Commit 03e296f6 authored by Brian Norris's avatar Brian Norris

mtd: m25p80: use the SPI nor framework

Use the new SPI nor framework, and rewrite the m25p80:
 (0) remove all the NOR comands.
 (1) change the m25p->command to an array.
 (2) implement the necessary hooks, such as m25p80_read/m25p80_write.

Tested with the m25p32.
Signed-off-by: default avatarHuang Shijie <b32955@freescale.com>
Acked-by: default avatarMarek Vasut <marex@denx.de>
[Brian: rebased]
Signed-off-by: default avatarBrian Norris <computersforpeace@gmail.com>
parent 1ef39108
...@@ -80,7 +80,7 @@ config MTD_DATAFLASH_OTP ...@@ -80,7 +80,7 @@ config MTD_DATAFLASH_OTP
config MTD_M25P80 config MTD_M25P80
tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)" tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)"
depends on SPI_MASTER depends on SPI_MASTER && MTD_SPI_NOR_BASE
help help
This enables access to most modern SPI flash chips, used for This enables access to most modern SPI flash chips, used for
program and data storage. Series supported include Atmel AT26DF, program and data storage. Series supported include Atmel AT26DF,
......
...@@ -19,485 +19,98 @@ ...@@ -19,485 +19,98 @@
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/device.h> #include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/math64.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mod_devicetable.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/mtd.h> #include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h> #include <linux/mtd/partitions.h>
#include <linux/of_platform.h>
#include <linux/spi/spi.h> #include <linux/spi/spi.h>
#include <linux/spi/flash.h> #include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>
/* Flash opcodes. */
#define OPCODE_WREN 0x06 /* Write enable */
#define OPCODE_RDSR 0x05 /* Read status register */
#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define OPCODE_DUAL_READ 0x3b /* Read data bytes (Dual SPI) */
#define OPCODE_QUAD_READ 0x6b /* Read data bytes (Quad SPI) */
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
#define OPCODE_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
#define OPCODE_RDCR 0x35 /* Read configuration register */
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define OPCODE_NORM_READ_4B 0x13 /* Read data bytes (low frequency) */
#define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
#define OPCODE_DUAL_READ_4B 0x3c /* Read data bytes (Dual SPI) */
#define OPCODE_QUAD_READ_4B 0x6c /* Read data bytes (Quad SPI) */
#define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */
#define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */
/* Used for SST flashes only. */
#define OPCODE_BP 0x02 /* Byte program */
#define OPCODE_WRDI 0x04 /* Write disable */
#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
/* Used for Macronix and Winbond flashes. */
#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
/* Used for Spansion flashes only. */
#define OPCODE_BRWR 0x17 /* Bank register write */
/* Status Register bits. */
#define SR_WIP 1 /* Write in progress */
#define SR_WEL 2 /* Write enable latch */
/* meaning of other SR_* bits may differ between vendors */
#define SR_BP0 4 /* Block protect 0 */
#define SR_BP1 8 /* Block protect 1 */
#define SR_BP2 0x10 /* Block protect 2 */
#define SR_SRWD 0x80 /* SR write protect */
#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */
/* Configuration Register bits. */
#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */
/* Define max times to check status register before we give up. */
#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
#define MAX_CMD_SIZE 6 #define MAX_CMD_SIZE 6
#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
/****************************************************************************/
enum read_type {
M25P80_NORMAL = 0,
M25P80_FAST,
M25P80_DUAL,
M25P80_QUAD,
};
struct m25p { struct m25p {
struct spi_device *spi; struct spi_device *spi;
struct mutex lock; struct spi_nor spi_nor;
struct mtd_info mtd; struct mtd_info mtd;
u16 page_size; u8 command[MAX_CMD_SIZE];
u16 addr_width;
u8 erase_opcode;
u8 read_opcode;
u8 program_opcode;
u8 *command;
enum read_type flash_read;
}; };
static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
{
return container_of(mtd, struct m25p, mtd);
}
/****************************************************************************/
/*
* Internal helper functions
*/
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct m25p *flash)
{
ssize_t retval;
u8 code = OPCODE_RDSR;
u8 val;
retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
if (retval < 0) {
dev_err(&flash->spi->dev, "error %d reading SR\n",
(int) retval);
return retval;
}
return val;
}
/*
* Read configuration register, returning its value in the
* location. Return the configuration register value.
* Returns negative if error occured.
*/
static int read_cr(struct m25p *flash)
{
u8 code = OPCODE_RDCR;
int ret;
u8 val;
ret = spi_write_then_read(flash->spi, &code, 1, &val, 1);
if (ret < 0) {
dev_err(&flash->spi->dev, "error %d reading CR\n", ret);
return ret;
}
return val;
}
/*
* Write status register 1 byte
* Returns negative if error occurred.
*/
static int write_sr(struct m25p *flash, u8 val)
{
flash->command[0] = OPCODE_WRSR;
flash->command[1] = val;
return spi_write(flash->spi, flash->command, 2);
}
/*
* Set write enable latch with Write Enable command.
* Returns negative if error occurred.
*/
static inline int write_enable(struct m25p *flash)
{
u8 code = OPCODE_WREN;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Send write disble instruction to the chip.
*/
static inline int write_disable(struct m25p *flash)
{
u8 code = OPCODE_WRDI;
return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
}
/*
* Enable/disable 4-byte addressing mode.
*/
static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
{
int status;
bool need_wren = false;
switch (JEDEC_MFR(jedec_id)) {
case CFI_MFR_ST: /* Micron, actually */
/* Some Micron need WREN command; all will accept it */
need_wren = true;
case CFI_MFR_MACRONIX:
case 0xEF /* winbond */:
if (need_wren)
write_enable(flash);
flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
status = spi_write(flash->spi, flash->command, 1);
if (need_wren)
write_disable(flash);
return status;
default:
/* Spansion style */
flash->command[0] = OPCODE_BRWR;
flash->command[1] = enable << 7;
return spi_write(flash->spi, flash->command, 2);
}
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int wait_till_ready(struct m25p *flash)
{
unsigned long deadline;
int sr;
deadline = jiffies + MAX_READY_WAIT_JIFFIES;
do {
if ((sr = read_sr(flash)) < 0)
break;
else if (!(sr & SR_WIP))
return 0;
cond_resched();
} while (!time_after_eq(jiffies, deadline));
return 1;
}
/*
* Write status Register and configuration register with 2 bytes
* The first byte will be written to the status register, while the
* second byte will be written to the configuration register.
* Return negative if error occured.
*/
static int write_sr_cr(struct m25p *flash, u16 val)
{
flash->command[0] = OPCODE_WRSR;
flash->command[1] = val & 0xff;
flash->command[2] = (val >> 8);
return spi_write(flash->spi, flash->command, 3);
}
static int macronix_quad_enable(struct m25p *flash)
{
int ret, val;
u8 cmd[2];
cmd[0] = OPCODE_WRSR;
val = read_sr(flash);
cmd[1] = val | SR_QUAD_EN_MX;
write_enable(flash);
spi_write(flash->spi, &cmd, 2);
if (wait_till_ready(flash))
return 1;
ret = read_sr(flash);
if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
dev_err(&flash->spi->dev, "Macronix Quad bit not set\n");
return -EINVAL;
}
return 0;
}
static int spansion_quad_enable(struct m25p *flash)
{ {
struct m25p *flash = nor->priv;
struct spi_device *spi = flash->spi;
int ret; int ret;
int quad_en = CR_QUAD_EN_SPAN << 8;
write_enable(flash); ret = spi_write_then_read(spi, &code, 1, val, len);
if (ret < 0)
dev_err(&spi->dev, "error %d reading %x\n", ret, code);
ret = write_sr_cr(flash, quad_en); return ret;
if (ret < 0) {
dev_err(&flash->spi->dev,
"error while writing configuration register\n");
return -EINVAL;
}
/* read back and check it */
ret = read_cr(flash);
if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
dev_err(&flash->spi->dev, "Spansion Quad bit not set\n");
return -EINVAL;
}
return 0;
}
static int set_quad_mode(struct m25p *flash, u32 jedec_id)
{
int status;
switch (JEDEC_MFR(jedec_id)) {
case CFI_MFR_MACRONIX:
status = macronix_quad_enable(flash);
if (status) {
dev_err(&flash->spi->dev,
"Macronix quad-read not enabled\n");
return -EINVAL;
}
return status;
default:
status = spansion_quad_enable(flash);
if (status) {
dev_err(&flash->spi->dev,
"Spansion quad-read not enabled\n");
return -EINVAL;
}
return status;
}
}
/*
* Erase the whole flash memory
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_chip(struct m25p *flash)
{
pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
(long long)(flash->mtd.size >> 10));
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return 1;
/* Send write enable, then erase commands. */
write_enable(flash);
/* Set up command buffer. */
flash->command[0] = OPCODE_CHIP_ERASE;
spi_write(flash->spi, flash->command, 1);
return 0;
} }
static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd) static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd)
{ {
/* opcode is in cmd[0] */ /* opcode is in cmd[0] */
cmd[1] = addr >> (flash->addr_width * 8 - 8); cmd[1] = addr >> (nor->addr_width * 8 - 8);
cmd[2] = addr >> (flash->addr_width * 8 - 16); cmd[2] = addr >> (nor->addr_width * 8 - 16);
cmd[3] = addr >> (flash->addr_width * 8 - 24); cmd[3] = addr >> (nor->addr_width * 8 - 24);
cmd[4] = addr >> (flash->addr_width * 8 - 32); cmd[4] = addr >> (nor->addr_width * 8 - 32);
} }
static int m25p_cmdsz(struct m25p *flash) static int m25p_cmdsz(struct spi_nor *nor)
{ {
return 1 + flash->addr_width; return 1 + nor->addr_width;
} }
/* static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
* Erase one sector of flash memory at offset ``offset'' which is any int wr_en)
* address within the sector which should be erased.
*
* Returns 0 if successful, non-zero otherwise.
*/
static int erase_sector(struct m25p *flash, u32 offset)
{ {
pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev), struct m25p *flash = nor->priv;
__func__, flash->mtd.erasesize / 1024, offset); struct spi_device *spi = flash->spi;
/* Wait until finished previous write command. */
if (wait_till_ready(flash))
return 1;
/* Send write enable, then erase commands. */
write_enable(flash);
/* Set up command buffer. */ flash->command[0] = opcode;
flash->command[0] = flash->erase_opcode; if (buf)
m25p_addr2cmd(flash, offset, flash->command); memcpy(&flash->command[1], buf, len);
spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
return 0; return spi_write(spi, flash->command, len + 1);
} }
/****************************************************************************/ static void m25p80_write(struct spi_nor *nor, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
/*
* MTD implementation
*/
/*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
{ {
struct m25p *flash = mtd_to_m25p(mtd); struct m25p *flash = nor->priv;
u32 addr,len; struct spi_device *spi = flash->spi;
uint32_t rem; struct spi_transfer t[2] = {};
struct spi_message m;
pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev), int cmd_sz = m25p_cmdsz(nor);
__func__, (long long)instr->addr,
(long long)instr->len);
div_u64_rem(instr->len, mtd->erasesize, &rem);
if (rem)
return -EINVAL;
addr = instr->addr;
len = instr->len;
mutex_lock(&flash->lock);
/* whole-chip erase? */
if (len == flash->mtd.size) {
if (erase_chip(flash)) {
instr->state = MTD_ERASE_FAILED;
mutex_unlock(&flash->lock);
return -EIO;
}
/* REVISIT in some cases we could speed up erasing large regions spi_message_init(&m);
* by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
* to use "small sector erase", but that's not always optimal.
*/
/* "sector"-at-a-time erase */ if (nor->program_opcode == OPCODE_AAI_WP && nor->sst_write_second)
} else { cmd_sz = 1;
while (len) {
if (erase_sector(flash, addr)) {
instr->state = MTD_ERASE_FAILED;
mutex_unlock(&flash->lock);
return -EIO;
}
addr += mtd->erasesize; flash->command[0] = nor->program_opcode;
len -= mtd->erasesize; m25p_addr2cmd(nor, to, flash->command);
}
}
mutex_unlock(&flash->lock); t[0].tx_buf = flash->command;
t[0].len = cmd_sz;
spi_message_add_tail(&t[0], &m);
instr->state = MTD_ERASE_DONE; t[1].tx_buf = buf;
mtd_erase_callback(instr); t[1].len = len;
spi_message_add_tail(&t[1], &m);
return 0; spi_sync(spi, &m);
}
/* *retlen += m.actual_length - cmd_sz;
* Dummy Cycle calculation for different type of read.
* It can be used to support more commands with
* different dummy cycle requirements.
*/
static inline int m25p80_dummy_cycles_read(struct m25p *flash)
{
switch (flash->flash_read) {
case M25P80_FAST:
case M25P80_DUAL:
case M25P80_QUAD:
return 1;
case M25P80_NORMAL:
return 0;
default:
dev_err(&flash->spi->dev, "No valid read type supported\n");
return -1;
}
} }
static inline unsigned int m25p80_rx_nbits(const struct m25p *flash) static inline unsigned int m25p80_rx_nbits(struct spi_nor *nor)
{ {
switch (flash->flash_read) { switch (nor->flash_read) {
case M25P80_DUAL: case SPI_NOR_DUAL:
return 2; return 2;
case M25P80_QUAD: case SPI_NOR_QUAD:
return 4; return 4;
default: default:
return 0; return 0;
...@@ -505,590 +118,72 @@ static inline unsigned int m25p80_rx_nbits(const struct m25p *flash) ...@@ -505,590 +118,72 @@ static inline unsigned int m25p80_rx_nbits(const struct m25p *flash)
} }
/* /*
* Read an address range from the flash chip. The address range * Read an address range from the nor chip. The address range
* may be any size provided it is within the physical boundaries. * may be any size provided it is within the physical boundaries.
*/ */
static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, static int m25p80_read(struct spi_nor *nor, loff_t from, size_t len,
size_t *retlen, u_char *buf) size_t *retlen, u_char *buf)
{ {
struct m25p *flash = mtd_to_m25p(mtd); struct m25p *flash = nor->priv;
struct spi_device *spi = flash->spi;
struct spi_transfer t[2]; struct spi_transfer t[2];
struct spi_message m; struct spi_message m;
uint8_t opcode; int dummy = nor->read_dummy;
int dummy; int ret;
pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev), /* Wait till previous write/erase is done. */
__func__, (u32)from, len); ret = nor->wait_till_ready(nor);
if (ret)
return ret;
spi_message_init(&m); spi_message_init(&m);
memset(t, 0, (sizeof t)); memset(t, 0, (sizeof t));
dummy = m25p80_dummy_cycles_read(flash); flash->command[0] = nor->read_opcode;
if (dummy < 0) { m25p_addr2cmd(nor, from, flash->command);
dev_err(&flash->spi->dev, "No valid read command supported\n");
return -EINVAL;
}
t[0].tx_buf = flash->command; t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash) + dummy; t[0].len = m25p_cmdsz(nor) + dummy;
spi_message_add_tail(&t[0], &m); spi_message_add_tail(&t[0], &m);
t[1].rx_buf = buf; t[1].rx_buf = buf;
t[1].rx_nbits = m25p80_rx_nbits(flash); t[1].rx_nbits = m25p80_rx_nbits(nor);
t[1].len = len; t[1].len = len;
spi_message_add_tail(&t[1], &m); spi_message_add_tail(&t[1], &m);
mutex_lock(&flash->lock); spi_sync(spi, &m);
/* Wait till previous write/erase is done. */
if (wait_till_ready(flash)) {
/* REVISIT status return?? */
mutex_unlock(&flash->lock);
return 1;
}
/* Set up the write data buffer. */
opcode = flash->read_opcode;
flash->command[0] = opcode;
m25p_addr2cmd(flash, from, flash->command);
spi_sync(flash->spi, &m);
*retlen = m.actual_length - m25p_cmdsz(flash) - dummy;
mutex_unlock(&flash->lock);
return 0;
}
/*
* Write an address range to the flash chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct m25p *flash = mtd_to_m25p(mtd);
u32 page_offset, page_size;
struct spi_transfer t[2];
struct spi_message m;
pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
__func__, (u32)to, len);
spi_message_init(&m);
memset(t, 0, (sizeof t));
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash);
spi_message_add_tail(&t[0], &m);
t[1].tx_buf = buf;
spi_message_add_tail(&t[1], &m);
mutex_lock(&flash->lock);
/* Wait until finished previous write command. */
if (wait_till_ready(flash)) {
mutex_unlock(&flash->lock);
return 1;
}
write_enable(flash);
/* Set up the opcode in the write buffer. */
flash->command[0] = flash->program_opcode;
m25p_addr2cmd(flash, to, flash->command);
page_offset = to & (flash->page_size - 1);
/* do all the bytes fit onto one page? */
if (page_offset + len <= flash->page_size) {
t[1].len = len;
spi_sync(flash->spi, &m);
*retlen = m.actual_length - m25p_cmdsz(flash);
} else {
u32 i;
/* the size of data remaining on the first page */
page_size = flash->page_size - page_offset;
t[1].len = page_size;
spi_sync(flash->spi, &m);
*retlen = m.actual_length - m25p_cmdsz(flash);
/* write everything in flash->page_size chunks */
for (i = page_size; i < len; i += page_size) {
page_size = len - i;
if (page_size > flash->page_size)
page_size = flash->page_size;
/* write the next page to flash */
m25p_addr2cmd(flash, to + i, flash->command);
t[1].tx_buf = buf + i;
t[1].len = page_size;
wait_till_ready(flash);
write_enable(flash);
spi_sync(flash->spi, &m);
*retlen += m.actual_length - m25p_cmdsz(flash);
}
}
mutex_unlock(&flash->lock);
*retlen = m.actual_length - m25p_cmdsz(nor) - dummy;
return 0; return 0;
} }
static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, static int m25p80_erase(struct spi_nor *nor, loff_t offset)
size_t *retlen, const u_char *buf)
{ {
struct m25p *flash = mtd_to_m25p(mtd); struct m25p *flash = nor->priv;
struct spi_transfer t[2]; int ret;
struct spi_message m;
size_t actual;
int cmd_sz, ret;
pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
__func__, (u32)to, len);
spi_message_init(&m);
memset(t, 0, (sizeof t));
t[0].tx_buf = flash->command;
t[0].len = m25p_cmdsz(flash);
spi_message_add_tail(&t[0], &m);
t[1].tx_buf = buf;
spi_message_add_tail(&t[1], &m);
mutex_lock(&flash->lock); dev_dbg(nor->dev, "%dKiB at 0x%08x\n",
flash->mtd.erasesize / 1024, (u32)offset);
/* Wait until finished previous write command. */ /* Wait until finished previous write command. */
ret = wait_till_ready(flash); ret = nor->wait_till_ready(nor);
if (ret)
goto time_out;
write_enable(flash);
actual = to % 2;
/* Start write from odd address. */
if (actual) {
flash->command[0] = OPCODE_BP;
m25p_addr2cmd(flash, to, flash->command);
/* write one byte. */
t[1].len = 1;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
*retlen += m.actual_length - m25p_cmdsz(flash);
}
to += actual;
flash->command[0] = OPCODE_AAI_WP;
m25p_addr2cmd(flash, to, flash->command);
/* Write out most of the data here. */
cmd_sz = m25p_cmdsz(flash);
for (; actual < len - 1; actual += 2) {
t[0].len = cmd_sz;
/* write two bytes. */
t[1].len = 2;
t[1].tx_buf = buf + actual;
spi_sync(flash->spi, &m);
ret = wait_till_ready(flash);
if (ret)
goto time_out;
*retlen += m.actual_length - cmd_sz;
cmd_sz = 1;
to += 2;
}
write_disable(flash);
ret = wait_till_ready(flash);
if (ret) if (ret)
goto time_out; return ret;
/* Write out trailing byte if it exists. */
if (actual != len) {
write_enable(flash);
flash->command[0] = OPCODE_BP;
m25p_addr2cmd(flash, to, flash->command);
t[0].len = m25p_cmdsz(flash);
t[1].len = 1;
t[1].tx_buf = buf + actual;
spi_sync(flash->spi, &m); /* Send write enable, then erase commands. */
ret = wait_till_ready(flash); ret = nor->write_reg(nor, OPCODE_WREN, NULL, 0, 0);
if (ret) if (ret)
goto time_out;
*retlen += m.actual_length - m25p_cmdsz(flash);
write_disable(flash);
}
time_out:
mutex_unlock(&flash->lock);
return ret; return ret;
}
static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct m25p *flash = mtd_to_m25p(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int res = 0;
mutex_lock(&flash->lock);
/* Wait until finished previous command */
if (wait_till_ready(flash)) {
res = 1;
goto err;
}
status_old = read_sr(flash);
if (offset < flash->mtd.size-(flash->mtd.size/2))
status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/4))
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
else if (offset < flash->mtd.size-(flash->mtd.size/8))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/16))
status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
else if (offset < flash->mtd.size-(flash->mtd.size/32))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset < flash->mtd.size-(flash->mtd.size/64))
status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
else
status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
/* Only modify protection if it will not unlock other areas */
if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
write_enable(flash);
if (write_sr(flash, status_new) < 0) {
res = 1;
goto err;
}
}
err: mutex_unlock(&flash->lock);
return res;
}
static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct m25p *flash = mtd_to_m25p(mtd);
uint32_t offset = ofs;
uint8_t status_old, status_new;
int res = 0;
mutex_lock(&flash->lock);
/* Wait until finished previous command */
if (wait_till_ready(flash)) {
res = 1;
goto err;
}
status_old = read_sr(flash);
if (offset+len > flash->mtd.size-(flash->mtd.size/64))
status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
else
status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
/* Only modify protection if it will not lock other areas */
if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
write_enable(flash);
if (write_sr(flash, status_new) < 0) {
res = 1;
goto err;
}
}
err: mutex_unlock(&flash->lock);
return res;
}
/****************************************************************************/
/*
* SPI device driver setup and teardown
*/
struct flash_info {
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
* a high byte of zero plus three data bytes: the manufacturer id,
* then a two byte device id.
*/
u32 jedec_id;
u16 ext_id;
/* The size listed here is what works with OPCODE_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u16 page_size;
u16 addr_width;
u16 flags;
#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
#define M25P_NO_ERASE 0x02 /* No erase command needed */
#define SST_WRITE 0x04 /* use SST byte programming */
#define M25P_NO_FR 0x08 /* Can't do fastread */
#define SECT_4K_PMC 0x10 /* OPCODE_BE_4K_PMC works uniformly */
#define M25P80_DUAL_READ 0x20 /* Flash supports Dual Read */
#define M25P80_QUAD_READ 0x40 /* Flash supports Quad Read */
};
#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
((kernel_ulong_t)&(struct flash_info) { \
.jedec_id = (_jedec_id), \
.ext_id = (_ext_id), \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = 256, \
.flags = (_flags), \
})
#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
((kernel_ulong_t)&(struct flash_info) { \
.sector_size = (_sector_size), \
.n_sectors = (_n_sectors), \
.page_size = (_page_size), \
.addr_width = (_addr_width), \
.flags = (_flags), \
})
/* NOTE: double check command sets and memory organization when you add
* more flash chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
*/
static const struct spi_device_id m25p_ids[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
{ "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
{ "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
{ "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
{ "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
/* EON -- en25xxx */
{ "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
{ "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
{ "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
/* ESMT */
{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
/* Everspin */
{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
{ "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
/* GigaDevice */
{ "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
/* Intel/Numonyx -- xxxs33b */
{ "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
{ "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
{ "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
/* Macronix */
{ "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
{ "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
{ "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
{ "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
{ "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
{ "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
{ "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ) },
{ "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, M25P80_QUAD_READ) },
/* Micron */
{ "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
{ "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
{ "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
/* PMC */
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
{ "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
{ "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
/* Spansion -- single (large) sector size only, at least /* Set up command buffer. */
* for the chips listed here (without boot sectors). flash->command[0] = nor->erase_opcode;
*/ m25p_addr2cmd(nor, offset, flash->command);
{ "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
{ "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, M25P80_DUAL_READ | M25P80_QUAD_READ) },
{ "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, M25P80_DUAL_READ | M25P80_QUAD_READ) },
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
{ "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
{ "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
{ "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
{ "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
{ "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
{ "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
{ "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
{ "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
{ "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
{ "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
{ "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
{ "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
/* ST Microelectronics -- newer production may have feature updates */
{ "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
{ "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
{ "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
{ "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
{ "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
{ "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
{ "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
{ "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
{ "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
{ "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
{ "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
{ "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
{ "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
{ "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
{ "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
{ "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
{ "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
{ "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
{ "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
{ "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
{ "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
{ "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
{ "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
{ "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
{ "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
{ "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
{ "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
/* Catalyst / On Semiconductor -- non-JEDEC */
{ "cat25c11", CAT25_INFO( 16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
{ "cat25c03", CAT25_INFO( 32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
{ },
};
MODULE_DEVICE_TABLE(spi, m25p_ids);
static const struct spi_device_id *jedec_probe(struct spi_device *spi)
{
int tmp;
u8 code = OPCODE_RDID;
u8 id[5];
u32 jedec;
u16 ext_jedec;
struct flash_info *info;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*/
tmp = spi_write_then_read(spi, &code, 1, id, 5);
if (tmp < 0) {
pr_debug("%s: error %d reading JEDEC ID\n",
dev_name(&spi->dev), tmp);
return ERR_PTR(tmp);
}
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
ext_jedec = id[3] << 8 | id[4]; spi_write(flash->spi, flash->command, m25p_cmdsz(nor));
for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) { return 0;
info = (void *)m25p_ids[tmp].driver_data;
if (info->jedec_id == jedec) {
if (info->ext_id == 0 || info->ext_id == ext_jedec)
return &m25p_ids[tmp];
}
}
dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
return ERR_PTR(-ENODEV);
} }
/* /*
* board specific setup should have ensured the SPI clock used here * board specific setup should have ensured the SPI clock used here
* matches what the READ command supports, at least until this driver * matches what the READ command supports, at least until this driver
...@@ -1096,231 +191,43 @@ static const struct spi_device_id *jedec_probe(struct spi_device *spi) ...@@ -1096,231 +191,43 @@ static const struct spi_device_id *jedec_probe(struct spi_device *spi)
*/ */
static int m25p_probe(struct spi_device *spi) static int m25p_probe(struct spi_device *spi)
{ {
const struct spi_device_id *id = spi_get_device_id(spi); struct mtd_part_parser_data ppdata;
struct flash_platform_data *data; struct flash_platform_data *data;
struct m25p *flash; struct m25p *flash;
struct flash_info *info; struct spi_nor *nor;
unsigned i; enum read_mode mode = SPI_NOR_NORMAL;
struct mtd_part_parser_data ppdata;
struct device_node *np = spi->dev.of_node;
int ret; int ret;
/* Platform data helps sort out which chip type we have, as
* well as how this board partitions it. If we don't have
* a chip ID, try the JEDEC id commands; they'll work for most
* newer chips, even if we don't recognize the particular chip.
*/
data = dev_get_platdata(&spi->dev);
if (data && data->type) {
const struct spi_device_id *plat_id;
for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
plat_id = &m25p_ids[i];
if (strcmp(data->type, plat_id->name))
continue;
break;
}
if (i < ARRAY_SIZE(m25p_ids) - 1)
id = plat_id;
else
dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
}
info = (void *)id->driver_data;
if (info->jedec_id) {
const struct spi_device_id *jid;
jid = jedec_probe(spi);
if (IS_ERR(jid)) {
return PTR_ERR(jid);
} else if (jid != id) {
/*
* JEDEC knows better, so overwrite platform ID. We
* can't trust partitions any longer, but we'll let
* mtd apply them anyway, since some partitions may be
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
dev_warn(&spi->dev, "found %s, expected %s\n",
jid->name, id->name);
id = jid;
info = (void *)jid->driver_data;
}
}
flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
if (!flash) if (!flash)
return -ENOMEM; return -ENOMEM;
flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL); nor = &flash->spi_nor;
if (!flash->command)
return -ENOMEM;
flash->spi = spi;
mutex_init(&flash->lock);
spi_set_drvdata(spi, flash);
/*
* Atmel, SST and Intel/Numonyx serial flash tend to power
* up with the software protection bits set
*/
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
write_enable(flash);
write_sr(flash, 0);
}
if (data && data->name)
flash->mtd.name = data->name;
else
flash->mtd.name = dev_name(&spi->dev);
flash->mtd.type = MTD_NORFLASH;
flash->mtd.writesize = 1;
flash->mtd.flags = MTD_CAP_NORFLASH;
flash->mtd.size = info->sector_size * info->n_sectors;
flash->mtd._erase = m25p80_erase;
flash->mtd._read = m25p80_read;
/* flash protection support for STmicro chips */ /* install the hooks */
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) { nor->read = m25p80_read;
flash->mtd._lock = m25p80_lock; nor->write = m25p80_write;
flash->mtd._unlock = m25p80_unlock; nor->erase = m25p80_erase;
} nor->write_reg = m25p80_write_reg;
nor->read_reg = m25p80_read_reg;
/* sst flash chips use AAI word program */
if (info->flags & SST_WRITE)
flash->mtd._write = sst_write;
else
flash->mtd._write = m25p80_write;
/* prefer "small sector" erase if possible */ nor->dev = &spi->dev;
if (info->flags & SECT_4K) { nor->mtd = &flash->mtd;
flash->erase_opcode = OPCODE_BE_4K; nor->priv = flash;
flash->mtd.erasesize = 4096;
} else if (info->flags & SECT_4K_PMC) {
flash->erase_opcode = OPCODE_BE_4K_PMC;
flash->mtd.erasesize = 4096;
} else {
flash->erase_opcode = OPCODE_SE;
flash->mtd.erasesize = info->sector_size;
}
if (info->flags & M25P_NO_ERASE) spi_set_drvdata(spi, flash);
flash->mtd.flags |= MTD_NO_ERASE; flash->mtd.priv = nor;
flash->spi = spi;
ppdata.of_node = spi->dev.of_node;
flash->mtd.dev.parent = &spi->dev;
flash->page_size = info->page_size;
flash->mtd.writebufsize = flash->page_size;
if (np) {
/* If we were instantiated by DT, use it */
if (of_property_read_bool(np, "m25p,fast-read"))
flash->flash_read = M25P80_FAST;
else
flash->flash_read = M25P80_NORMAL;
} else {
/* If we weren't instantiated by DT, default to fast-read */
flash->flash_read = M25P80_FAST;
}
/* Some devices cannot do fast-read, no matter what DT tells us */
if (info->flags & M25P_NO_FR)
flash->flash_read = M25P80_NORMAL;
/* Quad/Dual-read mode takes precedence over fast/normal */ if (spi->mode & SPI_RX_QUAD)
if (spi->mode & SPI_RX_QUAD && info->flags & M25P80_QUAD_READ) { mode = SPI_NOR_QUAD;
ret = set_quad_mode(flash, info->jedec_id); ret = spi_nor_scan(nor, spi_get_device_id(spi), mode);
if (ret) { if (ret)
dev_err(&flash->spi->dev, "quad mode not supported\n");
return ret; return ret;
}
flash->flash_read = M25P80_QUAD;
} else if (spi->mode & SPI_RX_DUAL && info->flags & M25P80_DUAL_READ) {
flash->flash_read = M25P80_DUAL;
}
/* Default commands */
switch (flash->flash_read) {
case M25P80_QUAD:
flash->read_opcode = OPCODE_QUAD_READ;
break;
case M25P80_DUAL:
flash->read_opcode = OPCODE_DUAL_READ;
break;
case M25P80_FAST:
flash->read_opcode = OPCODE_FAST_READ;
break;
case M25P80_NORMAL:
flash->read_opcode = OPCODE_NORM_READ;
break;
default:
dev_err(&flash->spi->dev, "No Read opcode defined\n");
return -EINVAL;
}
flash->program_opcode = OPCODE_PP;
if (info->addr_width)
flash->addr_width = info->addr_width;
else if (flash->mtd.size > 0x1000000) {
/* enable 4-byte addressing if the device exceeds 16MiB */
flash->addr_width = 4;
if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
/* Dedicated 4-byte command set */
switch (flash->flash_read) {
case M25P80_QUAD:
flash->read_opcode = OPCODE_QUAD_READ_4B;
break;
case M25P80_DUAL:
flash->read_opcode = OPCODE_DUAL_READ_4B;
break;
case M25P80_FAST:
flash->read_opcode = OPCODE_FAST_READ_4B;
break;
case M25P80_NORMAL:
flash->read_opcode = OPCODE_NORM_READ_4B;
break;
}
flash->program_opcode = OPCODE_PP_4B;
/* No small sector erase for 4-byte command set */
flash->erase_opcode = OPCODE_SE_4B;
flash->mtd.erasesize = info->sector_size;
} else
set_4byte(flash, info->jedec_id, 1);
} else {
flash->addr_width = 3;
}
dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
(long long)flash->mtd.size >> 10);
pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
flash->mtd.name,
(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
flash->mtd.erasesize, flash->mtd.erasesize / 1024,
flash->mtd.numeraseregions);
if (flash->mtd.numeraseregions)
for (i = 0; i < flash->mtd.numeraseregions; i++)
pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, (long long)flash->mtd.eraseregions[i].offset,
flash->mtd.eraseregions[i].erasesize,
flash->mtd.eraseregions[i].erasesize / 1024,
flash->mtd.eraseregions[i].numblocks);
data = dev_get_platdata(&spi->dev);
ppdata.of_node = spi->dev.of_node;
/* partitions should match sector boundaries; and it may be good to
* use readonly partitions for writeprotected sectors (BP2..BP0).
*/
return mtd_device_parse_register(&flash->mtd, NULL, &ppdata, return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
data ? data->parts : NULL, data ? data->parts : NULL,
data ? data->nr_parts : 0); data ? data->nr_parts : 0);
...@@ -1341,7 +248,7 @@ static struct spi_driver m25p80_driver = { ...@@ -1341,7 +248,7 @@ static struct spi_driver m25p80_driver = {
.name = "m25p80", .name = "m25p80",
.owner = THIS_MODULE, .owner = THIS_MODULE,
}, },
.id_table = m25p_ids, .id_table = spi_nor_ids,
.probe = m25p_probe, .probe = m25p_probe,
.remove = m25p_remove, .remove = m25p_remove,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment