Python Reference Manual

Guido van Rossum
Corporation for National Research Initiatives (CNRI)

Copyright © 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Table of Contents

CHAPTER 1 Introduction L Lo 1
Notation. e 1
CHAPTER 2 Lexical analysis 3
Linestructure 3
Logicallines. e 3
Physicallines 3
Comments. 3
Explicitline joining. 3
Implicitlinejoining. 4
Blanklines 4
Indentation 4
Whitespace betweentokens. L. 5
Othertokens. 5
Identifiers and keywords oL 5
Keywords e 6
Reserved classes of identifiers 6
Literals 6
Stringliterals 6
String literal concatenation 8
Numericliterals, 8
Integer and long integer literals 8
Floating pointliterals 8
Imaginary literals 9
Operators e e 9
Delimiters e 9
CHAPTER 3 Datamodel 11
Objects, valuesandtypes 11
The standard type hierarchy. 12
Special methodnames. 18
Basic customization.o 18
Customizing attribute access 19

Emulating callable objects 20

Table of Contents

Emulating sequence and mapping types

CHAPTER 1. INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

uononpo.|

CHAPTER 2: LEXICAL ANALYSIS

A Python program is read bymarser. Input to the parser is a streamtokens generated by thiex-
ical analyzer This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text and string literals. 8-bit characters may be

SIsAjeue [eJIXa7 e

and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A back-
slash does not continue a token except for string literals (i.e., tokens other than string literals cannot be split

mustbe one of the numbers occurring on the stack; all numbers on the stack that are larger are popped
off, and for each number popped off a DEDENT token is generated. At the end of the file,a DEDENT
token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confuaingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of |

SIsAjeue [eJIXa7 e

is the character used to open the string, i.e. €itlwar .)

Unless an ‘r’ or ‘R’ prefix is present, escape sequences in strings are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

ber are used in all current implementations...).
Unlike Standard C, all unrecognized escape sequences are left in the string unchanges biaek-
the resulting output is more easily recognized as broken.)

When an ‘r’ or ‘R’ prefix is present, backslashes are still used to quote the following character, but
rll\nll

2.4.1.1 String literal concatenation

Multiple adjacent string literals (delisf 0d by whf Ospace), possibly using different quoting conven-
tions, are allowed, and their meaning is the same as their concatenation'Heilos, 'world’

Note that the integer part of a floating point number cannot look like an octal integer. The allowed
range of floating point literals is implementation-dependent. Some examples of floating point liter-
als:3

JSISAleue [RIIXa7

® o0 0n >

pd

3.2 The standard type hierarchy

12

no reason to complicate the language with two kinds of floating point numbers.

Complex numbersThese represent complex numbers as a pair of machine-level double pre-
cision floating point numbers. The same caveats apply as for floating point numbers. The

13

[opow ereq o

14

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The
only types of values not acceptable as keys are values containing lists or dictionaries or

When a bound user-defined method object is called, the underlying funitiofufic)
is called, inserting the class instandm (self) in front of the argument list. For in-
stance, wheg is a class which contains a definition for a functforandx is an instance
of C, callingx.f(1) is equivalent to callin€.f(x, 1)

Note that the transformation from function object to (unbound or bound) method object
happens each time the attribute is retrieved from the class or instance. In some cases, a
fruitful optimization is to assign the attribute to a local variable and call that local vari-

15

[opow ereq o

16

Special read-only attributeso_argcount is the number of positional arguments (in-
cluding arguments with default valuesp nlocals is the number of local variables
used by the function (including argumentsyy_varnames is a tuple containing the
names of the local variables (starting with the argument names}ode is a string

representing the sequence of bytecode instructiomsgonsts is a tuple containing
the literals used by the bytecods_names

17

[opow ereq o

__setslice__ (self, i, j, sequence) Calledtoimplementassignmens@lffi:j]

Thesequence argument can have any type. The return value shoulddre. Same notes
fori andj as for

21

[opow ereq o

__invert__ (self) Called to implement the unary arithmetic operations, abs() and-~).

__int__ (self)
__long__(self)

__oct__(self)

_ float__(self) Called to implement the built-in functiomst() ,long() andfloat()
Should return a value of the appropriate type.

__hex__(self) Called to implement the built-in functiomt() andhex() . Should return a
string value.

__coerce__ (self, other) Called to implement “mixed-mode” numeric arithmetic. Should

22

either return a 2-tuple containirsglf andother converted to a common numeric type, or
None if no conversion is possible. When the common type would be the typéhef , it

is sufficient to returrNone, since the interpreter will also ask the other object to attempt a
coercion (but sometimes, if the implementation of the other type cannot be changed, itis use-
ful to do the conversion to the other type here).

Coercion rules to evaluate xop y, the following steps are taken (whereop__ and
__rop__ are the method names correspondingop e.g. ifopis ‘+’, __add__ and
__radd__ are used). If an exception occurs at any point, the evaluation is abandoned and
exception handling takes over.

« Execution model

4.2 Exceptions

25

26

CHAPTER 5: EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Python.
Syntax notes:

27

suoissaldxg .

28

« Expressions

29

30

The primary must evaluate to an object of a sequence or mapping type.

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the

keys of the mapping, and the subscription selects the value in the mapping that corresponds to that
key.

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is neg-
ative, the length of the sequence is added to it (so thatxglj. selects the last item of.) The re-

32

A call always returns some value, possilNgne, unless it raises an exception. How this value is

m_expr: u_expr | m_expr "*" u_expr y
2TD(.2TD .2 TD .29 u_expr | m_expr%"™" u_expr)TT* (a(m_expr: m u_expr am_expr+" m u_expr am_eg)r—"

SUoISS®.

33

def name (arguments):
return expression

See “Function definitions” on page 50 for the syntax of parameter lists. Note that functions created
with lambda forms cannot contain statements.

5.11 Expression lists
expression_list: expression ("," expression)* [*,"]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number

36

5.12 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least

37

suoissaldxg .

38

CHAPTER 6: SIMPLE STATEMENTS

Simple statements are comprised within a single logical line. Several simple statements may occur on
a single line separated by semicolons. The syntax for simple statements is:

simple_stmt: expression_stmt
| assert_stmt
| assignment_stmt
| pass_stmt
| del_stmt
| print_stmt
| return_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| global_stmt
| exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to
call a procedure (a function that returns no meaningful result; in Python, procedures return the value
None). Other uses of expression statements are allowed and occasionally useful. The syntax for an
expression statement is:

expression_stmt: expression_list

An expression statement evaluates the expression list (which may be a single expression). In interac-
tive mode, if the value is ndtone

39

sjuswalels ol dwis .

ator emits no code for amssert statement when optimization is requested at compile time. Note that it
is unnecessary to include the source code for the expression that failed in the error message; it will be dis-
played as part of the stack trace.

6.3 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable
objects:

assignment_stmt: (target_list "=")+ expression_list

target_list: target ("," target)* [*,"]

target: identifier | "(" target_list ")" | "[" target_list "]"
| attributeref | subscription | slicing

(See “Primaries” on page 29 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a
comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target
lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When atarget (listis part of atargetmt
table object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the
assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The
rules observed by various types and the exceptions raised are given with the definition of the object types

(See “The standard type hierarchy” on page 12.)

Assignment of an object to a target list is recursively defined as follows.

» If the target list is a single target: the object is assigned to that target.

40

Deletion of a name removes the binding of that name (which must exist) from the local or global name
space, depending on whether the name occurs in a

42

46

7.4 The try statement

Thetry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt: try_exc_stmt | try_fin_stmt
try_exc_stmt: "try" ™" suite
("except" [expression ["," target]] ":" suite)+
['else" ":" suite]
try_fin_stmt: "try" ":" suite
"finally" ":" suite

There are two forms dfy statementtry...except

49

suawalels punodwo) e

Itis also possible to create anonymous functions (functions not initially bound to a name), for imme-
diate use in expressions. This uses lambda forms, described in section “Boolean operations” on

51

suawalels punodwo) e

52

CHAPTER 8: TOP-LEVEL COMPONENTS

53

suauodwod |ang-doy .

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argusnai()to
mus. have the following form:

eval_input: expression_lis. NEWLINE*

The input line read binput() mus. have the following form:

input_input: expression_lis. NEWLINE

54

| NDE X 56

delimiter 9
dictionary 1415, 19, 28-29, 41
display

dictionary 28

tuple.. 28
division 33
divmod 33
double precision 12
E

| NDE X

57

| NDE X

null operation 41
number2, 16
numbers 16
NUMENC ... v et it ee e 12
numeric arithmetic
mixedmode 22
numericliteral 8
O
object 11
address inmemory 11
container 11
identity 11
immutable 11
mutable 11
reference to external resource .. 11
type ... 11
unreachable 11
value L. 11
objectclosure 14
octalliteral 8
OPEN . .. 16
operation
arithmetic
binary 32
unary 32
bit-wise
binary 33
unaryovi i 32
boolean 35
null 41
shifting 33
operator 9
optimization 15
or
bit-wise 34
exclusive 34
inclusive 34
or

59

60

| NDE X

61

	Python Reference Manual
	Chapter 1: Introduction
	1.1 Notation

	Chapter 2: Lexical analysis
	2.1 Line structure
	2.1.1 Logical lines
	2.1.2 Physical lines
	2.1.3 Comments
	2.1.4 Explicit line joining
	2.1.5 Implicit line joining
	2.1.6 Blank lines
	2.1.7 Indentation
	2.1.8 Whitespace between tokens

	2.2 Other tokens
	2.3 Identifiers and keywords
	2.3.1 Keywords
	2.3.2 Reserved classes of identifiers

	2.4 Literals
	2.4.1 String literals
	2.4.1.1 String literal concatenation

	2.4.2 Numeric literals
	2.4.2.1 Integer and long integer literals
	2.4.2.2 Floating point literals
	2.4.2.3 Imaginary literals

	2.5 Operators
	2.6 Delimiters

	Chapter 3: Data model
	3.1 Objects, values and types
	3.2 The standard type hierarchy
	3.3 Special method names
	3.3.1 Basic customization
	3.3.2 Customizing attribute access
	3.3.3 Emulating callable objects
	3.3.4 Emulating sequence and mapping types
	3.3.4.1 Additional methods for emulation of sequence types

	3.3.5 Emulating numeric types

	Chapter 4: Execution model
	4.1 Code blocks, execution frames, and name spaces
	4.2 Exceptions

	Chapter 5: Expressions
	5.1 Arithmetic conversions
	5.2 Atoms
	5.2.1 Identifiers (Names)
	5.2.2 Literals
	5.2.3 Parenthesized forms
	5.2.4 List displays
	5.2.5 Dictionary displays
	5.2.6 String conversions

	5.3 Primaries
	5.3.1 Attribute references
	5.3.2 Subscriptions
	5.3.3 Slicings
	5.3.4 Calls

	5.4 The power operator
	5.5 Unary arithmetic operations
	5.6 Binary arithmetic operations
	5.7 Shifting operations
	5.8 Binary bit-wise operations
	5.9 Comparisons
	5.10 Boolean operations
	5.11 Expression lists
	5.12 Summary

	Chapter 6: Simple statements
	6.1 Expression statements
	6.2 Assert statements
	6.3 Assignment statements
	6.4 The pass statement
	6.5 The del statement
	6.6 The print statement
	6.7 The return statement
	6.8 The raise statement
	6.9 The break statement
	6.10 The continue statement
	6.11 The import statement
	6.12 The global statement
	6.13 The exec statement

	Chapter 7: Compound statements
	7.1 The if statement
	7.2 The while statement
	7.3 The for statement
	7.4 The try statement
	7.5 Function definitions
	7.6 Class definitions

	Chapter 8: Top-level components
	8.1 Complete Python programs
	8.2 File input
	8.3 Interactive input
	8.4 Expression input
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index

