// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // “Abstract” syntax representation. package gc // A Node is a single node in the syntax tree. // Actually the syntax tree is a syntax DAG, because there is only one // node with Op=ONAME for a given instance of a variable x. // The same is true for Op=OTYPE and Op=OLITERAL. type Node struct { // Tree structure. // Generic recursive walks should follow these fields. Left *Node Right *Node Ninit Nodes Nbody Nodes List Nodes Rlist Nodes // most nodes Type *Type Orig *Node // original form, for printing, and tracking copies of ONAMEs // func Func *Func // ONAME Name *Name Sym *Sym // various E interface{} // Opt or Val, see methods below // Various. Usually an offset into a struct. For example, ONAME nodes // that refer to local variables use it to identify their stack frame // position. ODOT, ODOTPTR, and OINDREG use it to indicate offset // relative to their base address. ONAME nodes on the left side of an // OKEY within an OSTRUCTLIT use it to store the named field's offset. // OXCASE and OXFALL use it to validate the use of fallthrough. // Possibly still more uses. If you find any, document them. Xoffset int64 Lineno int32 // OREGISTER, OINDREG Reg int16 Esc uint16 // EscXXX Op Op Ullman uint8 // sethi/ullman number Addable bool // addressable Etype EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN Bounded bool // bounds check unnecessary NonNil bool // guaranteed to be non-nil Class Class // PPARAM, PAUTO, PEXTERN, etc Embedded uint8 // ODCLFIELD embedded type Colas bool // OAS resulting from := Diag uint8 // already printed error about this Noescape bool // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) Walkdef uint8 Typecheck uint8 Local bool Dodata uint8 Initorder uint8 Used bool Isddd bool // is the argument variadic Implicit bool Addrtaken bool // address taken, even if not moved to heap Assigned bool // is the variable ever assigned to Likely int8 // likeliness of if statement Hasbreak bool // has break statement hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set } // Val returns the Val for the node. func (n *Node) Val() Val { if n.hasVal != +1 { return Val{} } return Val{n.E} } // SetVal sets the Val for the node, which must not have been used with SetOpt. func (n *Node) SetVal(v Val) { if n.hasVal == -1 { Debug['h'] = 1 Dump("have Opt", n) Fatalf("have Opt") } n.hasVal = +1 n.E = v.U } // Opt returns the optimizer data for the node. func (n *Node) Opt() interface{} { if n.hasVal != -1 { return nil } return n.E } // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. func (n *Node) SetOpt(x interface{}) { if x == nil && n.hasVal >= 0 { return } if n.hasVal == +1 { Debug['h'] = 1 Dump("have Val", n) Fatalf("have Val") } n.hasVal = -1 n.E = x } // Name holds Node fields used only by named nodes (ONAME, OPACK, some OLITERAL). type Name struct { Pack *Node // real package for import . names Pkg *Pkg // pkg for OPACK nodes Heapaddr *Node // temp holding heap address of param Inlvar *Node // ONAME substitute while inlining Defn *Node // initializing assignment Curfn *Node // function for local variables Param *Param Decldepth int32 // declaration loop depth, increased for every loop or label Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. Iota int32 // value if this name is iota Funcdepth int32 Method bool // OCALLMETH name Readonly bool Captured bool // is the variable captured by a closure Byval bool // is the variable captured by value or by reference Needzero bool // if it contains pointers, needs to be zeroed on function entry Keepalive bool // mark value live across unknown assembly call } type Param struct { Ntype *Node // ONAME func param with PHEAP Outerexpr *Node // expression copied into closure for variable Stackparam *Node // OPARAM node referring to stack copy of param // ONAME PPARAM Field *Field // TFIELD in arg struct // ONAME closure param with PPARAMREF Outer *Node // outer PPARAMREF in nested closure Closure *Node // ONAME/PHEAP <-> ONAME/PPARAMREF } // Func holds Node fields used only with function-like nodes. type Func struct { Shortname *Node Enter Nodes // for example, allocate and initialize memory for escaping parameters Exit Nodes Cvars Nodes // closure params Dcl []*Node // autodcl for this func/closure Inldcl Nodes // copy of dcl for use in inlining Closgen int Outerfunc *Node FieldTrack map[*Sym]struct{} Outer *Node // outer func for closure Ntype *Node // signature Top int // top context (Ecall, Eproc, etc) Closure *Node // OCLOSURE <-> ODCLFUNC FCurfn *Node Nname *Node Inl Nodes // copy of the body for use in inlining InlCost int32 Depth int32 Endlineno int32 WBLineno int32 // line number of first write barrier Pragma Pragma // go:xxx function annotations Dupok bool // duplicate definitions ok Wrapper bool // is method wrapper Needctxt bool // function uses context register (has closure variables) ReflectMethod bool // function calls reflect.Type.Method or MethodByName } type Op uint8 // Node ops. const ( OXXX = Op(iota) // names ONAME // var, const or func name ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } OTYPE // type name OPACK // import OLITERAL // literal // expressions OADD // Left + Right OSUB // Left - Right OOR // Left | Right OXOR // Left ^ Right OADDSTR // +{List} (string addition, list elements are strings) OADDR // &Left OANDAND // Left && Right OAPPEND // append(List) OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte) OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune) OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string) OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral) OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string) OAS // Left = Right or (if Colas=true) Left := Right OAS2 // List = Rlist (x, y, z = a, b, c) OAS2FUNC // List = Rlist (x, y = f()) OAS2RECV // List = Rlist (x, ok = <-c) OAS2MAPR // List = Rlist (x, ok = m["foo"]) OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) OASOP // Left Etype= Right (x += y) OASWB // Left = Right (with write barrier) OCALL // Left(List) (function call, method call or type conversion) OCALLFUNC // Left(List) (function call f(args)) OCALLMETH // Left(List) (direct method call x.Method(args)) OCALLINTER // Left(List) (interface method call x.Method(args)) OCALLPART // Left.Right (method expression x.Method, not called) OCAP // cap(Left) OCLOSE // close(Left) OCLOSURE // func Type { Body } (func literal) OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y) OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc) OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) OMAPLIT // Type{List} (composite literal, Type is map) OSTRUCTLIT // Type{List} (composite literal, Type is struct) OARRAYLIT // Type{List} (composite literal, Type is array or slice) OPTRLIT // &Left (left is composite literal) OCONV // Type(Left) (type conversion) OCONVIFACE // Type(Left) (type conversion, to interface) OCONVNOP // Type(Left) (type conversion, no effect) OCOPY // copy(Left, Right) ODCL // var Left (declares Left of type Left.Type) // Used during parsing but don't last. ODCLFUNC // func f() or func (r) f() ODCLFIELD // struct field, interface field, or func/method argument/return value. ODCLCONST // const pi = 3.14 ODCLTYPE // type Int int ODELETE // delete(Left, Right) ODOT // Left.Sym (Left is of struct type) ODOTPTR // Left.Sym (Left is of pointer to struct type) ODOTMETH // Left.Sym (Left is non-interface, Right is method name) ODOTINTER // Left.Sym (Left is interface, Right is method name) OXDOT // Left.Sym (before rewrite to one of the preceding) ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved) ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE) OEQ // Left == Right ONE // Left != Right OLT // Left < Right OLE // Left <= Right OGE // Left >= Right OGT // Left > Right OIND // *Left OINDEX // Left[Right] (index of array or slice) OINDEXMAP // Left[Right] (index of map) OKEY // Left:Right (key:value in struct/array/map literal, or slice index pair) OPARAM // variant of ONAME for on-stack copy of a parameter or return value that escapes. OLEN // len(Left) OMAKE // make(List) (before type checking converts to one of the following) OMAKECHAN // make(Type, Left) (type is chan) OMAKEMAP // make(Type, Left) (type is map) OMAKESLICE // make(Type, Left, Right) (type is slice) OMUL // Left * Right ODIV // Left / Right OMOD // Left % Right OLSH // Left << Right ORSH // Left >> Right OAND // Left & Right OANDNOT // Left &^ Right ONEW // new(Left) ONOT // !Left OCOM // ^Left OPLUS // +Left OMINUS // -Left OOROR // Left || Right OPANIC // panic(Left) OPRINT // print(List) OPRINTN // println(List) OPAREN // (Left) OSEND // Left <- Right OSLICE // Left[Right.Left : Right.Right] (Left is untypechecked or slice; Right.Op==OKEY) OSLICEARR // Left[Right.Left : Right.Right] (Left is array) OSLICESTR // Left[Right.Left : Right.Right] (Left is string) OSLICE3 // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is untypedchecked or slice; R.Op and R.R.Op==OKEY) OSLICE3ARR // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is array; R.Op and R.R.Op==OKEY) ORECOVER // recover() ORECV // <-Left ORUNESTR // Type(Left) (Type is string, Left is rune) OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) OIOTA // iota OREAL // real(Left) OIMAG // imag(Left) OCOMPLEX // complex(Left, Right) // statements OBLOCK // { List } (block of code) OBREAK // break OCASE // case List: Nbody (select case after processing; List==nil means default) OXCASE // case List: Nbody (select case before processing; List==nil means default) OCONTINUE // continue ODEFER // defer Left (Left must be call) OEMPTY // no-op (empty statement) OFALL // fallthrough (after processing) OXFALL // fallthrough (before processing) OFOR // for Ninit; Left; Right { Nbody } OGOTO // goto Left OIF // if Ninit; Left { Nbody } else { Rlist } OLABEL // Left: OPROC // go Left (Left must be call) ORANGE // for List = range Right { Nbody } ORETURN // return List OSELECT // select { List } (List is list of OXCASE or OCASE) OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) OTYPESW // List = Left.(type) (appears as .Left of OSWITCH) // types OTCHAN // chan int OTMAP // map[string]int OTSTRUCT // struct{} OTINTER // interface{} OTFUNC // func() OTARRAY // []int, [8]int, [N]int or [...]int // misc ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. ODDDARG // func f(args ...int), introduced by escape analysis. OINLCALL // intermediary representation of an inlined call. OEFACE // itable and data words of an empty-interface value. OITAB // itable word of an interface value. OSPTR // base pointer of a slice or string. OCLOSUREVAR // variable reference at beginning of closure function OCFUNC // reference to c function pointer (not go func value) OCHECKNIL // emit code to ensure pointer/interface not nil OVARKILL // variable is dead OVARLIVE // variable is alive // thearch-specific registers OREGISTER // a register, such as AX. OINDREG // offset plus indirect of a register, such as 8(SP). // arch-specific opcodes OCMP // compare: ACMP. ODEC // decrement: ADEC. OINC // increment: AINC. OEXTEND // extend: ACWD/ACDQ/ACQO. OHMUL // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both). OLROT // left rotate: AROL. ORROTC // right rotate-carry: ARCR. ORETJMP // return to other function OPS // compare parity set (for x86 NaN check) OPC // compare parity clear (for x86 NaN check) OSQRT // sqrt(float64), on systems that have hw support OGETG // runtime.getg() (read g pointer) OEND ) // Nodes is a pointer to a slice of *Node. // For fields that are not used in most nodes, this is used instead of // a slice to save space. type Nodes struct{ slice *[]*Node } // Slice returns the entries in Nodes as a slice. // Changes to the slice entries (as in s[i] = n) will be reflected in // the Nodes. func (n Nodes) Slice() []*Node { if n.slice == nil { return nil } return *n.slice } // Len returns the number of entries in Nodes. func (n Nodes) Len() int { if n.slice == nil { return 0 } return len(*n.slice) } // Index returns the i'th element of Nodes. // It panics if n does not have at least i+1 elements. func (n Nodes) Index(i int) *Node { return (*n.slice)[i] } // First returns the first element of Nodes (same as n.Index(0)). // It panics if n has no elements. func (n Nodes) First() *Node { return (*n.slice)[0] } // Second returns the second element of Nodes (same as n.Index(1)). // It panics if n has fewer than two elements. func (n Nodes) Second() *Node { return (*n.slice)[1] } // Set sets n to a slice. // This takes ownership of the slice. func (n *Nodes) Set(s []*Node) { if len(s) == 0 { n.slice = nil } else { // Copy s and take address of t rather than s to avoid // allocation in the case where len(s) == 0 (which is // over 3x more common, dynamically, for make.bash). t := s n.slice = &t } } // Set1 sets n to a slice containing a single node. func (n *Nodes) Set1(node *Node) { n.slice = &[]*Node{node} } // MoveNodes sets n to the contents of n2, then clears n2. func (n *Nodes) MoveNodes(n2 *Nodes) { n.slice = n2.slice n2.slice = nil } // SetIndex sets the i'th element of Nodes to node. // It panics if n does not have at least i+1 elements. func (n Nodes) SetIndex(i int, node *Node) { (*n.slice)[i] = node } // Addr returns the address of the i'th element of Nodes. // It panics if n does not have at least i+1 elements. func (n Nodes) Addr(i int) **Node { return &(*n.slice)[i] } // Append appends entries to Nodes. // If a slice is passed in, this will take ownership of it. func (n *Nodes) Append(a ...*Node) { if n.slice == nil { if len(a) > 0 { n.slice = &a } } else { *n.slice = append(*n.slice, a...) } } // AppendNodes appends the contents of *n2 to n, then clears n2. func (n *Nodes) AppendNodes(n2 *Nodes) { switch { case n2.slice == nil: case n.slice == nil: n.slice = n2.slice default: *n.slice = append(*n.slice, *n2.slice...) } n2.slice = nil }