Commit 0af8489b authored by Vlastimil Babka's avatar Vlastimil Babka

mm, slub: remove percpu slabs with CONFIG_SLUB_TINY

SLUB gets most of its scalability by percpu slabs. However for
CONFIG_SLUB_TINY the goal is minimal memory overhead, not scalability.
Thus, #ifdef out the whole kmem_cache_cpu percpu structure and
associated code. Additionally to the slab page savings, this reduces
percpu allocator usage, and code size.

This change builds on recent commit c7323a5a ("mm/slub: restrict
sysfs validation to debug caches and make it safe"), as caches with
enabled debugging also avoid percpu slabs and all allocations and
freeing ends up working with the partial list. With a bit more
refactoring by the preceding patches, use the same code paths with
CONFIG_SLUB_TINY.
Signed-off-by: default avatarVlastimil Babka <vbabka@suse.cz>
Acked-by: default avatarMike Rapoport <rppt@linux.ibm.com>
Reviewed-by: default avatarChristoph Lameter <cl@linux.com>
parent 56d5a2b9
...@@ -41,6 +41,7 @@ enum stat_item { ...@@ -41,6 +41,7 @@ enum stat_item {
CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
NR_SLUB_STAT_ITEMS }; NR_SLUB_STAT_ITEMS };
#ifndef CONFIG_SLUB_TINY
/* /*
* When changing the layout, make sure freelist and tid are still compatible * When changing the layout, make sure freelist and tid are still compatible
* with this_cpu_cmpxchg_double() alignment requirements. * with this_cpu_cmpxchg_double() alignment requirements.
...@@ -57,6 +58,7 @@ struct kmem_cache_cpu { ...@@ -57,6 +58,7 @@ struct kmem_cache_cpu {
unsigned stat[NR_SLUB_STAT_ITEMS]; unsigned stat[NR_SLUB_STAT_ITEMS];
#endif #endif
}; };
#endif /* CONFIG_SLUB_TINY */
#ifdef CONFIG_SLUB_CPU_PARTIAL #ifdef CONFIG_SLUB_CPU_PARTIAL
#define slub_percpu_partial(c) ((c)->partial) #define slub_percpu_partial(c) ((c)->partial)
...@@ -88,7 +90,9 @@ struct kmem_cache_order_objects { ...@@ -88,7 +90,9 @@ struct kmem_cache_order_objects {
* Slab cache management. * Slab cache management.
*/ */
struct kmem_cache { struct kmem_cache {
#ifndef CONFIG_SLUB_TINY
struct kmem_cache_cpu __percpu *cpu_slab; struct kmem_cache_cpu __percpu *cpu_slab;
#endif
/* Used for retrieving partial slabs, etc. */ /* Used for retrieving partial slabs, etc. */
slab_flags_t flags; slab_flags_t flags;
unsigned long min_partial; unsigned long min_partial;
......
...@@ -337,10 +337,12 @@ static inline void stat(const struct kmem_cache *s, enum stat_item si) ...@@ -337,10 +337,12 @@ static inline void stat(const struct kmem_cache *s, enum stat_item si)
*/ */
static nodemask_t slab_nodes; static nodemask_t slab_nodes;
#ifndef CONFIG_SLUB_TINY
/* /*
* Workqueue used for flush_cpu_slab(). * Workqueue used for flush_cpu_slab().
*/ */
static struct workqueue_struct *flushwq; static struct workqueue_struct *flushwq;
#endif
/******************************************************************** /********************************************************************
* Core slab cache functions * Core slab cache functions
...@@ -386,10 +388,12 @@ static inline void *get_freepointer(struct kmem_cache *s, void *object) ...@@ -386,10 +388,12 @@ static inline void *get_freepointer(struct kmem_cache *s, void *object)
return freelist_dereference(s, object + s->offset); return freelist_dereference(s, object + s->offset);
} }
#ifndef CONFIG_SLUB_TINY
static void prefetch_freepointer(const struct kmem_cache *s, void *object) static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{ {
prefetchw(object + s->offset); prefetchw(object + s->offset);
} }
#endif
/* /*
* When running under KMSAN, get_freepointer_safe() may return an uninitialized * When running under KMSAN, get_freepointer_safe() may return an uninitialized
...@@ -1681,11 +1685,13 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node, ...@@ -1681,11 +1685,13 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node,
static inline void dec_slabs_node(struct kmem_cache *s, int node, static inline void dec_slabs_node(struct kmem_cache *s, int node,
int objects) {} int objects) {}
#ifndef CONFIG_SLUB_TINY
static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
void **freelist, void *nextfree) void **freelist, void *nextfree)
{ {
return false; return false;
} }
#endif
#endif /* CONFIG_SLUB_DEBUG */ #endif /* CONFIG_SLUB_DEBUG */
/* /*
...@@ -2219,7 +2225,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, ...@@ -2219,7 +2225,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
if (!pfmemalloc_match(slab, pc->flags)) if (!pfmemalloc_match(slab, pc->flags))
continue; continue;
if (kmem_cache_debug(s)) { if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
object = alloc_single_from_partial(s, n, slab, object = alloc_single_from_partial(s, n, slab,
pc->orig_size); pc->orig_size);
if (object) if (object)
...@@ -2334,6 +2340,8 @@ static void *get_partial(struct kmem_cache *s, int node, struct partial_context ...@@ -2334,6 +2340,8 @@ static void *get_partial(struct kmem_cache *s, int node, struct partial_context
return get_any_partial(s, pc); return get_any_partial(s, pc);
} }
#ifndef CONFIG_SLUB_TINY
#ifdef CONFIG_PREEMPTION #ifdef CONFIG_PREEMPTION
/* /*
* Calculate the next globally unique transaction for disambiguation * Calculate the next globally unique transaction for disambiguation
...@@ -2347,7 +2355,7 @@ static void *get_partial(struct kmem_cache *s, int node, struct partial_context ...@@ -2347,7 +2355,7 @@ static void *get_partial(struct kmem_cache *s, int node, struct partial_context
* different cpus. * different cpus.
*/ */
#define TID_STEP 1 #define TID_STEP 1
#endif #endif /* CONFIG_PREEMPTION */
static inline unsigned long next_tid(unsigned long tid) static inline unsigned long next_tid(unsigned long tid)
{ {
...@@ -2808,6 +2816,13 @@ static int slub_cpu_dead(unsigned int cpu) ...@@ -2808,6 +2816,13 @@ static int slub_cpu_dead(unsigned int cpu)
return 0; return 0;
} }
#else /* CONFIG_SLUB_TINY */
static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
static inline void flush_all(struct kmem_cache *s) { }
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
#endif /* CONFIG_SLUB_TINY */
/* /*
* Check if the objects in a per cpu structure fit numa * Check if the objects in a per cpu structure fit numa
* locality expectations. * locality expectations.
...@@ -2955,6 +2970,7 @@ static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) ...@@ -2955,6 +2970,7 @@ static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
return true; return true;
} }
#ifndef CONFIG_SLUB_TINY
/* /*
* Check the slab->freelist and either transfer the freelist to the * Check the slab->freelist and either transfer the freelist to the
* per cpu freelist or deactivate the slab. * per cpu freelist or deactivate the slab.
...@@ -3320,6 +3336,33 @@ static __always_inline void *__slab_alloc_node(struct kmem_cache *s, ...@@ -3320,6 +3336,33 @@ static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
return object; return object;
} }
#else /* CONFIG_SLUB_TINY */
static void *__slab_alloc_node(struct kmem_cache *s,
gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
{
struct partial_context pc;
struct slab *slab;
void *object;
pc.flags = gfpflags;
pc.slab = &slab;
pc.orig_size = orig_size;
object = get_partial(s, node, &pc);
if (object)
return object;
slab = new_slab(s, gfpflags, node);
if (unlikely(!slab)) {
slab_out_of_memory(s, gfpflags, node);
return NULL;
}
object = alloc_single_from_new_slab(s, slab, orig_size);
return object;
}
#endif /* CONFIG_SLUB_TINY */
/* /*
* If the object has been wiped upon free, make sure it's fully initialized by * If the object has been wiped upon free, make sure it's fully initialized by
...@@ -3503,7 +3546,7 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, ...@@ -3503,7 +3546,7 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab,
if (kfence_free(head)) if (kfence_free(head))
return; return;
if (kmem_cache_debug(s)) { if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
free_to_partial_list(s, slab, head, tail, cnt, addr); free_to_partial_list(s, slab, head, tail, cnt, addr);
return; return;
} }
...@@ -3604,6 +3647,7 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab, ...@@ -3604,6 +3647,7 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab,
discard_slab(s, slab); discard_slab(s, slab);
} }
#ifndef CONFIG_SLUB_TINY
/* /*
* Fastpath with forced inlining to produce a kfree and kmem_cache_free that * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
* can perform fastpath freeing without additional function calls. * can perform fastpath freeing without additional function calls.
...@@ -3678,6 +3722,16 @@ static __always_inline void do_slab_free(struct kmem_cache *s, ...@@ -3678,6 +3722,16 @@ static __always_inline void do_slab_free(struct kmem_cache *s,
} }
stat(s, FREE_FASTPATH); stat(s, FREE_FASTPATH);
} }
#else /* CONFIG_SLUB_TINY */
static void do_slab_free(struct kmem_cache *s,
struct slab *slab, void *head, void *tail,
int cnt, unsigned long addr)
{
void *tail_obj = tail ? : head;
__slab_free(s, slab, head, tail_obj, cnt, addr);
}
#endif /* CONFIG_SLUB_TINY */
static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
void *head, void *tail, void **p, int cnt, void *head, void *tail, void **p, int cnt,
...@@ -3812,6 +3866,7 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) ...@@ -3812,6 +3866,7 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
} }
EXPORT_SYMBOL(kmem_cache_free_bulk); EXPORT_SYMBOL(kmem_cache_free_bulk);
#ifndef CONFIG_SLUB_TINY
static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
size_t size, void **p, struct obj_cgroup *objcg) size_t size, void **p, struct obj_cgroup *objcg)
{ {
...@@ -3880,6 +3935,36 @@ static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, ...@@ -3880,6 +3935,36 @@ static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
return 0; return 0;
} }
#else /* CONFIG_SLUB_TINY */
static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
size_t size, void **p, struct obj_cgroup *objcg)
{
int i;
for (i = 0; i < size; i++) {
void *object = kfence_alloc(s, s->object_size, flags);
if (unlikely(object)) {
p[i] = object;
continue;
}
p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
_RET_IP_, s->object_size);
if (unlikely(!p[i]))
goto error;
maybe_wipe_obj_freeptr(s, p[i]);
}
return i;
error:
slab_post_alloc_hook(s, objcg, flags, i, p, false);
kmem_cache_free_bulk(s, i, p);
return 0;
}
#endif /* CONFIG_SLUB_TINY */
/* Note that interrupts must be enabled when calling this function. */ /* Note that interrupts must be enabled when calling this function. */
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
...@@ -4062,6 +4147,7 @@ init_kmem_cache_node(struct kmem_cache_node *n) ...@@ -4062,6 +4147,7 @@ init_kmem_cache_node(struct kmem_cache_node *n)
#endif #endif
} }
#ifndef CONFIG_SLUB_TINY
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{ {
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
...@@ -4081,6 +4167,12 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) ...@@ -4081,6 +4167,12 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
return 1; return 1;
} }
#else
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
{
return 1;
}
#endif /* CONFIG_SLUB_TINY */
static struct kmem_cache *kmem_cache_node; static struct kmem_cache *kmem_cache_node;
...@@ -4143,7 +4235,9 @@ static void free_kmem_cache_nodes(struct kmem_cache *s) ...@@ -4143,7 +4235,9 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
void __kmem_cache_release(struct kmem_cache *s) void __kmem_cache_release(struct kmem_cache *s)
{ {
cache_random_seq_destroy(s); cache_random_seq_destroy(s);
#ifndef CONFIG_SLUB_TINY
free_percpu(s->cpu_slab); free_percpu(s->cpu_slab);
#endif
free_kmem_cache_nodes(s); free_kmem_cache_nodes(s);
} }
...@@ -4920,8 +5014,10 @@ void __init kmem_cache_init(void) ...@@ -4920,8 +5014,10 @@ void __init kmem_cache_init(void)
void __init kmem_cache_init_late(void) void __init kmem_cache_init_late(void)
{ {
#ifndef CONFIG_SLUB_TINY
flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
WARN_ON(!flushwq); WARN_ON(!flushwq);
#endif
} }
struct kmem_cache * struct kmem_cache *
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment