relation1 = '<=' self.relation2 = '<' return True else: step = args[2] if isinstance(step, ExprNodes.UnaryMinusNode) and isinstance(step.operand, ExprNodes.IntNode): step = ExprNodes.IntNode(pos = step.pos, value=str(-int(step.operand.value, 0))) if isinstance(step, ExprNodes.IntNode): step_value = int(step.value, 0) if step_value > 0: self.step = step self.relation1 = '<=' self.relation2 = '<' return True elif step_value < 0: self.step = ExprNodes.IntNode(pos = step.pos, value=str(-step_value)) self.relation1 = '>=' self.relation2 = '>' return True return False def analyse_expressions(self, env): import ExprNodes self.target.analyse_target_types(env) if Options.convert_range and self.target.type.is_int: sequence = self.iterator.sequence if isinstance(sequence, ExprNodes.SimpleCallNode) \ and sequence.self is None \ and isinstance(sequence.function, ExprNodes.NameNode) \ and (sequence.function.name == 'range' or sequence.function.name == 'xrange'): args = sequence.args # Make sure we can determine direction from step if self.analyse_range_step(args): # Mutate to ForFrom loop type self.__class__ = ForFromStatNode if len(args) == 1: self.bound1 = ExprNodes.IntNode(pos = sequence.pos, value='0') self.bound2 = args[0] else: self.bound1 = args[0] self.bound2 = args[1] ForFromStatNode.analyse_expressions(self, env) return self.iterator.analyse_expressions(env) self.item = ExprNodes.NextNode(self.iterator, env) self.item = self.item.coerce_to(self.target.type, env) self.item.allocate_temps(env) self.target.allocate_target_temps(env, self.item) #self.item.release_temp(env) #self.target.release_target_temp(env) self.body.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) self.iterator.release_temp(env) def generate_execution_code(self, code): old_loop_labels = code.new_loop_labels() self.iterator.generate_evaluation_code(code) code.putln( "for (;;) {") self.item.generate_evaluation_code(code) self.target.generate_assignment_code(self.item, code) self.body.generate_execution_code(code) code.put_label(code.continue_label) code.putln( "}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) self.iterator.generate_disposal_code(code) def annotate(self, code): self.target.annotate(code) self.iterator.annotate(code) self.body.annotate(code) if self.else_clause: self.else_clause.annotate(code) self.item.annotate(code) class ForFromStatNode(LoopNode, StatNode): # for name from expr rel name rel expr # # target NameNode # bound1 ExprNode # relation1 string # relation2 string # bound2 ExprNode # step ExprNode or None # body StatNode # else_clause StatNode or None # # Used internally: # # is_py_target bool # loopvar_name string # py_loopvar_node PyTempNode or None child_attrs = ["target", "bound1", "bound2", "step", "body", "else_clause"] def analyse_declarations(self, env): self.target.analyse_target_declaration(env) self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): import ExprNodes self.target.analyse_target_types(env) self.bound1.analyse_types(env) self.bound2.analyse_types(env) if self.target.type.is_numeric: self.bound1 = self.bound1.coerce_to(self.target.type, env) self.bound2 = self.bound2.coerce_to(self.target.type, env) else: self.bound1 = self.bound1.coerce_to_integer(env) self.bound2 = self.bound2.coerce_to_integer(env) if self.step is not None: if isinstance(self.step, ExprNodes.UnaryMinusNode): warning(self.step.pos, "Probable infinite loop in for-from-by statment. Consider switching the directions of the relations.", 2) self.step.analyse_types(env) self.step = self.step.coerce_to_integer(env) if not (self.bound2.is_name or self.bound2.is_literal): self.bound2 = self.bound2.coerce_to_temp(env) target_type = self.target.type if not (target_type.is_pyobject or target_type.is_numeric): error(self.target.pos, "Integer for-loop variable must be of type int or Python object") #if not (target_type.is_pyobject # or target_type.assignable_from(PyrexTypes.c_int_type)): # error(self.target.pos, # "Cannot assign integer to variable of type '%s'" % target_type) if target_type.is_numeric: self.is_py_target = 0 self.loopvar_name = self.target.entry.cname self.py_loopvar_node = None else: self.is_py_target = 1 c_loopvar_node = ExprNodes.TempNode(self.pos, PyrexTypes.c_long_type, env) c_loopvar_node.allocate_temps(env) self.loopvar_name = c_loopvar_node.result_code self.py_loopvar_node = \ ExprNodes.CloneNode(c_loopvar_node).coerce_to_pyobject(env) self.bound1.allocate_temps(env) self.bound2.allocate_temps(env) if self.step is not None: self.step.allocate_temps(env) if self.is_py_target: self.py_loopvar_node.allocate_temps(env) self.target.allocate_target_temps(env, self.py_loopvar_node) #self.target.release_target_temp(env) #self.py_loopvar_node.release_temp(env) self.body.analyse_expressions(env) if self.is_py_target: c_loopvar_node.release_temp(env) if self.else_clause: self.else_clause.analyse_expressions(env) self.bound1.release_temp(env) self.bound2.release_temp(env) if self.step is not None: self.step.release_temp(env) def generate_execution_code(self, code): old_loop_labels = code.new_loop_labels() self.bound1.generate_evaluation_code(code) self.bound2.generate_evaluation_code(code) offset, incop = self.relation_table[self.relation1] if self.step is not None: self.step.generate_evaluation_code(code) incop = "%s=%s" % (incop[0], self.step.result_code) code.putln( "for (%s = %s%s; %s %s %s; %s%s) {" % ( self.loopvar_name, self.bound1.result_code, offset, self.loopvar_name, self.relation2, self.bound2.result_code, self.loopvar_name, incop)) if self.py_loopvar_node: self.py_loopvar_node.generate_evaluation_code(code) self.target.generate_assignment_code(self.py_loopvar_node, code) self.body.generate_execution_code(code) code.put_label(code.continue_label) code.putln("}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) self.bound1.generate_disposal_code(code) self.bound2.generate_disposal_code(code) if self.step is not None: self.step.generate_disposal_code(code) relation_table = { # {relop : (initial offset, increment op)} '<=': ("", "++"), '<' : ("+1", "++"), '>=': ("", "--"), '>' : ("-1", "--") } def annotate(self, code): self.target.annotate(code) self.bound1.annotate(code) self.bound2.annotate(code) if self.step: self.bound2.annotate(code) self.body.annotate(code) if self.else_clause: self.else_clause.annotate(code) class WithStatNode(StatNode): """ Represents a Python with statement. This is only used at parse tree level; and is not present in analysis or generation phases. """ # manager The with statement manager object # target Node (lhs expression) # body StatNode child_attrs = ["manager", "target", "body"] class TryExceptStatNode(StatNode): # try .. except statement # # body StatNode # except_clauses [ExceptClauseNode] # else_clause StatNode or None # cleanup_list [Entry] temps to clean up on error child_attrs = ["body", "except_clauses", "else_clause"] def analyse_control_flow(self, env): env.start_branching(self.pos) self.body.analyse_control_flow(env) successful_try = env.control_flow # grab this for later env.next_branch(self.body.end_pos()) env.finish_branching(self.body.end_pos()) env.start_branching(self.except_clauses[0].pos) for except_clause in self.except_clauses: except_clause.analyse_control_flow(env) env.next_branch(except_clause.end_pos()) # the else cause it executed only when the try clause finishes env.control_flow.incoming = successful_try if self.else_clause: self.else_clause.analyse_control_flow(env) env.finish_branching(self.end_pos()) def analyse_declarations(self, env): self.body.analyse_declarations(env) for except_clause in self.except_clauses: except_clause.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) self.gil_check(env) def analyse_expressions(self, env): self.body.analyse_expressions(env) self.cleanup_list = env.free_temp_entries[:] for except_clause in self.except_clauses: except_clause.analyse_expressions(env) if self.else_clause: self.else_clause.analyse_expressions(env) self.gil_check(env) gil_message = "Try-except statement" def generate_execution_code(self, code): old_error_label = code.new_error_label() our_error_label = code.error_label end_label = code.new_label() code.putln( "/*try:*/ {") self.body.generate_execution_code(code) code.putln( "}") code.error_label = old_error_label if self.else_clause: code.putln( "/*else:*/ {") self.else_clause.generate_execution_code(code) code.putln( "}") code.put_goto(end_label) code.put_label(our_error_label) code.put_var_xdecrefs_clear(self.cleanup_list) default_clause_seen = 0 for except_clause in self.except_clauses: if not except_clause.pattern: default_clause_seen = 1 else: if default_clause_seen: error(except_clause.pos, "Default except clause not last") except_clause.generate_handling_code(code, end_label) if not default_clause_seen: code.put_goto(code.error_label) code.put_label(end_label) def annotate(self, code): self.body.annotate(code) for except_node in self.except_clauses: except_node.annotate(code) if self.else_clause: self.else_clause.annotate(code) class ExceptClauseNode(Node): # Part of try ... except statement. # # pattern ExprNode # target ExprNode or None # body StatNode # excinfo_target NameNode or None optional target for exception info # match_flag string result of exception match # exc_value ExcValueNode used internally # function_name string qualified name of enclosing function # exc_vars (string * 3) local exception variables # excinfo_target is never set by the parser, but can be set by a transform # in order to extract more extensive information about the exception as a # sys.exc_info()-style tuple into a target variable child_attrs = ["pattern", "target", "body", "exc_value", "excinfo_target"] exc_value = None excinfo_target = None def analyse_declarations(self, env): if self.target: self.target.analyse_target_declaration(env) if self.excinfo_target is not None: self.excinfo_target.analyse_target_declaration(env) self.body.analyse_declarations(env) def analyse_expressions(self, env): import ExprNodes genv = env.global_scope() self.function_name = env.qualified_name if self.pattern: self.pattern.analyse_expressions(env) self.pattern = self.pattern.coerce_to_pyobject(env) self.match_flag = env.allocate_temp(PyrexTypes.c_int_type) self.pattern.release_temp(env) env.release_temp(self.match_flag) self.exc_vars = [env.allocate_temp(py_object_type) for i in xrange(3)] if self.target: self.exc_value = ExprNodes.ExcValueNode(self.pos, env, self.exc_vars[1]) self.exc_value.allocate_temps(env) self.target.analyse_target_expression(env, self.exc_value) if self.excinfo_target is not None: import ExprNodes self.excinfo_tuple = ExprNodes.TupleNode(pos=self.pos, args=[ ExprNodes.ExcValueNode(pos=self.pos, env=env, var=self.exc_vars[0]), ExprNodes.ExcValueNode(pos=self.pos, env=env, var=self.exc_vars[1]), ExprNodes.ExcValueNode(pos=self.pos, env=env, var=self.exc_vars[2]) ]) self.excinfo_tuple.analyse_expressions(env) self.excinfo_tuple.allocate_temps(env) self.excinfo_target.analyse_target_expression(env, self.excinfo_tuple) self.body.analyse_expressions(env) for var in self.exc_vars: env.release_temp(var) env.use_utility_code(get_exception_utility_code) def generate_handling_code(self, code, end_label): code.mark_pos(self.pos) if self.pattern: self.pattern.generate_evaluation_code(code) code.putln( "%s = PyErr_ExceptionMatches(%s);" % ( self.match_flag, self.pattern.py_result())) self.pattern.generate_disposal_code(code) code.putln( "if (%s) {" % self.match_flag) else: code.putln("/*except:*/ {") code.putln('__Pyx_AddTraceback("%s");' % self.function_name) # We always have to fetch the exception value even if # there is no target, because this also normalises the # exception and stores it in the thread state. exc_args = "&%s, &%s, &%s" % tuple(self.exc_vars) code.putln("if (__Pyx_GetException(%s) < 0) %s" % (exc_args, code.error_goto(self.pos))) if self.target: self.exc_value.generate_evaluation_code(code) self.target.generate_assignment_code(self.exc_value, code) if self.excinfo_target is not None: self.excinfo_tuple.generate_evaluation_code(code) self.excinfo_target.generate_assignment_code(self.excinfo_tuple, code) old_exc_vars = code.exc_vars code.exc_vars = self.exc_vars self.body.generate_execution_code(code) code.exc_vars = old_exc_vars for var in self.exc_vars: code.putln("Py_DECREF(%s); %s = 0;" % (var, var)) code.put_goto(end_label) code.putln( "}") def annotate(self, code): if self.pattern: self.pattern.annotate(code) if self.target: self.target.annotate(code) self.body.annotate(code) class TryFinallyStatNode(StatNode): # try ... finally statement # # body StatNode # finally_clause StatNode # # cleanup_list [Entry] temps to clean up on error # # The plan is that we funnel all continue, break # return and error gotos into the beginning of the # finally block, setting a variable to remember which # one we're doing. At the end of the finally block, we # switch on the variable to figure out where to go. # In addition, if we're doing an error, we save the # exception on entry to the finally block and restore # it on exit. child_attrs = ["body", "finally_clause"] preserve_exception = 1 disallow_continue_in_try_finally = 0 # There doesn't seem to be any point in disallowing # continue in the try block, since we have no problem # handling it. def create_analysed(pos, env, body, finally_clause): node = TryFinallyStatNode(pos, body=body, finally_clause=finally_clause) node.cleanup_list = [] return node create_analysed = staticmethod(create_analysed) def analyse_control_flow(self, env): env.start_branching(self.pos) self.body.analyse_control_flow(env) env.next_branch(self.body.end_pos()) env.finish_branching(self.body.end_pos()) self.finally_clause.analyse_control_flow(env) def analyse_declarations(self, env): self.body.analyse_declarations(env) self.finally_clause.analyse_declarations(env) def analyse_expressions(self, env): self.body.analyse_expressions(env) self.cleanup_list = env.free_temp_entries[:] self.finally_clause.analyse_expressions(env) self.gil_check(env) gil_message = "Try-finally statement" def generate_execution_code(self, code): old_error_label = code.error_label old_labels = code.all_new_labels() new_labels = code.get_all_labels() new_error_label = code.error_label catch_label = code.new_label() code.putln( "/*try:*/ {") if self.disallow_continue_in_try_finally: was_in_try_finally = code.in_try_finally code.in_try_finally = 1 self.body.generate_execution_code(code) if self.disallow_continue_in_try_finally: code.in_try_finally = was_in_try_finally code.putln( "}") code.putln( "/*finally:*/ {") cases_used = [] error_label_used = 0 for i, new_label in enumerate(new_labels): if new_label in code.labels_used: cases_used.append(i) if new_label == new_error_label: error_label_used = 1 error_label_case = i if cases_used: code.putln( "int __pyx_why;") if error_label_used and self.preserve_exception: code.putln( "PyObject *%s, *%s, *%s;" % Naming.exc_vars) code.putln( "int %s;" % Naming.exc_lineno_name) code.use_label(catch_label) code.putln( "__pyx_why = 0; goto %s;" % catch_label) for i in cases_used: new_label = new_labels[i] #if new_label and new_label != "<try>": if new_label == new_error_label and self.preserve_exception: self.put_error_catcher(code, new_error_label, i+1, catch_label) else: code.putln( "%s: __pyx_why = %s; goto %s;" % ( new_label, i+1, catch_label)) code.put_label(catch_label) code.set_all_labels(old_labels) if error_label_used: code.new_error_label() finally_error_label = code.error_label self.finally_clause.generate_execution_code(code) if error_label_used: if finally_error_label in code.labels_used and self.preserve_exception: over_label = code.new_label() code.put_goto(over_label); code.put_label(finally_error_label) code.putln("if (__pyx_why == %d) {" % (error_label_case + 1)) for var in Naming.exc_vars: code.putln("Py_XDECREF(%s);" % var) code.putln("}") code.put_goto(old_error_label) code.put_label(over_label) code.error_label = old_error_label if cases_used: code.putln( "switch (__pyx_why) {") for i in cases_used: old_label = old_labels[i] if old_label == old_error_label and self.preserve_exception: self.put_error_uncatcher(code, i+1, old_error_label) else: code.use_label(old_label) code.putln( "case %s: goto %s;" % ( i+1, old_label)) code.putln( "}") code.putln( "}") def put_error_catcher(self, code, error_label, i, catch_label): code.putln( "%s: {" % error_label) code.putln( "__pyx_why = %s;" % i) code.put_var_xdecrefs_clear(self.cleanup_list) code.putln( "PyErr_Fetch(&%s, &%s, &%s);" % Naming.exc_vars) code.putln( "%s = %s;" % ( Naming.exc_lineno_name, Naming.lineno_cname)) #code.putln( # "goto %s;" % # catch_label) code.put_goto(catch_label) code.putln( "}") def put_error_uncatcher(self, code, i, error_label): code.putln( "case %s: {" % i) code.putln( "PyErr_Restore(%s, %s, %s);" % Naming.exc_vars) code.putln( "%s = %s;" % ( Naming.lineno_cname, Naming.exc_lineno_name)) for var in Naming.exc_vars: code.putln( "%s = 0;" % var) code.put_goto(error_label) code.putln( "}") def annotate(self, code): self.body.annotate(code) self.finally_clause.annotate(code) class GILStatNode(TryFinallyStatNode): # 'with gil' or 'with nogil' statement # # state string 'gil' or 'nogil' child_attrs = [] preserve_exception = 0 def __init__(self, pos, state, body): self.state = state TryFinallyStatNode.__init__(self, pos, body = body, finally_clause = GILExitNode(pos, state = state)) def analyse_expressions(self, env): was_nogil = env.nogil env.nogil = 1 TryFinallyStatNode.analyse_expressions(self, env) env.nogil = was_nogil def gil_check(self, env): pass def generate_execution_code(self, code): code.putln("/*with %s:*/ {" % self.state) if self.state == 'gil': code.putln("PyGILState_STATE _save = PyGILState_Ensure();") else: code.putln("PyThreadState *_save;") code.putln("Py_UNBLOCK_THREADS") TryFinallyStatNode.generate_execution_code(self, code) code.putln("}") class GILExitNode(StatNode): # Used as the 'finally' block in a GILStatNode # # state string 'gil' or 'nogil' child_attrs = [] def analyse_expressions(self, env): pass def generate_execution_code(self, code): if self.state == 'gil': code.putln("PyGILState_Release();") else: code.putln("Py_BLOCK_THREADS") class CImportStatNode(StatNode): # cimport statement # # module_name string Qualified name of module being imported # as_name string or None Name specified in "as" clause, if any child_attrs = [] def analyse_declarations(self, env): if not env.is_module_scope: error(self.pos, "cimport only allowed at module level") return module_scope = env.find_module(self.module_name, self.pos) if "." in self.module_name: names = [EncodedString(name) for name in self.module_name.split(".")] top_name = names[0] top_module_scope = env.context.find_submodule(top_name) module_scope = top_module_scope for name in names[1:]: submodule_scope = module_scope.find_submodule(name) module_scope.declare_module(name, submodule_scope, self.pos) module_scope = submodule_scope if self.as_name: env.declare_module(self.as_name, module_scope, self.pos) else: env.declare_module(top_name, top_module_scope, self.pos) else: name = self.as_name or self.module_name env.declare_module(name, module_scope, self.pos) def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class FromCImportStatNode(StatNode): # from ... cimport statement # # module_name string Qualified name of module # imported_names [(pos, name, as_name, kind)] Names to be imported child_attrs = [] def analyse_declarations(self, env): if not env.is_module_scope: error(self.pos, "cimport only allowed at module level") return module_scope = env.find_module(self.module_name, self.pos) env.add_imported_module(module_scope) for pos, name, as_name, kind in self.imported_names: if name == "*": for local_name, entry in module_scope.entries.items(): env.add_imported_entry(local_name, entry, pos) else: entry = module_scope.lookup(name) if entry: if kind and not self.declaration_matches(entry, kind): entry.redeclared(pos) else: if kind == 'struct' or kind == 'union': entry = module_scope.declare_struct_or_union(name, kind = kind, scope = None, typedef_flag = 0, pos = pos) elif kind == 'class': entry = module_scope.declare_c_class(name, pos = pos, module_name = self.module_name) else: error(pos, "Name '%s' not declared in module '%s'" % (name, self.module_name)) if entry: local_name = as_name or name env.add_imported_entry(local_name, entry, pos) def declaration_matches(self, entry, kind): if not entry.is_type: return 0 type = entry.type if kind == 'class': if not type.is_extension_type: return 0 else: if not type.is_struct_or_union: return 0 if kind <> type.kind: return 0 return 1 def analyse_expressions(self, env): pass def generate_execution_code(self, code): pass class FromImportStatNode(StatNode): # from ... import statement # # module ImportNode # items [(string, NameNode)] # interned_items [(string, NameNode)] # item PyTempNode used internally # import_star boolean used internally child_attrs = ["module"] import_star = 0 def analyse_declarations(self, env): for name, target in self.items: if name == "*": if not env.is_module_scope: error(self.pos, "import * only allowed at module level") return env.has_import_star = 1 self.import_star = 1 else: target.analyse_target_declaration(env) def analyse_expressions(self, env): import ExprNodes self.module.analyse_expressions(env) self.item = ExprNodes.PyTempNode(self.pos, env) self.item.allocate_temp(env) self.interned_items = [] for name, target in self.items: if name == '*': for _, entry in env.entries.items(): if not entry.is_type and entry.type.is_extension_type: env.use_utility_code(ExprNodes.type_test_utility_code) break else: self.interned_items.append( (env.intern_identifier(name), target)) target.analyse_target_expression(env, None) #target.release_target_temp(env) # was release_temp ?!? self.module.release_temp(env) self.item.release_temp(env) def generate_execution_code(self, code): self.module.generate_evaluation_code(code) if self.import_star: code.putln( 'if (%s(%s) < 0) %s;' % ( Naming.import_star, self.module.py_result(), code.error_goto(self.pos))) for cname, target in self.interned_items: code.putln( '%s = PyObject_GetAttr(%s, %s); %s' % ( self.item.result_code, self.module.py_result(), cname, code.error_goto_if_null(self.item.result_code, self.pos))) target.generate_assignment_code(self.item, code) self.module.generate_disposal_code(code) #------------------------------------------------------------------------------------ # # Runtime support code # #------------------------------------------------------------------------------------ utility_function_predeclarations = \ """ #ifdef __GNUC__ #define INLINE __inline__ #elif _WIN32 #define INLINE __inline #else #define INLINE #endif typedef struct {PyObject **p; char *s; long n; char is_unicode; char intern; char is_identifier;} __Pyx_StringTabEntry; /*proto*/ """ + """ static int %(skip_dispatch_cname)s = 0; """ % { 'skip_dispatch_cname': Naming.skip_dispatch_cname } if Options.gcc_branch_hints: branch_prediction_macros = \ """ #ifdef __GNUC__ /* Test for GCC > 2.95 */ #if __GNUC__ > 2 || \ (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* __GNUC__ > 2 ... */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ > 2 ... */ #else /* __GNUC__ */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ """ else: branch_prediction_macros = \ """ #define likely(x) (x) #define unlikely(x) (x) """ #get_name_predeclaration = \ #"static PyObject *__Pyx_GetName(PyObject *dict, char *name); /*proto*/" #get_name_interned_predeclaration = \ #"static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name); /*proto*/" #------------------------------------------------------------------------------------ printing_utility_code = [ """ static int __Pyx_Print(PyObject *, int); /*proto*/ #if PY_MAJOR_VERSION >= 3 static PyObject* %s = 0; static PyObject* %s = 0; #endif """ % (Naming.print_function, Naming.print_function_kwargs), r""" #if PY_MAJOR_VERSION < 3 static PyObject *__Pyx_GetStdout(void) { PyObject *f = PySys_GetObject("stdout"); if (!f) { PyErr_SetString(PyExc_RuntimeError, "lost sys.stdout"); } return f; } static int __Pyx_Print(PyObject *arg_tuple, int newline) { PyObject *f; PyObject* v; int i; if (!(f = __Pyx_GetStdout())) return -1; for (i=0; i < PyTuple_GET_SIZE(arg_tuple); i++) { if (PyFile_SoftSpace(f, 1)) { if (PyFile_WriteString(" ", f) < 0) return -1; } v = PyTuple_GET_ITEM(arg_tuple, i); if (PyFile_WriteObject(v, f, Py_PRINT_RAW) < 0) return -1; if (PyString_Check(v)) { char *s = PyString_AsString(v); Py_ssize_t len = PyString_Size(v); if (len > 0 && isspace(Py_CHARMASK(s[len-1])) && s[len-1] != ' ') PyFile_SoftSpace(f, 0); } } if (newline) { if (PyFile_WriteString("\n", f) < 0) return -1; PyFile_SoftSpace(f, 0); } return 0; } #else /* Python 3 has a print function */ static int __Pyx_Print(PyObject *arg_tuple, int newline) { PyObject* kwargs = 0; PyObject* result = 0; PyObject* end_string; if (!%(PRINT_FUNCTION)s) { %(PRINT_FUNCTION)s = PyObject_GetAttrString(%(BUILTINS)s, "print"); if (!%(PRINT_FUNCTION)s) return -1; } if (!newline) { if (!%(PRINT_KWARGS)s) { %(PRINT_KWARGS)s = PyDict_New(); if (!%(PRINT_KWARGS)s) return -1; end_string = PyUnicode_FromStringAndSize(" ", 1); if (!end_string) return -1; if (PyDict_SetItemString(%(PRINT_KWARGS)s, "end", end_string) < 0) { Py_DECREF(end_string); return -1; } Py_DECREF(end_string); } kwargs = %(PRINT_KWARGS)s; } result = PyObject_Call(%(PRINT_FUNCTION)s, arg_tuple, kwargs); if (!result) return -1; Py_DECREF(result); return 0; } #endif """ % {'BUILTINS' : Naming.builtins_cname, 'PRINT_FUNCTION' : Naming.print_function, 'PRINT_KWARGS' : Naming.print_function_kwargs} ] #------------------------------------------------------------------------------------ # The following function is based on do_raise() from ceval.c. raise_utility_code = [ """ static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb); /*proto*/ """,""" static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb) { Py_XINCREF(type); Py_XINCREF(value); Py_XINCREF(tb); /* First, check the traceback argument, replacing None with NULL. */ if (tb == Py_None) { Py_DECREF(tb); tb = 0; } else if (tb != NULL && !PyTraceBack_Check(tb)) { PyErr_SetString(PyExc_TypeError, "raise: arg 3 must be a traceback or None"); goto raise_error; } /* Next, replace a missing value with None */ if (value == NULL) { value = Py_None; Py_INCREF(value); } #if PY_VERSION_HEX < 0x02050000 if (!PyClass_Check(type)) #else if (!PyType_Check(type)) #endif { /* Raising an instance. The value should be a dummy. */ if (value != Py_None) { PyErr_SetString(PyExc_TypeError, "instance exception may not have a separate value"); goto raise_error; } /* Normalize to raise <class>, <instance> */ Py_DECREF(value); value = type; #if PY_VERSION_HEX < 0x02050000 if (PyInstance_Check(type)) { type = (PyObject*) ((PyInstanceObject*)type)->in_class; Py_INCREF(type); } else { type = 0; PyErr_SetString(PyExc_TypeError, "raise: exception must be an old-style class or instance"); goto raise_error; } #else type = (PyObject*) Py_TYPE(type); Py_INCREF(type); if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) { PyErr_SetString(PyExc_TypeError, "raise: exception class must be a subclass of BaseException"); goto raise_error; } #endif } PyErr_Restore(type, value, tb); return; raise_error: Py_XDECREF(value); Py_XDECREF(type); Py_XDECREF(tb); return; } """] #------------------------------------------------------------------------------------ reraise_utility_code = [ """ static void __Pyx_ReRaise(void); /*proto*/ """,""" static void __Pyx_ReRaise(void) { PyThreadState *tstate = PyThreadState_Get(); PyObject *type = tstate->exc_type; PyObject *value = tstate->exc_value; PyObject *tb = tstate->exc_traceback; Py_XINCREF(type); Py_XINCREF(value); Py_XINCREF(tb); PyErr_Restore(type, value, tb); } """] #------------------------------------------------------------------------------------ arg_type_test_utility_code = [ """ static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, char *name, int exact); /*proto*/ """,""" static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed, char *name, int exact) { if (!type) { PyErr_Format(PyExc_SystemError, "Missing type object"); return 0; } if (none_allowed && obj == Py_None) return 1; else if (exact) { if (Py_TYPE(obj) == type) return 1; } else { if (PyObject_TypeCheck(obj, type)) return 1; } PyErr_Format(PyExc_TypeError, "Argument '%s' has incorrect type (expected %s, got %s)", name, type->tp_name, Py_TYPE(obj)->tp_name); return 0; } """] #------------------------------------------------------------------------------------ # # __Pyx_SplitStarArg splits the args tuple into two parts, one part # suitable for passing to PyArg_ParseTupleAndKeywords, and the other # containing any extra arguments. On success, replaces the borrowed # reference *args with references to a new tuple, and passes back a # new reference in *args2. Does not touch any of its arguments on # failure. get_stararg_utility_code = [ """ static INLINE int __Pyx_SplitStarArg(PyObject **args, Py_ssize_t nargs, PyObject **args2); /*proto*/ """,""" static INLINE int __Pyx_SplitStarArg( PyObject **args, Py_ssize_t nargs, PyObject **args2) { PyObject *args1 = 0; args1 = PyTuple_GetSlice(*args, 0, nargs); if (!args1) { *args2 = 0; return -1; } *args2 = PyTuple_GetSlice(*args, nargs, PyTuple_GET_SIZE(*args)); if (!*args2) { Py_DECREF(args1); return -1; } *args = args1; return 0; } """] #------------------------------------------------------------------------------------ # # __Pyx_RaiseArgtupleTooLong raises the correct exception when too # many positional arguments were found. This handles Py_ssize_t # formatting correctly. raise_argtuple_too_long_utility_code = [ """ static INLINE void __Pyx_RaiseArgtupleTooLong(Py_ssize_t num_expected, Py_ssize_t num_found); /*proto*/ """,""" static INLINE void __Pyx_RaiseArgtupleTooLong( Py_ssize_t num_expected, Py_ssize_t num_found) { const char* error_message = #if PY_VERSION_HEX < 0x02050000 "function takes at most %d positional arguments (%d given)"; #else "function takes at most %zd positional arguments (%zd given)"; #endif PyErr_Format(PyExc_TypeError, error_message, num_expected, num_found); } """] #------------------------------------------------------------------------------------ # # __Pyx_CheckKeywordStrings raises an error if non-string keywords # were passed to a function, or if any keywords were passed to a # function that does not accept them. get_keyword_string_check_utility_code = [ """ static int __Pyx_CheckKeywordStrings(PyObject *kwdict, const char* function_name, int kw_allowed); /*proto*/ """,""" static int __Pyx_CheckKeywordStrings( PyObject *kwdict, const char* function_name, int kw_allowed) { PyObject* key = 0; Py_ssize_t pos = 0; while (PyDict_Next(kwdict, &pos, &key, 0)) { #if PY_MAJOR_VERSION < 3 if (unlikely(!PyString_Check(key))) { #else if (unlikely(!PyUnicode_Check(key))) { #endif PyErr_Format(PyExc_TypeError, "%s() keywords must be strings", function_name); return 0; } } if (unlikely(!kw_allowed) && unlikely(key)) { PyErr_Format(PyExc_TypeError, "'%s' is an invalid keyword argument for this function", #if PY_MAJOR_VERSION < 3 PyString_AsString(key)); #else PyUnicode_AsString(key)); #endif return 0; } return 1; } """] #------------------------------------------------------------------------------------ # # __Pyx_SplitKeywords splits the kwds dict into two parts one part # suitable for passing to PyArg_ParseTupleAndKeywords, and the other # containing any extra arguments. On success, replaces the borrowed # reference *kwds with references to a new dict, and passes back a # new reference in *kwds2. Does not touch any of its arguments on # failure. # # Any of *kwds and kwds2 may be 0 (but not kwds). If *kwds == 0, it # is not changed. If kwds2 == 0 and *kwds != 0, a new reference to # the same dictionary is passed back in *kwds. # # If rqd_kwds is not 0, it is an array of booleans corresponding to # the names in kwd_list, indicating required keyword arguments. If # any of these are not present in kwds, an exception is raised. # get_splitkeywords_utility_code = [ """ static int __Pyx_SplitKeywords(PyObject **kwds, char *kwd_list[], \ PyObject **kwds2, char rqd_kwds[]); /*proto*/ """,""" static int __Pyx_SplitKeywords( PyObject **kwds, char *kwd_list[], PyObject **kwds2, char rqd_kwds[]) { PyObject *s = 0, *x = 0, *kwds1 = 0; int i; char **p; if (*kwds) { kwds1 = PyDict_New(); if (!kwds1) goto bad; *kwds2 = PyDict_Copy(*kwds); if (!*kwds2) goto bad; for (i = 0, p = kwd_list; *p; i++, p++) { #if PY_MAJOR_VERSION < 3 s = PyString_FromString(*p); #else s = PyUnicode_FromString(*p); #endif x = PyDict_GetItem(*kwds, s); if (x) { if (PyDict_SetItem(kwds1, s, x) < 0) goto bad; if (PyDict_DelItem(*kwds2, s) < 0) goto bad; } else if (rqd_kwds && rqd_kwds[i]) goto missing_kwarg; Py_DECREF(s); } s = 0; } else { if (rqd_kwds) { for (i = 0, p = kwd_list; *p; i++, p++) if (rqd_kwds[i]) goto missing_kwarg; } *kwds2 = PyDict_New(); if (!*kwds2) goto bad; } *kwds = kwds1; return 0; missing_kwarg: PyErr_Format(PyExc_TypeError, "required keyword argument '%s' is missing", *p); bad: Py_XDECREF(s); Py_XDECREF(kwds1); Py_XDECREF(*kwds2); return -1; } """] get_checkkeywords_utility_code = [ """ static INLINE int __Pyx_CheckRequiredKeywords(PyObject *kwds, char *kwd_list[], char rqd_kwds[]); /*proto*/ """,""" static INLINE int __Pyx_CheckRequiredKeywords( PyObject *kwds, char *kwd_list[], char rqd_kwds[]) { int i; char **p; if (kwds) { for (i = 0, p = kwd_list; *p; i++, p++) if (rqd_kwds[i] && !PyDict_GetItemString(kwds, *p)) goto missing_kwarg; } else { for (i = 0, p = kwd_list; *p; i++, p++) if (rqd_kwds[i]) goto missing_kwarg; } return 0; missing_kwarg: PyErr_Format(PyExc_TypeError, "required keyword argument '%s' is missing", *p); return -1; } """] #------------------------------------------------------------------------------------ unraisable_exception_utility_code = [ """ static void __Pyx_WriteUnraisable(const char *name); /*proto*/ """,""" static void __Pyx_WriteUnraisable(const char *name) { PyObject *old_exc, *old_val, *old_tb; PyObject *ctx; PyErr_Fetch(&old_exc, &old_val, &old_tb); #if PY_MAJOR_VERSION < 3 ctx = PyString_FromString(name); #else ctx = PyUnicode_FromString(name); #endif PyErr_Restore(old_exc, old_val, old_tb); if (!ctx) ctx = Py_None; PyErr_WriteUnraisable(ctx); } """] #------------------------------------------------------------------------------------ traceback_utility_code = [ """ static void __Pyx_AddTraceback(const char *funcname); /*proto*/ """,""" #include "compile.h" #include "frameobject.h" #include "traceback.h" static void __Pyx_AddTraceback(const char *funcname) { PyObject *py_srcfile = 0; PyObject *py_funcname = 0; PyObject *py_globals = 0; PyObject *empty_string = 0; PyCodeObject *py_code = 0; PyFrameObject *py_frame = 0; #if PY_MAJOR_VERSION < 3 py_srcfile = PyString_FromString(%(FILENAME)s); #else py_srcfile = PyUnicode_FromString(%(FILENAME)s); #endif if (!py_srcfile) goto bad; if (%(CLINENO)s) { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromFormat( "%%s (%%s:%%d)", funcname, %(CFILENAME)s, %(CLINENO)s); #else py_funcname = PyUnicode_FromFormat( "%%s (%%s:%%d)", funcname, %(CFILENAME)s, %(CLINENO)s); #endif } else { #if PY_MAJOR_VERSION < 3 py_funcname = PyString_FromString(funcname); #else py_funcname = PyUnicode_FromString(funcname); #endif } if (!py_funcname) goto bad; py_globals = PyModule_GetDict(%(GLOBALS)s); if (!py_globals) goto bad; #if PY_MAJOR_VERSION < 3 empty_string = PyString_FromStringAndSize("", 0); #else empty_string = PyBytes_FromStringAndSize("", 0); #endif if (!empty_string) goto bad; py_code = PyCode_New( 0, /*int argcount,*/ #if PY_MAJOR_VERSION >= 3 0, /*int kwonlyargcount,*/ #endif 0, /*int nlocals,*/ 0, /*int stacksize,*/ 0, /*int flags,*/ empty_string, /*PyObject *code,*/ %(EMPTY_TUPLE)s, /*PyObject *consts,*/ %(EMPTY_TUPLE)s, /*PyObject *names,*/ %(EMPTY_TUPLE)s, /*PyObject *varnames,*/ %(EMPTY_TUPLE)s, /*PyObject *freevars,*/ %(EMPTY_TUPLE)s, /*PyObject *cellvars,*/ py_srcfile, /*PyObject *filename,*/ py_funcname, /*PyObject *name,*/ %(LINENO)s, /*int firstlineno,*/ empty_string /*PyObject *lnotab*/ ); if (!py_code) goto bad; py_frame = PyFrame_New( PyThreadState_Get(), /*PyThreadState *tstate,*/ py_code, /*PyCodeObject *code,*/ py_globals, /*PyObject *globals,*/ 0 /*PyObject *locals*/ ); if (!py_frame) goto bad; py_frame->f_lineno = %(LINENO)s; PyTraceBack_Here(py_frame); bad: Py_XDECREF(py_srcfile); Py_XDECREF(py_funcname); Py_XDECREF(empty_string); Py_XDECREF(py_code); Py_XDECREF(py_frame); } """ % { 'FILENAME': Naming.filename_cname, 'LINENO': Naming.lineno_cname, 'CFILENAME': Naming.cfilenm_cname, 'CLINENO': Naming.clineno_cname, 'GLOBALS': Naming.module_cname, 'EMPTY_TUPLE' : Naming.empty_tuple, }] #------------------------------------------------------------------------------------ set_vtable_utility_code = [ """ static int __Pyx_SetVtable(PyObject *dict, void *vtable); /*proto*/ """,""" static int __Pyx_SetVtable(PyObject *dict, void *vtable) { PyObject *pycobj = 0; int result; pycobj = PyCObject_FromVoidPtr(vtable, 0); if (!pycobj) goto bad; if (PyDict_SetItemString(dict, "__pyx_vtable__", pycobj) < 0) goto bad; result = 0; goto done; bad: result = -1; done: Py_XDECREF(pycobj); return result; } """] #------------------------------------------------------------------------------------ get_vtable_utility_code = [ """ static int __Pyx_GetVtable(PyObject *dict, void *vtabptr); /*proto*/ """,r""" static int __Pyx_GetVtable(PyObject *dict, void *vtabptr) { int result; PyObject *pycobj; pycobj = PyMapping_GetItemString(dict, "__pyx_vtable__"); if (!pycobj) goto bad; *(void **)vtabptr = PyCObject_AsVoidPtr(pycobj); if (!*(void **)vtabptr) goto bad; result = 0; goto done; bad: result = -1; done: Py_XDECREF(pycobj); return result; } """] #------------------------------------------------------------------------------------ init_string_tab_utility_code = [ """ static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /*proto*/ """,""" static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) { while (t->p) { #if PY_MAJOR_VERSION < 3 if (t->is_unicode && (!t->is_identifier)) { *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL); } else if (t->intern) { *t->p = PyString_InternFromString(t->s); } else { *t->p = PyString_FromStringAndSize(t->s, t->n - 1); } #else /* Python 3+ has unicode identifiers */ if (t->is_identifier || (t->is_unicode && t->intern)) { *t->p = PyUnicode_InternFromString(t->s); } else if (t->is_unicode) { *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1); } else { *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1); } #endif if (!*t->p) return -1; ++t; } return 0; } """] #------------------------------------------------------------------------------------ get_exception_utility_code = [ """ static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb); /*proto*/ """,""" static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb) { PyObject *tmp_type, *tmp_value, *tmp_tb; PyThreadState *tstate = PyThreadState_Get(); PyErr_Fetch(type, value, tb); PyErr_NormalizeException(type, value, tb); if (PyErr_Occurred()) goto bad; Py_INCREF(*type); Py_INCREF(*value); Py_INCREF(*tb); tmp_type = tstate->exc_type; tmp_value = tstate->exc_value; tmp_tb = tstate->exc_traceback; tstate->exc_type = *type; tstate->exc_value = *value; tstate->exc_traceback = *tb; /* Make sure tstate is in a consistent state when we XDECREF these objects (XDECREF may run arbitrary code). */ Py_XDECREF(tmp_type); Py_XDECREF(tmp_value); Py_XDECREF(tmp_tb); return 0; bad: Py_XDECREF(*type); Py_XDECREF(*value); Py_XDECREF(*tb); return -1; } """] #------------------------------------------------------------------------------------