// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Annotate Ref in Prog with C types by parsing gcc debug output. // Conversion of debug output to Go types. package main import ( "bytes" "debug/dwarf" "debug/elf" "debug/macho" "debug/pe" "encoding/binary" "errors" "flag" "fmt" "go/ast" "go/parser" "go/token" "os" "strconv" "strings" "unicode" "unicode/utf8" ) var debugDefine = flag.Bool("debug-define", false, "print relevant #defines") var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations") var nameToC = map[string]string{ "schar": "signed char", "uchar": "unsigned char", "ushort": "unsigned short", "uint": "unsigned int", "ulong": "unsigned long", "longlong": "long long", "ulonglong": "unsigned long long", "complexfloat": "float complex", "complexdouble": "double complex", } // cname returns the C name to use for C.s. // The expansions are listed in nameToC and also // struct_foo becomes "struct foo", and similarly for // union and enum. func cname(s string) string { if t, ok := nameToC[s]; ok { return t } if strings.HasPrefix(s, "struct_") { return "struct " + s[len("struct_"):] } if strings.HasPrefix(s, "union_") { return "union " + s[len("union_"):] } if strings.HasPrefix(s, "enum_") { return "enum " + s[len("enum_"):] } if strings.HasPrefix(s, "sizeof_") { return "sizeof(" + cname(s[len("sizeof_"):]) + ")" } return s } // ParseFlags extracts #cgo CFLAGS and LDFLAGS options from the file // preamble. Multiple occurrences are concatenated with a separating space, // even across files. func (p *Package) ParseFlags(f *File, srcfile string) { linesIn := strings.Split(f.Preamble, "\n") linesOut := make([]string, 0, len(linesIn)) NextLine: for _, line := range linesIn { l := strings.TrimSpace(line) if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(rune(l[4])) { linesOut = append(linesOut, line) continue } l = strings.TrimSpace(l[4:]) fields := strings.SplitN(l, ":", 2) if len(fields) != 2 { fatalf("%s: bad #cgo line: %s", srcfile, line) } var k string kf := strings.Fields(fields[0]) switch len(kf) { case 1: k = kf[0] case 2: k = kf[1] switch kf[0] { case goos: case goarch: case goos + "/" + goarch: default: continue NextLine } default: fatalf("%s: bad #cgo option: %s", srcfile, fields[0]) } args, err := splitQuoted(fields[1]) if err != nil { fatalf("%s: bad #cgo option %s: %s", srcfile, k, err) } for _, arg := range args { if !safeName(arg) { fatalf("%s: #cgo option %s is unsafe: %s", srcfile, k, arg) } } switch k { case "CFLAGS", "LDFLAGS": p.addToFlag(k, args) case "pkg-config": cflags, ldflags, err := pkgConfig(args) if err != nil { fatalf("%s: bad #cgo option %s: %s", srcfile, k, err) } p.addToFlag("CFLAGS", cflags) p.addToFlag("LDFLAGS", ldflags) default: fatalf("%s: unsupported #cgo option %s", srcfile, k) } } f.Preamble = strings.Join(linesOut, "\n") } // addToFlag appends args to flag. All flags are later written out onto the // _cgo_flags file for the build system to use. func (p *Package) addToFlag(flag string, args []string) { if oldv, ok := p.CgoFlags[flag]; ok { p.CgoFlags[flag] = oldv + " " + strings.Join(args, " ") } else { p.CgoFlags[flag] = strings.Join(args, " ") } if flag == "CFLAGS" { // We'll also need these when preprocessing for dwarf information. p.GccOptions = append(p.GccOptions, args...) } } // pkgConfig runs pkg-config and extracts --libs and --cflags information // for packages. func pkgConfig(packages []string) (cflags, ldflags []string, err error) { for _, name := range packages { if len(name) == 0 || name[0] == '-' { return nil, nil, errors.New(fmt.Sprintf("invalid name: %q", name)) } } args := append([]string{"pkg-config", "--cflags"}, packages...) stdout, stderr, ok := run(nil, args) if !ok { os.Stderr.Write(stderr) return nil, nil, errors.New("pkg-config failed") } cflags, err = splitQuoted(string(stdout)) if err != nil { return } args = append([]string{"pkg-config", "--libs"}, packages...) stdout, stderr, ok = run(nil, args) if !ok { os.Stderr.Write(stderr) return nil, nil, errors.New("pkg-config failed") } ldflags, err = splitQuoted(string(stdout)) return } // splitQuoted splits the string s around each instance of one or more consecutive // white space characters while taking into account quotes and escaping, and // returns an array of substrings of s or an empty list if s contains only white space. // Single quotes and double quotes are recognized to prevent splitting within the // quoted region, and are removed from the resulting substrings. If a quote in s // isn't closed err will be set and r will have the unclosed argument as the // last element. The backslash is used for escaping. // // For example, the following string: // // `a b:"c d" 'e''f' "g\""` // // Would be parsed as: // // []string{"a", "b:c d", "ef", `g"`} // func splitQuoted(s string) (r []string, err error) { var args []string arg := make([]rune, len(s)) escaped := false quoted := false quote := rune(0) i := 0 for _, r := range s { switch { case escaped: escaped = false case r == '\\': escaped = true continue case quote != 0: if r == quote { quote = 0 continue } case r == '"' || r == '\'': quoted = true quote = r continue case unicode.IsSpace(r): if quoted || i > 0 { quoted = false args = append(args, string(arg[:i])) i = 0 } continue } arg[i] = r i++ } if quoted || i > 0 { args = append(args, string(arg[:i])) } if quote != 0 { err = errors.New("unclosed quote") } else if escaped { err = errors.New("unfinished escaping") } return args, err } var safeBytes = []byte(`+-.,/0123456789:=ABCDEFGHIJKLMNOPQRSTUVWXYZ\_abcdefghijklmnopqrstuvwxyz`) func safeName(s string) bool { if s == "" { return false } for i := 0; i < len(s); i++ { if c := s[i]; c < 0x80 && bytes.IndexByte(safeBytes, c) < 0 { return false } } return true } // Translate rewrites f.AST, the original Go input, to remove // references to the imported package C, replacing them with // references to the equivalent Go types, functions, and variables. func (p *Package) Translate(f *File) { for _, cref := range f.Ref { // Convert C.ulong to C.unsigned long, etc. cref.Name.C = cname(cref.Name.Go) } p.loadDefines(f) needType := p.guessKinds(f) if len(needType) > 0 { p.loadDWARF(f, needType) } p.rewriteRef(f) } // loadDefines coerces gcc into spitting out the #defines in use // in the file f and saves relevant renamings in f.Name[name].Define. func (p *Package) loadDefines(f *File) { var b bytes.Buffer b.WriteString(builtinProlog) b.WriteString(f.Preamble) stdout := p.gccDefines(b.Bytes()) for _, line := range strings.Split(stdout, "\n") { if len(line) < 9 || line[0:7] != "#define" { continue } line = strings.TrimSpace(line[8:]) var key, val string spaceIndex := strings.Index(line, " ") tabIndex := strings.Index(line, "\t") if spaceIndex == -1 && tabIndex == -1 { continue } else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) { key = line[0:spaceIndex] val = strings.TrimSpace(line[spaceIndex:]) } else { key = line[0:tabIndex] val = strings.TrimSpace(line[tabIndex:]) } if n := f.Name[key]; n != nil { if *debugDefine { fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val) } n.Define = val } } } // guessKinds tricks gcc into revealing the kind of each // name xxx for the references C.xxx in the Go input. // The kind is either a constant, type, or variable. func (p *Package) guessKinds(f *File) []*Name { // Coerce gcc into telling us whether each name is // a type, a value, or undeclared. We compile a function // containing the line: // name; // If name is a type, gcc will print: // cgo-test:2: warning: useless type name in empty declaration // If name is a value, gcc will print // cgo-test:2: warning: statement with no effect // If name is undeclared, gcc will print // cgo-test:2: error: 'name' undeclared (first use in this function) // A line number directive causes the line number to // correspond to the index in the names array. // // The line also has an enum declaration: // name; enum { _cgo_enum_1 = name }; // If name is not a constant, gcc will print: // cgo-test:4: error: enumerator value for '_cgo_enum_4' is not an integer constant // we assume lines without that error are constants. // Make list of names that need sniffing, type lookup. toSniff := make([]*Name, 0, len(f.Name)) needType := make([]*Name, 0, len(f.Name)) for _, n := range f.Name { // If we've already found this name as a #define // and we can translate it as a constant value, do so. if n.Define != "" { ok := false if _, err := strconv.Atoi(n.Define); err == nil { ok = true } else if n.Define[0] == '"' || n.Define[0] == '\'' { _, err := parser.ParseExpr(fset, "", n.Define) if err == nil { ok = true } } if ok { n.Kind = "const" // Turn decimal into hex, just for consistency // with enum-derived constants. Otherwise // in the cgo -godefs output half the constants // are in hex and half are in whatever the #define used. i, err := strconv.Btoi64(n.Define, 0) if err == nil { n.Const = fmt.Sprintf("%#x", i) } else { n.Const = n.Define } continue } if isName(n.Define) { n.C = n.Define } } // If this is a struct, union, or enum type name, // record the kind but also that we need type information. if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") { n.Kind = "type" i := len(needType) needType = needType[0 : i+1] needType[i] = n continue } i := len(toSniff) toSniff = toSniff[0 : i+1] toSniff[i] = n } if len(toSniff) == 0 { return needType } var b bytes.Buffer b.WriteString(builtinProlog) b.WriteString(f.Preamble) b.WriteString("void __cgo__f__(void) {\n") b.WriteString("#line 0 \"cgo-test\"\n") for i, n := range toSniff { fmt.Fprintf(&b, "%s; enum { _cgo_enum_%d = %s }; /* cgo-test:%d */\n", n.C, i, n.C, i) } b.WriteString("}\n") stderr := p.gccErrors(b.Bytes()) if stderr == "" { fatalf("gcc produced no output\non input:\n%s", b.Bytes()) } names := make([]*Name, len(toSniff)) copy(names, toSniff) isConst := make([]bool, len(toSniff)) for i := range isConst { isConst[i] = true // until proven otherwise } for _, line := range strings.Split(stderr, "\n") { if len(line) < 9 || line[0:9] != "cgo-test:" { // the user will see any compiler errors when the code is compiled later. continue } line = line[9:] colon := strings.Index(line, ":") if colon < 0 { continue } i, err := strconv.Atoi(line[0:colon]) if err != nil { continue } what := "" switch { default: continue case strings.Contains(line, ": useless type name in empty declaration"): what = "type" isConst[i] = false case strings.Contains(line, ": statement with no effect"): what = "not-type" // const or func or var case strings.Contains(line, "undeclared"): error_(token.NoPos, "%s", strings.TrimSpace(line[colon+1:])) case strings.Contains(line, "is not an integer constant"): isConst[i] = false continue } n := toSniff[i] if n == nil { continue } toSniff[i] = nil n.Kind = what j := len(needType) needType = needType[0 : j+1] needType[j] = n } for i, b := range isConst { if b { names[i].Kind = "const" } } for _, n := range toSniff { if n == nil { continue } if n.Kind != "" { continue } error_(token.NoPos, "could not determine kind of name for C.%s", n.Go) } if nerrors > 0 { fatalf("unresolved names") } return needType } // loadDWARF parses the DWARF debug information generated // by gcc to learn the details of the constants, variables, and types // being referred to as C.xxx. func (p *Package) loadDWARF(f *File, names []*Name) { // Extract the types from the DWARF section of an object // from a well-formed C program. Gcc only generates DWARF info // for symbols in the object file, so it is not enough to print the // preamble and hope the symbols we care about will be there. // Instead, emit // typeof(names[i]) *__cgo__i; // for each entry in names and then dereference the type we // learn for __cgo__i. var b bytes.Buffer b.WriteString(builtinProlog) b.WriteString(f.Preamble) for i, n := range names { fmt.Fprintf(&b, "typeof(%s) *__cgo__%d;\n", n.C, i) if n.Kind == "const" { fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C) } } // Apple's LLVM-based gcc does not include the enumeration // names and values in its DWARF debug output. In case we're // using such a gcc, create a data block initialized with the values. // We can read them out of the object file. fmt.Fprintf(&b, "long long __cgodebug_data[] = {\n") for _, n := range names { if n.Kind == "const" { fmt.Fprintf(&b, "\t%s,\n", n.C) } else { fmt.Fprintf(&b, "\t0,\n") } } fmt.Fprintf(&b, "\t0\n") fmt.Fprintf(&b, "};\n") d, bo, debugData := p.gccDebug(b.Bytes()) enumVal := make([]int64, len(debugData)/8) for i := range enumVal { enumVal[i] = int64(bo.Uint64(debugData[i*8:])) } // Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i. types := make([]dwarf.Type, len(names)) enums := make([]dwarf.Offset, len(names)) nameToIndex := make(map[*Name]int) for i, n := range names { nameToIndex[n] = i } r := d.Reader() for { e, err := r.Next() if err != nil { fatalf("reading DWARF entry: %s", err) } if e == nil { break } switch e.Tag { case dwarf.TagEnumerationType: offset := e.Offset for { e, err := r.Next() if err != nil { fatalf("reading DWARF entry: %s", err) } if e.Tag == 0 { break } if e.Tag == dwarf.TagEnumerator { entryName := e.Val(dwarf.AttrName).(string) if strings.HasPrefix(entryName, "__cgo_enum__") { n, _ := strconv.Atoi(entryName[len("__cgo_enum__"):]) if 0 <= n && n < len(names) { enums[n] = offset } } } } case dwarf.TagVariable: name, _ := e.Val(dwarf.AttrName).(string) typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset) if name == "" || typOff == 0 { fatalf("malformed DWARF TagVariable entry") } if !strings.HasPrefix(name, "__cgo__") { break } typ, err := d.Type(typOff) if err != nil { fatalf("loading DWARF type: %s", err) } t, ok := typ.(*dwarf.PtrType) if !ok || t == nil { fatalf("internal error: %s has non-pointer type", name) } i, err := strconv.Atoi(name[7:]) if err != nil { fatalf("malformed __cgo__ name: %s", name) } if enums[i] != 0 { t, err := d.Type(enums[i]) if err != nil { fatalf("loading DWARF type: %s", err) } types[i] = t } else { types[i] = t.Type } } if e.Tag != dwarf.TagCompileUnit { r.SkipChildren() } } // Record types and typedef information. var conv typeConv conv.Init(p.PtrSize) for i, n := range names { if types[i] == nil { continue } f, fok := types[i].(*dwarf.FuncType) if n.Kind != "type" && fok { n.Kind = "func" n.FuncType = conv.FuncType(f) } else { n.Type = conv.Type(types[i]) if enums[i] != 0 && n.Type.EnumValues != nil { k := fmt.Sprintf("__cgo_enum__%d", i) n.Kind = "const" n.Const = fmt.Sprintf("%#x", n.Type.EnumValues[k]) // Remove injected enum to ensure the value will deep-compare // equally in future loads of the same constant. delete(n.Type.EnumValues, k) } else if n.Kind == "const" && i < len(enumVal) { n.Const = fmt.Sprintf("%#x", enumVal[i]) } } } } // rewriteRef rewrites all the C.xxx references in f.AST to refer to the // Go equivalents, now that we have figured out the meaning of all // the xxx. In *godefs or *cdefs mode, rewriteRef replaces the names // with full definitions instead of mangled names. func (p *Package) rewriteRef(f *File) { // Assign mangled names. for _, n := range f.Name { if n.Kind == "not-type" { n.Kind = "var" } if n.Mangle == "" { n.Mangle = "_C" + n.Kind + "_" + n.Go } } // Now that we have all the name types filled in, // scan through the Refs to identify the ones that // are trying to do a ,err call. Also check that // functions are only used in calls. for _, r := range f.Ref { if r.Name.Kind == "const" && r.Name.Const == "" { error_(r.Pos(), "unable to find value of constant C.%s", r.Name.Go) } var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default switch r.Context { case "call", "call2": if r.Name.Kind != "func" { if r.Name.Kind == "type" { r.Context = "type" expr = r.Name.Type.Go break } error_(r.Pos(), "call of non-function C.%s", r.Name.Go) break } if r.Context == "call2" { if r.Name.FuncType.Result == nil { error_(r.Pos(), "assignment count mismatch: 2 = 0") } // Invent new Name for the two-result function. n := f.Name["2"+r.Name.Go] if n == nil { n = new(Name) *n = *r.Name n.AddError = true n.Mangle = "_C2func_" + n.Go f.Name["2"+r.Name.Go] = n } expr = ast.NewIdent(n.Mangle) r.Name = n break } case "expr": if r.Name.Kind == "func" { error_(r.Pos(), "must call C.%s", r.Name.Go) } if r.Name.Kind == "type" { // Okay - might be new(T) expr = r.Name.Type.Go } if r.Name.Kind == "var" { expr = &ast.StarExpr{X: expr} } case "type": if r.Name.Kind != "type" { error_(r.Pos(), "expression C.%s used as type", r.Name.Go) } else if r.Name.Type == nil { // Use of C.enum_x, C.struct_x or C.union_x without C definition. // GCC won't raise an error when using pointers to such unknown types. error_(r.Pos(), "type C.%s: undefined C type '%s'", r.Name.Go, r.Name.C) } else { expr = r.Name.Type.Go } default: if r.Name.Kind == "func" { error_(r.Pos(), "must call C.%s", r.Name.Go) } } if *godefs || *cdefs { // Substitute definition for mangled type name. if id, ok := expr.(*ast.Ident); ok { if t := typedef[id.Name]; t != nil { expr = t } if id.Name == r.Name.Mangle && r.Name.Const != "" { expr = ast.NewIdent(r.Name.Const) } } } *r.Expr = expr } } // gccName returns the name of the compiler to run. Use $GCC if set in // the environment, otherwise just "gcc". func (p *Package) gccName() (ret string) { if ret = os.Getenv("GCC"); ret == "" { ret = "gcc" } return } // gccMachine returns the gcc -m flag to use, either "-m32" or "-m64". func (p *Package) gccMachine() []string { switch goarch { case "amd64": return []string{"-m64"} case "386": return []string{"-m32"} } return nil } var gccTmp = objDir + "_cgo_.o" // gccCmd returns the gcc command line to use for compiling // the input. func (p *Package) gccCmd() []string { c := []string{ p.gccName(), "-Wall", // many warnings "-Werror", // warnings are errors "-o" + gccTmp, // write object to tmp "-gdwarf-2", // generate DWARF v2 debugging symbols "-fno-eliminate-unused-debug-types", // gets rid of e.g. untyped enum otherwise "-c", // do not link "-xc", // input language is C } c = append(c, p.GccOptions...) c = append(c, p.gccMachine()...) c = append(c, "-") //read input from standard input return c } // gccDebug runs gcc -gdwarf-2 over the C program stdin and // returns the corresponding DWARF data and, if present, debug data block. func (p *Package) gccDebug(stdin []byte) (*dwarf.Data, binary.ByteOrder, []byte) { runGcc(stdin, p.gccCmd()) if f, err := macho.Open(gccTmp); err == nil { d, err := f.DWARF() if err != nil { fatalf("cannot load DWARF output from %s: %v", gccTmp, err) } var data []byte if f.Symtab != nil { for i := range f.Symtab.Syms { s := &f.Symtab.Syms[i] // Mach-O still uses a leading _ to denote non-assembly symbols. if s.Name == "_"+"__cgodebug_data" { // Found it. Now find data section. if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) { sect := f.Sections[i] if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size { if sdat, err := sect.Data(); err == nil { data = sdat[s.Value-sect.Addr:] } } } } } } return d, f.ByteOrder, data } // Can skip debug data block in ELF and PE for now. // The DWARF information is complete. if f, err := elf.Open(gccTmp); err == nil { d, err := f.DWARF() if err != nil { fatalf("cannot load DWARF output from %s: %v", gccTmp, err) } return d, f.ByteOrder, nil } if f, err := pe.Open(gccTmp); err == nil { d, err := f.DWARF() if err != nil { fatalf("cannot load DWARF output from %s: %v", gccTmp, err) } return d, binary.LittleEndian, nil } fatalf("cannot parse gcc output %s as ELF, Mach-O, PE object", gccTmp) panic("not reached") } // gccDefines runs gcc -E -dM -xc - over the C program stdin // and returns the corresponding standard output, which is the // #defines that gcc encountered while processing the input // and its included files. func (p *Package) gccDefines(stdin []byte) string { base := []string{p.gccName(), "-E", "-dM", "-xc"} base = append(base, p.gccMachine()...) stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-")) return stdout } // gccErrors runs gcc over the C program stdin and returns // the errors that gcc prints. That is, this function expects // gcc to fail. func (p *Package) gccErrors(stdin []byte) string { // TODO(rsc): require failure args := p.gccCmd() if *debugGcc { fmt.Fprintf(os.Stderr, "$ %s < 0 { // Cannot represent bit-sized elements in Go. t.Go = c.Opaque(t.Size) break } gt := &ast.ArrayType{ Len: c.intExpr(dt.Count), } t.Go = gt // publish before recursive call sub := c.Type(dt.Type) t.Align = sub.Align gt.Elt = sub.Go t.C.Set("typeof(%s[%d])", sub.C, dt.Count) case *dwarf.BoolType: t.Go = c.bool t.Align = c.ptrSize case *dwarf.CharType: if t.Size != 1 { fatalf("unexpected: %d-byte char type - %s", t.Size, dtype) } t.Go = c.int8 t.Align = 1 case *dwarf.EnumType: if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } t.C.Set("enum " + dt.EnumName) signed := 0 t.EnumValues = make(map[string]int64) for _, ev := range dt.Val { t.EnumValues[ev.Name] = ev.Val if ev.Val < 0 { signed = signedDelta } } switch t.Size + int64(signed) { default: fatalf("unexpected: %d-byte enum type - %s", t.Size, dtype) case 1: t.Go = c.uint8 case 2: t.Go = c.uint16 case 4: t.Go = c.uint32 case 8: t.Go = c.uint64 case 1 + signedDelta: t.Go = c.int8 case 2 + signedDelta: t.Go = c.int16 case 4 + signedDelta: t.Go = c.int32 case 8 + signedDelta: t.Go = c.int64 } case *dwarf.FloatType: switch t.Size { default: fatalf("unexpected: %d-byte float type - %s", t.Size, dtype) case 4: t.Go = c.float32 case 8: t.Go = c.float64 } if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.ComplexType: switch t.Size { default: fatalf("unexpected: %d-byte complex type - %s", t.Size, dtype) case 8: t.Go = c.complex64 case 16: t.Go = c.complex128 } if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.FuncType: // No attempt at translation: would enable calls // directly between worlds, but we need to moderate those. t.Go = c.uintptr t.Align = c.ptrSize case *dwarf.IntType: if dt.BitSize > 0 { fatalf("unexpected: %d-bit int type - %s", dt.BitSize, dtype) } switch t.Size { default: fatalf("unexpected: %d-byte int type - %s", t.Size, dtype) case 1: t.Go = c.int8 case 2: t.Go = c.int16 case 4: t.Go = c.int32 case 8: t.Go = c.int64 } if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.PtrType: t.Align = c.ptrSize // Translate void* as unsafe.Pointer if _, ok := base(dt.Type).(*dwarf.VoidType); ok { t.Go = c.unsafePointer t.C.Set("void*") break } gt := &ast.StarExpr{} t.Go = gt // publish before recursive call sub := c.Type(dt.Type) gt.X = sub.Go t.C.Set("%s*", sub.C) case *dwarf.QualType: // Ignore qualifier. t = c.Type(dt.Type) c.m[dtype] = t return t case *dwarf.StructType: // Convert to Go struct, being careful about alignment. // Have to give it a name to simulate C "struct foo" references. tag := dt.StructName if tag == "" { tag = "__" + strconv.Itoa(tagGen) tagGen++ } else if t.C.Empty() { t.C.Set(dt.Kind + " " + tag) } name := c.Ident("_Ctype_" + dt.Kind + "_" + tag) t.Go = name // publish before recursive calls goIdent[name.Name] = name switch dt.Kind { case "union", "class": typedef[name.Name] = c.Opaque(t.Size) if t.C.Empty() { t.C.Set("typeof(unsigned char[%d])", t.Size) } case "struct": g, csyntax, align := c.Struct(dt) if t.C.Empty() { t.C.Set(csyntax) } t.Align = align typedef[name.Name] = g } case *dwarf.TypedefType: // Record typedef for printing. if dt.Name == "_GoString_" { // Special C name for Go string type. // Knows string layout used by compilers: pointer plus length, // which rounds up to 2 pointers after alignment. t.Go = c.string t.Size = c.ptrSize * 2 t.Align = c.ptrSize break } if dt.Name == "_GoBytes_" { // Special C name for Go []byte type. // Knows slice layout used by compilers: pointer, length, cap. t.Go = c.Ident("[]byte") t.Size = c.ptrSize + 4 + 4 t.Align = c.ptrSize break } name := c.Ident("_Ctype_" + dt.Name) goIdent[name.Name] = name t.Go = name // publish before recursive call sub := c.Type(dt.Type) t.Size = sub.Size t.Align = sub.Align if _, ok := typedef[name.Name]; !ok { typedef[name.Name] = sub.Go } if *godefs || *cdefs { t.Go = sub.Go } case *dwarf.UcharType: if t.Size != 1 { fatalf("unexpected: %d-byte uchar type - %s", t.Size, dtype) } t.Go = c.uint8 t.Align = 1 case *dwarf.UintType: if dt.BitSize > 0 { fatalf("unexpected: %d-bit uint type - %s", dt.BitSize, dtype) } switch t.Size { default: fatalf("unexpected: %d-byte uint type - %s", t.Size, dtype) case 1: t.Go = c.uint8 case 2: t.Go = c.uint16 case 4: t.Go = c.uint32 case 8: t.Go = c.uint64 } if t.Align = t.Size; t.Align >= c.ptrSize { t.Align = c.ptrSize } case *dwarf.VoidType: t.Go = c.void t.C.Set("void") } switch dtype.(type) { case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType: s := dtype.Common().Name if s != "" { if ss, ok := dwarfToName[s]; ok { s = ss } s = strings.Join(strings.Split(s, " "), "") // strip spaces name := c.Ident("_Ctype_" + s) typedef[name.Name] = t.Go if !*godefs && !*cdefs { t.Go = name } } } if t.C.Empty() { fatalf("internal error: did not create C name for %s", dtype) } return t } // FuncArg returns a Go type with the same memory layout as // dtype when used as the type of a C function argument. func (c *typeConv) FuncArg(dtype dwarf.Type) *Type { t := c.Type(dtype) switch dt := dtype.(type) { case *dwarf.ArrayType: // Arrays are passed implicitly as pointers in C. // In Go, we must be explicit. tr := &TypeRepr{} tr.Set("%s*", t.C) return &Type{ Size: c.ptrSize, Align: c.ptrSize, Go: &ast.StarExpr{X: t.Go}, C: tr, } case *dwarf.TypedefType: // C has much more relaxed rules than Go for // implicit type conversions. When the parameter // is type T defined as *X, simulate a little of the // laxness of C by making the argument *X instead of T. if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok { // Unless the typedef happens to point to void* since // Go has special rules around using unsafe.Pointer. if _, void := base(ptr.Type).(*dwarf.VoidType); !void { return c.Type(ptr) } } } return t } // FuncType returns the Go type analogous to dtype. // There is no guarantee about matching memory layout. func (c *typeConv) FuncType(dtype *dwarf.FuncType) *FuncType { p := make([]*Type, len(dtype.ParamType)) gp := make([]*ast.Field, len(dtype.ParamType)) for i, f := range dtype.ParamType { // gcc's DWARF generator outputs a single DotDotDotType parameter for // function pointers that specify no parameters (e.g. void // (*__cgo_0)()). Treat this special case as void. This case is // invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not // legal). if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 { p, gp = nil, nil break } p[i] = c.FuncArg(f) gp[i] = &ast.Field{Type: p[i].Go} } var r *Type var gr []*ast.Field if _, ok := dtype.ReturnType.(*dwarf.VoidType); !ok && dtype.ReturnType != nil { r = c.Type(dtype.ReturnType) gr = []*ast.Field{&ast.Field{Type: r.Go}} } return &FuncType{ Params: p, Result: r, Go: &ast.FuncType{ Params: &ast.FieldList{List: gp}, Results: &ast.FieldList{List: gr}, }, } } // Identifier func (c *typeConv) Ident(s string) *ast.Ident { return ast.NewIdent(s) } // Opaque type of n bytes. func (c *typeConv) Opaque(n int64) ast.Expr { return &ast.ArrayType{ Len: c.intExpr(n), Elt: c.byte, } } // Expr for integer n. func (c *typeConv) intExpr(n int64) ast.Expr { return &ast.BasicLit{ Kind: token.INT, Value: strconv.Itoa64(n), } } // Add padding of given size to fld. func (c *typeConv) pad(fld []*ast.Field, size int64) []*ast.Field { n := len(fld) fld = fld[0 : n+1] fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)} return fld } // Struct conversion: return Go and (6g) C syntax for type. func (c *typeConv) Struct(dt *dwarf.StructType) (expr *ast.StructType, csyntax string, align int64) { var buf bytes.Buffer buf.WriteString("struct {") fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field off := int64(0) // Rename struct fields that happen to be named Go keywords into // _{keyword}. Create a map from C ident -> Go ident. The Go ident will // be mangled. Any existing identifier that already has the same name on // the C-side will cause the Go-mangled version to be prefixed with _. // (e.g. in a struct with fields '_type' and 'type', the latter would be // rendered as '__type' in Go). ident := make(map[string]string) used := make(map[string]bool) for _, f := range dt.Field { ident[f.Name] = f.Name used[f.Name] = true } if !*godefs && !*cdefs { for cid, goid := range ident { if token.Lookup([]byte(goid)).IsKeyword() { // Avoid keyword goid = "_" + goid // Also avoid existing fields for _, exist := used[goid]; exist; _, exist = used[goid] { goid = "_" + goid } used[goid] = true ident[cid] = goid } } } anon := 0 for _, f := range dt.Field { if f.ByteOffset > off { fld = c.pad(fld, f.ByteOffset-off) off = f.ByteOffset } t := c.Type(f.Type) tgo := t.Go size := t.Size if f.BitSize > 0 { if f.BitSize%8 != 0 { continue } size = f.BitSize / 8 name := tgo.(*ast.Ident).String() if strings.HasPrefix(name, "int") { name = "int" } else { name = "uint" } tgo = ast.NewIdent(name + fmt.Sprint(f.BitSize)) } n := len(fld) fld = fld[0 : n+1] name := f.Name if name == "" { name = fmt.Sprintf("anon%d", anon) anon++ ident[name] = name } fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[name])}, Type: tgo} off += size buf.WriteString(t.C.String()) buf.WriteString(" ") buf.WriteString(name) buf.WriteString("; ") if t.Align > align { align = t.Align } } if off < dt.ByteSize { fld = c.pad(fld, dt.ByteSize-off) off = dt.ByteSize } if off != dt.ByteSize { fatalf("struct size calculation error") } buf.WriteString("}") csyntax = buf.String() if *godefs || *cdefs { godefsFields(fld) } expr = &ast.StructType{Fields: &ast.FieldList{List: fld}} return } func upper(s string) string { if s == "" { return "" } r, size := utf8.DecodeRuneInString(s) if r == '_' { return "X" + s } return string(unicode.ToUpper(r)) + s[size:] } // godefsFields rewrites field names for use in Go or C definitions. // It strips leading common prefixes (like tv_ in tv_sec, tv_usec) // converts names to upper case, and rewrites _ into Pad_godefs_n, // so that all fields are exported. func godefsFields(fld []*ast.Field) { prefix := fieldPrefix(fld) npad := 0 for _, f := range fld { for _, n := range f.Names { if strings.HasPrefix(n.Name, prefix) && n.Name != prefix { n.Name = n.Name[len(prefix):] } if n.Name == "_" { // Use exported name instead. n.Name = "Pad_cgo_" + strconv.Itoa(npad) npad++ } if !*cdefs { n.Name = upper(n.Name) } } p := &f.Type t := *p if star, ok := t.(*ast.StarExpr); ok { star = &ast.StarExpr{X: star.X} *p = star p = &star.X t = *p } if id, ok := t.(*ast.Ident); ok { if id.Name == "unsafe.Pointer" { *p = ast.NewIdent("*byte") } } } } // fieldPrefix returns the prefix that should be removed from all the // field names when generating the C or Go code. For generated // C, we leave the names as is (tv_sec, tv_usec), since that's what // people are used to seeing in C. For generated Go code, such as // package syscall's data structures, we drop a common prefix // (so sec, usec, which will get turned into Sec, Usec for exporting). func fieldPrefix(fld []*ast.Field) string { if *cdefs { return "" } prefix := "" for _, f := range fld { for _, n := range f.Names { // Ignore field names that don't have the prefix we're // looking for. It is common in C headers to have fields // named, say, _pad in an otherwise prefixed header. // If the struct has 3 fields tv_sec, tv_usec, _pad1, then we // still want to remove the tv_ prefix. // The check for "orig_" here handles orig_eax in the // x86 ptrace register sets, which otherwise have all fields // with reg_ prefixes. if strings.HasPrefix(n.Name, "orig_") || strings.HasPrefix(n.Name, "_") { continue } i := strings.Index(n.Name, "_") if i < 0 { continue } if prefix == "" { prefix = n.Name[:i+1] } else if prefix != n.Name[:i+1] { return "" } } } return prefix }