// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package fmt import ( "strconv" "unicode/utf8" ) const ( // %b of an int64, plus a sign. // Hex can add 0x and we handle it specially. nByte = 65 ldigits = "0123456789abcdefx" udigits = "0123456789ABCDEFX" ) const ( signed = true unsigned = false ) // flags placed in a separate struct for easy clearing. type fmtFlags struct { widPresent bool precPresent bool minus bool plus bool sharp bool space bool zero bool // For the formats %+v %#v, we set the plusV/sharpV flags // and clear the plus/sharp flags since %+v and %#v are in effect // different, flagless formats set at the top level. plusV bool sharpV bool } // A fmt is the raw formatter used by Printf etc. // It prints into a buffer that must be set up separately. type fmt struct { intbuf [nByte]byte buf *buffer // width, precision wid int prec int fmtFlags } func (f *fmt) clearflags() { f.fmtFlags = fmtFlags{} } func (f *fmt) init(buf *buffer) { f.buf = buf f.clearflags() } // writePadding generates n bytes of padding. func (f *fmt) writePadding(n int) { if n <= 0 { // No padding bytes needed. return } buf := *f.buf oldLen := len(buf) newLen := oldLen + n // Make enough room for padding. if newLen > cap(buf) { buf = make(buffer, cap(buf)*2+n) copy(buf, *f.buf) } // Decide which byte the padding should be filled with. padByte := byte(' ') if f.zero { padByte = byte('0') } // Fill padding with padByte. padding := buf[oldLen:newLen] for i := range padding { padding[i] = padByte } *f.buf = buf[:newLen] } // pad appends b to f.buf, padded on left (!f.minus) or right (f.minus). func (f *fmt) pad(b []byte) { if !f.widPresent || f.wid == 0 { f.buf.Write(b) return } width := f.wid - utf8.RuneCount(b) if !f.minus { // left padding f.writePadding(width) f.buf.Write(b) } else { // right padding f.buf.Write(b) f.writePadding(width) } } // padString appends s to f.buf, padded on left (!f.minus) or right (f.minus). func (f *fmt) padString(s string) { if !f.widPresent || f.wid == 0 { f.buf.WriteString(s) return } width := f.wid - utf8.RuneCountInString(s) if !f.minus { // left padding f.writePadding(width) f.buf.WriteString(s) } else { // right padding f.buf.WriteString(s) f.writePadding(width) } } // fmt_boolean formats a boolean. func (f *fmt) fmt_boolean(v bool) { if v { f.padString("true") } else { f.padString("false") } } // fmt_unicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'". func (f *fmt) fmt_unicode(u uint64) { buf := f.intbuf[0:] // With default precision set the maximum needed buf length is 18 // for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") // which fits into the already allocated intbuf with a capacity of 65 bytes. prec := 4 if f.precPresent && f.prec > 4 { prec = f.prec // Compute space needed for "U+" , number, " '", character, "'". width := 2 + prec + 2 + utf8.UTFMax + 1 if width > cap(buf) { buf = make([]byte, width) } } // Format into buf, ending at buf[i]. Formatting numbers is easier right-to-left. i := len(buf) // For %#U we want to add a space and a quoted character at the end of the buffer. if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) { i-- buf[i] = '\'' i -= utf8.RuneLen(rune(u)) utf8.EncodeRune(buf[i:], rune(u)) i-- buf[i] = '\'' i-- buf[i] = ' ' } // Format the Unicode code point u as a hexadecimal number. for u >= 16 { i-- buf[i] = udigits[u&0xF] prec-- u >>= 4 } i-- buf[i] = udigits[u] prec-- // Add zeros in front of the number until requested precision is reached. for prec > 0 { i-- buf[i] = '0' prec-- } // Add a leading "U+". i-- buf[i] = '+' i-- buf[i] = 'U' oldZero := f.zero f.zero = false f.pad(buf[i:]) f.zero = oldZero } // fmt_integer formats signed and unsigned integers. func (f *fmt) fmt_integer(u uint64, base int, isSigned bool, digits string) { // precision of 0 and value of 0 means "print nothing" if f.precPresent && f.prec == 0 && u == 0 { return } negative := isSigned && int64(u) < 0 if negative { u = -u } var buf []byte = f.intbuf[0:] if f.widPresent || f.precPresent || f.plus || f.space { width := f.wid + f.prec // Only one will be set, both are positive; this provides the maximum. if base == 16 && f.sharp { // Also adds "0x". width += 2 } if negative || f.plus || f.space { width++ } if width > nByte { // We're going to need a bigger boat. buf = make([]byte, width) } } // two ways to ask for extra leading zero digits: %.3d or %03d. // apparently the first cancels the second. oldZero := f.zero // f.zero is used in f.pad but modified below; restored at end of function. prec := 0 if f.precPresent { prec = f.prec f.zero = false } else if f.zero && f.widPresent && !f.minus && f.wid > 0 { prec = f.wid if negative || f.plus || f.space { prec-- // leave room for sign } } // Because printing is easier right-to-left: format u into buf, ending at buf[i]. // We could make things marginally faster by splitting the 32-bit case out // into a separate block but it's not worth the duplication, so u has 64 bits. i := len(buf) // Use constants for the division and modulo for more efficient code. // Switch cases ordered by popularity. switch base { case 10: for u >= 10 { i-- next := u / 10 buf[i] = byte('0' + u - next*10) u = next } case 16: for u >= 16 { i-- buf[i] = digits[u&0xF] u >>= 4 } case 8: for u >= 8 { i-- buf[i] = byte('0' + u&7) u >>= 3 } case 2: for u >= 2 { i-- buf[i] = byte('0' + u&1) u >>= 1 } default: panic("fmt: unknown base; can't happen") } i-- buf[i] = digits[u] for i > 0 && prec > len(buf)-i { i-- buf[i] = '0' } // Various prefixes: 0x, -, etc. if f.sharp { switch base { case 8: if buf[i] != '0' { i-- buf[i] = '0' } case 16: // Add a leading 0x or 0X. i-- buf[i] = digits[16] i-- buf[i] = '0' } } if negative { i-- buf[i] = '-' } else if f.plus { i-- buf[i] = '+' } else if f.space { i-- buf[i] = ' ' } f.pad(buf[i:]) f.zero = oldZero } // truncate truncates the string to the specified precision, if present. func (f *fmt) truncate(s string) string { if f.precPresent { n := f.prec for i := range s { n-- if n < 0 { return s[:i] } } } return s } // fmt_s formats a string. func (f *fmt) fmt_s(s string) { s = f.truncate(s) f.padString(s) } // fmt_sbx formats a string or byte slice as a hexadecimal encoding of its bytes. func (f *fmt) fmt_sbx(s string, b []byte, digits string) { length := len(b) if b == nil { // No byte slice present. Assume string s should be encoded. length = len(s) } // Set length to not process more bytes than the precision demands. if f.precPresent && f.prec < length { length = f.prec } // Compute width of the encoding taking into account the f.sharp and f.space flag. width := 2 * length if width > 0 { if f.space { // Each element encoded by two hexadecimals will get a leading 0x or 0X. if f.sharp { width *= 2 } // Elements will be separated by a space. width += length - 1 } else if f.sharp { // Only a leading 0x or 0X will be added for the whole string. width += 2 } } else { // The byte slice or string that should be encoded is empty. if f.widPresent { f.writePadding(f.wid) } return } // Handle padding to the left. if f.widPresent && f.wid > width && !f.minus { f.writePadding(f.wid - width) } // Write the encoding directly into the output buffer. buf := *f.buf if f.sharp { // Add leading 0x or 0X. buf = append(buf, '0', digits[16]) } var c byte for i := 0; i < length; i++ { if f.space && i > 0 { // Separate elements with a space. buf = append(buf, ' ') if f.sharp { // Add leading 0x or 0X for each element. buf = append(buf, '0', digits[16]) } } if b != nil { c = b[i] // Take a byte from the input byte slice. } else { c = s[i] // Take a byte from the input string. } // Encode each byte as two hexadecimal digits. buf = append(buf, digits[c>>4], digits[c&0xF]) } *f.buf = buf // Handle padding to the right. if f.widPresent && f.wid > width && f.minus { f.writePadding(f.wid - width) } } // fmt_sx formats a string as a hexadecimal encoding of its bytes. func (f *fmt) fmt_sx(s, digits string) { f.fmt_sbx(s, nil, digits) } // fmt_bx formats a byte slice as a hexadecimal encoding of its bytes. func (f *fmt) fmt_bx(b []byte, digits string) { f.fmt_sbx("", b, digits) } // fmt_q formats a string as a double-quoted, escaped Go string constant. // If f.sharp is set a raw (backquoted) string may be returned instead // if the string does not contain any control characters other than tab. func (f *fmt) fmt_q(s string) { s = f.truncate(s) if f.sharp && strconv.CanBackquote(s) { f.padString("`" + s + "`") return } buf := f.intbuf[:0] if f.plus { f.pad(strconv.AppendQuoteToASCII(buf, s)) } else { f.pad(strconv.AppendQuote(buf, s)) } } // fmt_c formats an integer as a Unicode character. // If the character is not valid Unicode, it will print '\ufffd'. func (f *fmt) fmt_c(c uint64) { r := rune(c) if c > utf8.MaxRune { r = utf8.RuneError } buf := f.intbuf[:0] w := utf8.EncodeRune(buf[:utf8.UTFMax], r) f.pad(buf[:w]) } // fmt_qc formats an integer as a single-quoted, escaped Go character constant. // If the character is not valid Unicode, it will print '\ufffd'. func (f *fmt) fmt_qc(c uint64) { r := rune(c) if c > utf8.MaxRune { r = utf8.RuneError } buf := f.intbuf[:0] if f.plus { f.pad(strconv.AppendQuoteRuneToASCII(buf, r)) } else { f.pad(strconv.AppendQuoteRune(buf, r)) } } // fmt_float formats a float64. It assumes that verb is a valid format specifier // for strconv.AppendFloat and therefore fits into a byte. func (f *fmt) fmt_float(v float64, size int, verb rune, prec int) { // Explicit precision in format specifier overrules default precision. if f.precPresent { prec = f.prec } // Format number, reserving space for leading + sign if needed. num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size) if num[1] == '-' || num[1] == '+' { num = num[1:] } else { num[0] = '+' } // f.space means to add a leading space instead of a "+" sign unless // the sign is explicitly asked for by f.plus. if f.space && num[0] == '+' && !f.plus { num[0] = ' ' } // Special handling for infinities and NaN, // which don't look like a number so shouldn't be padded with zeros. if num[1] == 'I' || num[1] == 'N' { oldZero := f.zero f.zero = false // Remove sign before NaN if not asked for. if num[1] == 'N' && !f.space && !f.plus { num = num[1:] } f.pad(num) f.zero = oldZero return } // We want a sign if asked for and if the sign is not positive. if f.plus || num[0] != '+' { // If we're zero padding we want the sign before the leading zeros. // Achieve this by writing the sign out and then padding the unsigned number. if f.zero && f.widPresent && f.wid > len(num) { f.buf.WriteByte(num[0]) f.wid-- f.pad(num[1:]) f.wid++ return } f.pad(num) return } // No sign to show and the number is positive; just print the unsigned number. f.pad(num[1:]) }