Commit 4a6369e9 authored by Alex Deucher's avatar Alex Deucher

drm/radeon/kms: add dpm support for rv6xx (v3)

This adds dpm support for rv6xx asics.  This includes:
- clockgating
- dynamic engine clock scaling
- dynamic memory clock scaling
- dynamic voltage scaling
- dynamic pcie gen1/gen2 switching

Set radeon.dpm=1 to enable.

v2: remove duplicate line
v3: fix thermal interrupt check noticed by Jerome
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
Reviewed-by: default avatarChristian König <christian.koenig@amd.com>
parent 9d67006e
......@@ -77,7 +77,7 @@ radeon-y += radeon_device.o radeon_asic.o radeon_kms.o \
evergreen_hdmi.o radeon_trace_points.o ni.o cayman_blit_shaders.o \
atombios_encoders.o radeon_semaphore.o radeon_sa.o atombios_i2c.o si.o \
si_blit_shaders.o radeon_prime.o radeon_uvd.o cik.o cik_blit_shaders.o \
r600_dpm.o rs780_dpm.o
r600_dpm.o rs780_dpm.o rv6xx_dpm.o
radeon-$(CONFIG_COMPAT) += radeon_ioc32.o
radeon-$(CONFIG_VGA_SWITCHEROO) += radeon_atpx_handler.o
......
......@@ -3998,6 +3998,7 @@ int r600_irq_set(struct radeon_device *rdev)
u32 hdmi0, hdmi1;
u32 d1grph = 0, d2grph = 0;
u32 dma_cntl;
u32 thermal_int = 0;
if (!rdev->irq.installed) {
WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
......@@ -4032,8 +4033,18 @@ int r600_irq_set(struct radeon_device *rdev)
hdmi0 = RREG32(HDMI0_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK;
hdmi1 = RREG32(HDMI1_AUDIO_PACKET_CONTROL) & ~HDMI0_AZ_FORMAT_WTRIG_MASK;
}
dma_cntl = RREG32(DMA_CNTL) & ~TRAP_ENABLE;
if ((rdev->family > CHIP_R600) && (rdev->family < CHIP_RV770)) {
thermal_int = RREG32(CG_THERMAL_INT) &
~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW);
if (rdev->irq.dpm_thermal) {
DRM_DEBUG("dpm thermal\n");
thermal_int |= THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW;
}
}
if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
DRM_DEBUG("r600_irq_set: sw int\n");
cp_int_cntl |= RB_INT_ENABLE;
......@@ -4115,6 +4126,9 @@ int r600_irq_set(struct radeon_device *rdev)
WREG32(HDMI0_AUDIO_PACKET_CONTROL, hdmi0);
WREG32(HDMI1_AUDIO_PACKET_CONTROL, hdmi1);
}
if ((rdev->family > CHIP_R600) && (rdev->family < CHIP_RV770)) {
WREG32(CG_THERMAL_INT, thermal_int);
}
return 0;
}
......@@ -4306,6 +4320,7 @@ int r600_irq_process(struct radeon_device *rdev)
u32 ring_index;
bool queue_hotplug = false;
bool queue_hdmi = false;
bool queue_thermal = false;
if (!rdev->ih.enabled || rdev->shutdown)
return IRQ_NONE;
......@@ -4473,6 +4488,16 @@ int r600_irq_process(struct radeon_device *rdev)
DRM_DEBUG("IH: DMA trap\n");
radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX);
break;
case 230: /* thermal low to high */
DRM_DEBUG("IH: thermal low to high\n");
rdev->pm.dpm.thermal.high_to_low = false;
queue_thermal = true;
break;
case 231: /* thermal high to low */
DRM_DEBUG("IH: thermal high to low\n");
rdev->pm.dpm.thermal.high_to_low = true;
queue_thermal = true;
break;
case 233: /* GUI IDLE */
DRM_DEBUG("IH: GUI idle\n");
break;
......@@ -4489,6 +4514,8 @@ int r600_irq_process(struct radeon_device *rdev)
schedule_work(&rdev->hotplug_work);
if (queue_hdmi)
schedule_work(&rdev->audio_work);
if (queue_thermal && rdev->pm.dpm_enabled)
schedule_work(&rdev->pm.dpm.thermal.work);
rdev->ih.rptr = rptr;
WREG32(IH_RB_RPTR, rdev->ih.rptr);
atomic_set(&rdev->ih.lock, 0);
......
......@@ -676,3 +676,48 @@ bool r600_is_uvd_state(u32 class, u32 class2)
return true;
return false;
}
int r600_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp)
{
int low_temp = 0 * 1000;
int high_temp = 255 * 1000;
if (low_temp < min_temp)
low_temp = min_temp;
if (high_temp > max_temp)
high_temp = max_temp;
if (high_temp < low_temp) {
DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
return -EINVAL;
}
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK);
WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK);
WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK);
rdev->pm.dpm.thermal.min_temp = low_temp;
rdev->pm.dpm.thermal.max_temp = high_temp;
return 0;
}
bool r600_is_internal_thermal_sensor(enum radeon_int_thermal_type sensor)
{
switch (sensor) {
case THERMAL_TYPE_RV6XX:
case THERMAL_TYPE_RV770:
case THERMAL_TYPE_EVERGREEN:
case THERMAL_TYPE_SUMO:
case THERMAL_TYPE_NI:
return true;
case THERMAL_TYPE_ADT7473_WITH_INTERNAL:
case THERMAL_TYPE_EMC2103_WITH_INTERNAL:
return false; /* need special handling */
case THERMAL_TYPE_NONE:
case THERMAL_TYPE_EXTERNAL:
case THERMAL_TYPE_EXTERNAL_GPIO:
default:
return false;
}
}
......@@ -92,6 +92,10 @@
#define R600_PM_NUMBER_OF_VOLTAGE_LEVELS 4
#define R600_PM_NUMBER_OF_ACTIVITY_LEVELS 3
/* XXX are these ok? */
#define R600_TEMP_RANGE_MIN (90 * 1000)
#define R600_TEMP_RANGE_MAX (120 * 1000)
enum r600_power_level {
R600_POWER_LEVEL_LOW = 0,
R600_POWER_LEVEL_MEDIUM = 1,
......@@ -207,4 +211,8 @@ void r600_wait_for_power_level(struct radeon_device *rdev,
void r600_start_dpm(struct radeon_device *rdev);
void r600_stop_dpm(struct radeon_device *rdev);
int r600_set_thermal_temperature_range(struct radeon_device *rdev,
int min_temp, int max_temp);
bool r600_is_internal_thermal_sensor(enum radeon_int_thermal_type sensor);
#endif
......@@ -302,10 +302,23 @@
#define GRBM_SOFT_RESET 0x8020
#define SOFT_RESET_CP (1<<0)
#define CG_THERMAL_CTRL 0x7F0
#define DIG_THERM_DPM(x) ((x) << 12)
#define DIG_THERM_DPM_MASK 0x000FF000
#define DIG_THERM_DPM_SHIFT 12
#define CG_THERMAL_STATUS 0x7F4
#define ASIC_T(x) ((x) << 0)
#define ASIC_T_MASK 0x1FF
#define ASIC_T_SHIFT 0
#define CG_THERMAL_INT 0x7F8
#define DIG_THERM_INTH(x) ((x) << 8)
#define DIG_THERM_INTH_MASK 0x0000FF00
#define DIG_THERM_INTH_SHIFT 8
#define DIG_THERM_INTL(x) ((x) << 16)
#define DIG_THERM_INTL_MASK 0x00FF0000
#define DIG_THERM_INTL_SHIFT 16
#define THERM_INT_MASK_HIGH (1 << 24)
#define THERM_INT_MASK_LOW (1 << 25)
#define HDP_HOST_PATH_CNTL 0x2C00
#define HDP_NONSURFACE_BASE 0x2C04
......
......@@ -227,6 +227,8 @@ void radeon_atom_set_engine_dram_timings(struct radeon_device *rdev,
u32 eng_clock, u32 mem_clock);
int radeon_atom_get_voltage_step(struct radeon_device *rdev,
u8 voltage_type, u16 *voltage_step);
int radeon_atom_get_max_vddc(struct radeon_device *rdev, u8 voltage_type,
u16 voltage_id, u16 *voltage);
int radeon_atom_round_to_true_voltage(struct radeon_device *rdev,
u8 voltage_type,
u16 nominal_voltage,
......@@ -681,6 +683,7 @@ struct radeon_irq {
bool hpd[RADEON_MAX_HPD_PINS];
bool afmt[RADEON_MAX_AFMT_BLOCKS];
union radeon_irq_stat_regs stat_regs;
bool dpm_thermal;
};
int radeon_irq_kms_init(struct radeon_device *rdev);
......
......@@ -1147,6 +1147,18 @@ static struct radeon_asic rv6xx_asic = {
.set_clock_gating = NULL,
.get_temperature = &rv6xx_get_temp,
},
.dpm = {
.init = &rv6xx_dpm_init,
.setup_asic = &rv6xx_setup_asic,
.enable = &rv6xx_dpm_enable,
.disable = &rv6xx_dpm_disable,
.set_power_state = &rv6xx_dpm_set_power_state,
.display_configuration_changed = &rv6xx_dpm_display_configuration_changed,
.fini = &rv6xx_dpm_fini,
.get_sclk = &rv6xx_dpm_get_sclk,
.get_mclk = &rv6xx_dpm_get_mclk,
.print_power_state = &rv6xx_dpm_print_power_state,
},
.pflip = {
.pre_page_flip = &rs600_pre_page_flip,
.page_flip = &rs600_page_flip,
......
......@@ -402,6 +402,18 @@ int r600_mc_wait_for_idle(struct radeon_device *rdev);
u32 r600_get_xclk(struct radeon_device *rdev);
uint64_t r600_get_gpu_clock_counter(struct radeon_device *rdev);
int rv6xx_get_temp(struct radeon_device *rdev);
/* rv6xx dpm */
int rv6xx_dpm_init(struct radeon_device *rdev);
int rv6xx_dpm_enable(struct radeon_device *rdev);
void rv6xx_dpm_disable(struct radeon_device *rdev);
int rv6xx_dpm_set_power_state(struct radeon_device *rdev);
void rv6xx_setup_asic(struct radeon_device *rdev);
void rv6xx_dpm_display_configuration_changed(struct radeon_device *rdev);
void rv6xx_dpm_fini(struct radeon_device *rdev);
u32 rv6xx_dpm_get_sclk(struct radeon_device *rdev, bool low);
u32 rv6xx_dpm_get_mclk(struct radeon_device *rdev, bool low);
void rv6xx_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *ps);
/* rs780 dpm */
int rs780_dpm_init(struct radeon_device *rdev);
int rs780_dpm_enable(struct radeon_device *rdev);
......
......@@ -2268,8 +2268,8 @@ static void radeon_atombios_add_pplib_thermal_controller(struct radeon_device *r
}
}
static void radeon_atombios_get_default_voltages(struct radeon_device *rdev,
u16 *vddc, u16 *vddci)
void radeon_atombios_get_default_voltages(struct radeon_device *rdev,
u16 *vddc, u16 *vddci)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
......
......@@ -116,6 +116,7 @@ void radeon_driver_irq_preinstall_kms(struct drm_device *dev)
/* Disable *all* interrupts */
for (i = 0; i < RADEON_NUM_RINGS; i++)
atomic_set(&rdev->irq.ring_int[i], 0);
rdev->irq.dpm_thermal = false;
for (i = 0; i < RADEON_MAX_HPD_PINS; i++)
rdev->irq.hpd[i] = false;
for (i = 0; i < RADEON_MAX_CRTCS; i++) {
......@@ -163,6 +164,7 @@ void radeon_driver_irq_uninstall_kms(struct drm_device *dev)
/* Disable *all* interrupts */
for (i = 0; i < RADEON_NUM_RINGS; i++)
atomic_set(&rdev->irq.ring_int[i], 0);
rdev->irq.dpm_thermal = false;
for (i = 0; i < RADEON_MAX_HPD_PINS; i++)
rdev->irq.hpd[i] = false;
for (i = 0; i < RADEON_MAX_CRTCS; i++) {
......
......@@ -580,6 +580,8 @@ extern enum radeon_tv_std
radeon_combios_get_tv_info(struct radeon_device *rdev);
extern enum radeon_tv_std
radeon_atombios_get_tv_info(struct radeon_device *rdev);
extern void radeon_atombios_get_default_voltages(struct radeon_device *rdev,
u16 *vddc, u16 *vddci);
extern struct drm_connector *
radeon_get_connector_for_encoder(struct drm_encoder *encoder);
......
......@@ -1030,6 +1030,11 @@ int radeon_pm_init(struct radeon_device *rdev)
{
/* enable dpm on rv6xx+ */
switch (rdev->family) {
case CHIP_RV610:
case CHIP_RV630:
case CHIP_RV620:
case CHIP_RV635:
case CHIP_RV670:
case CHIP_RS780:
case CHIP_RS880:
if (radeon_dpm == 1)
......@@ -1114,6 +1119,7 @@ static void radeon_pm_compute_clocks_old(struct radeon_device *rdev)
if (rdev->pm.num_power_states < 2)
return;
INIT_WORK(&rdev->pm.dpm.thermal.work, radeon_dpm_thermal_work_handler);
mutex_lock(&rdev->pm.mutex);
rdev->pm.active_crtcs = 0;
......
......@@ -560,6 +560,12 @@ int rs780_dpm_enable(struct radeon_device *rdev)
if (pi->gfx_clock_gating)
r600_gfx_clockgating_enable(rdev, true);
if (rdev->irq.installed && (rdev->pm.int_thermal_type == THERMAL_TYPE_RV6XX)) {
r600_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
rdev->irq.dpm_thermal = true;
radeon_irq_set(rdev);
}
return 0;
}
......@@ -574,6 +580,12 @@ void rs780_dpm_disable(struct radeon_device *rdev)
if (pi->gfx_clock_gating)
r600_gfx_clockgating_enable(rdev, false);
if (rdev->irq.installed &&
(rdev->pm.int_thermal_type == THERMAL_TYPE_RV6XX)) {
rdev->irq.dpm_thermal = false;
radeon_irq_set(rdev);
}
}
int rs780_dpm_set_power_state(struct radeon_device *rdev)
......
/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include "drmP.h"
#include "radeon.h"
#include "rv6xxd.h"
#include "r600_dpm.h"
#include "rv6xx_dpm.h"
#include "atom.h"
static u32 rv6xx_scale_count_given_unit(struct radeon_device *rdev,
u32 unscaled_count, u32 unit);
static struct rv6xx_ps *rv6xx_get_ps(struct radeon_ps *rps)
{
struct rv6xx_ps *ps = rps->ps_priv;
return ps;
}
static struct rv6xx_power_info *rv6xx_get_pi(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rdev->pm.dpm.priv;
return pi;
}
static void rv6xx_force_pcie_gen1(struct radeon_device *rdev)
{
u32 tmp;
int i;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
tmp &= LC_GEN2_EN;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
tmp |= LC_INITIATE_LINK_SPEED_CHANGE;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
for (i = 0; i < rdev->usec_timeout; i++) {
if (!(RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & LC_CURRENT_DATA_RATE))
break;
udelay(1);
}
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
tmp &= ~LC_INITIATE_LINK_SPEED_CHANGE;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
static void rv6xx_enable_pcie_gen2_support(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL);
if ((tmp & LC_OTHER_SIDE_EVER_SENT_GEN2) &&
(tmp & LC_OTHER_SIDE_SUPPORTS_GEN2)) {
tmp |= LC_GEN2_EN;
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
}
static void rv6xx_enable_bif_dynamic_pcie_gen2(struct radeon_device *rdev,
bool enable)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL) & ~LC_HW_VOLTAGE_IF_CONTROL_MASK;
if (enable)
tmp |= LC_HW_VOLTAGE_IF_CONTROL(1);
else
tmp |= LC_HW_VOLTAGE_IF_CONTROL(0);
WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, tmp);
}
static void rv6xx_enable_l0s(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L0S_INACTIVITY_MASK;
tmp |= LC_L0S_INACTIVITY(3);
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
}
static void rv6xx_enable_l1(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL);
tmp &= ~LC_L1_INACTIVITY_MASK;
tmp |= LC_L1_INACTIVITY(4);
tmp &= ~LC_PMI_TO_L1_DIS;
tmp &= ~LC_ASPM_TO_L1_DIS;
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
}
static void rv6xx_enable_pll_sleep_in_l1(struct radeon_device *rdev)
{
u32 tmp;
tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL) & ~LC_L1_INACTIVITY_MASK;
tmp |= LC_L1_INACTIVITY(8);
WREG32_PCIE_PORT(PCIE_LC_CNTL, tmp);
/* NOTE, this is a PCIE indirect reg, not PCIE PORT */
tmp = RREG32_PCIE(PCIE_P_CNTL);
tmp |= P_PLL_PWRDN_IN_L1L23;
tmp &= ~P_PLL_BUF_PDNB;
tmp &= ~P_PLL_PDNB;
tmp |= P_ALLOW_PRX_FRONTEND_SHUTOFF;
WREG32_PCIE(PCIE_P_CNTL, tmp);
}
static int rv6xx_convert_clock_to_stepping(struct radeon_device *rdev,
u32 clock, struct rv6xx_sclk_stepping *step)
{
int ret;
struct atom_clock_dividers dividers;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
clock, false, &dividers);
if (ret)
return ret;
if (dividers.enable_post_div)
step->post_divider = 2 + (dividers.post_div & 0xF) + (dividers.post_div >> 4);
else
step->post_divider = 1;
step->vco_frequency = clock * step->post_divider;
return 0;
}
static void rv6xx_output_stepping(struct radeon_device *rdev,
u32 step_index, struct rv6xx_sclk_stepping *step)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 ref_clk = rdev->clock.spll.reference_freq;
u32 fb_divider;
u32 spll_step_count = rv6xx_scale_count_given_unit(rdev,
R600_SPLLSTEPTIME_DFLT *
pi->spll_ref_div,
R600_SPLLSTEPUNIT_DFLT);
r600_engine_clock_entry_enable(rdev, step_index, true);
r600_engine_clock_entry_enable_pulse_skipping(rdev, step_index, false);
if (step->post_divider == 1)
r600_engine_clock_entry_enable_post_divider(rdev, step_index, false);
else {
u32 lo_len = (step->post_divider - 2) / 2;
u32 hi_len = step->post_divider - 2 - lo_len;
r600_engine_clock_entry_enable_post_divider(rdev, step_index, true);
r600_engine_clock_entry_set_post_divider(rdev, step_index, (hi_len << 4) | lo_len);
}
fb_divider = ((step->vco_frequency * pi->spll_ref_div) / ref_clk) >>
pi->fb_div_scale;
r600_engine_clock_entry_set_reference_divider(rdev, step_index,
pi->spll_ref_div - 1);
r600_engine_clock_entry_set_feedback_divider(rdev, step_index, fb_divider);
r600_engine_clock_entry_set_step_time(rdev, step_index, spll_step_count);
}
static struct rv6xx_sclk_stepping rv6xx_next_vco_step(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
bool increasing_vco, u32 step_size)
{
struct rv6xx_sclk_stepping next;
next.post_divider = cur->post_divider;
if (increasing_vco)
next.vco_frequency = (cur->vco_frequency * (100 + step_size)) / 100;
else
next.vco_frequency = (cur->vco_frequency * 100 + 99 + step_size) / (100 + step_size);
return next;
}
static bool rv6xx_can_step_post_div(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
struct rv6xx_sclk_stepping *target)
{
return (cur->post_divider > target->post_divider) &&
((cur->vco_frequency * target->post_divider) <=
(target->vco_frequency * (cur->post_divider - 1)));
}
static struct rv6xx_sclk_stepping rv6xx_next_post_div_step(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
struct rv6xx_sclk_stepping *target)
{
struct rv6xx_sclk_stepping next = *cur;
while (rv6xx_can_step_post_div(rdev, &next, target))
next.post_divider--;
return next;
}
static bool rv6xx_reached_stepping_target(struct radeon_device *rdev,
struct rv6xx_sclk_stepping *cur,
struct rv6xx_sclk_stepping *target,
bool increasing_vco)
{
return (increasing_vco && (cur->vco_frequency >= target->vco_frequency)) ||
(!increasing_vco && (cur->vco_frequency <= target->vco_frequency));
}
static void rv6xx_generate_steps(struct radeon_device *rdev,
u32 low, u32 high,
u32 start_index, u8 *end_index)
{
struct rv6xx_sclk_stepping cur;
struct rv6xx_sclk_stepping target;
bool increasing_vco;
u32 step_index = start_index;
rv6xx_convert_clock_to_stepping(rdev, low, &cur);
rv6xx_convert_clock_to_stepping(rdev, high, &target);
rv6xx_output_stepping(rdev, step_index++, &cur);
increasing_vco = (target.vco_frequency >= cur.vco_frequency);
if (target.post_divider > cur.post_divider)
cur.post_divider = target.post_divider;
while (1) {
struct rv6xx_sclk_stepping next;
if (rv6xx_can_step_post_div(rdev, &cur, &target))
next = rv6xx_next_post_div_step(rdev, &cur, &target);
else
next = rv6xx_next_vco_step(rdev, &cur, increasing_vco, R600_VCOSTEPPCT_DFLT);
if (rv6xx_reached_stepping_target(rdev, &next, &target, increasing_vco)) {
struct rv6xx_sclk_stepping tiny =
rv6xx_next_vco_step(rdev, &target, !increasing_vco, R600_ENDINGVCOSTEPPCT_DFLT);
tiny.post_divider = next.post_divider;
if (!rv6xx_reached_stepping_target(rdev, &tiny, &cur, !increasing_vco))
rv6xx_output_stepping(rdev, step_index++, &tiny);
if ((next.post_divider != target.post_divider) &&
(next.vco_frequency != target.vco_frequency)) {
struct rv6xx_sclk_stepping final_vco;
final_vco.vco_frequency = target.vco_frequency;
final_vco.post_divider = next.post_divider;
rv6xx_output_stepping(rdev, step_index++, &final_vco);
}
rv6xx_output_stepping(rdev, step_index++, &target);
break;
} else
rv6xx_output_stepping(rdev, step_index++, &next);
cur = next;
}
*end_index = (u8)step_index - 1;
}
static void rv6xx_generate_single_step(struct radeon_device *rdev,
u32 clock, u32 index)
{
struct rv6xx_sclk_stepping step;
rv6xx_convert_clock_to_stepping(rdev, clock, &step);
rv6xx_output_stepping(rdev, index, &step);
}
static void rv6xx_invalidate_intermediate_steps_range(struct radeon_device *rdev,
u32 start_index, u32 end_index)
{
u32 step_index;
for (step_index = start_index + 1; step_index < end_index; step_index++)
r600_engine_clock_entry_enable(rdev, step_index, false);
}
static void rv6xx_set_engine_spread_spectrum_clk_s(struct radeon_device *rdev,
u32 index, u32 clk_s)
{
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
CLKS(clk_s), ~CLKS_MASK);
}
static void rv6xx_set_engine_spread_spectrum_clk_v(struct radeon_device *rdev,
u32 index, u32 clk_v)
{
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
CLKV(clk_v), ~CLKV_MASK);
}
static void rv6xx_enable_engine_spread_spectrum(struct radeon_device *rdev,
u32 index, bool enable)
{
if (enable)
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
SSEN, ~SSEN);
else
WREG32_P(CG_SPLL_SPREAD_SPECTRUM_LOW + (index * 4),
0, ~SSEN);
}
static void rv6xx_set_memory_spread_spectrum_clk_s(struct radeon_device *rdev,
u32 clk_s)
{
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, CLKS(clk_s), ~CLKS_MASK);
}
static void rv6xx_set_memory_spread_spectrum_clk_v(struct radeon_device *rdev,
u32 clk_v)
{
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, CLKV(clk_v), ~CLKV_MASK);
}
static void rv6xx_enable_memory_spread_spectrum(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, SSEN, ~SSEN);
else
WREG32_P(CG_MPLL_SPREAD_SPECTRUM, 0, ~SSEN);
}
static void rv6xx_enable_dynamic_spread_spectrum(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, ~DYN_SPREAD_SPECTRUM_EN);
else
WREG32_P(GENERAL_PWRMGT, 0, ~DYN_SPREAD_SPECTRUM_EN);
}
static void rv6xx_memory_clock_entry_enable_post_divider(struct radeon_device *rdev,
u32 index, bool enable)
{
if (enable)
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4),
LEVEL0_MPLL_DIV_EN, ~LEVEL0_MPLL_DIV_EN);
else
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), 0, ~LEVEL0_MPLL_DIV_EN);
}
static void rv6xx_memory_clock_entry_set_post_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4),
LEVEL0_MPLL_POST_DIV(divider), ~LEVEL0_MPLL_POST_DIV_MASK);
}
static void rv6xx_memory_clock_entry_set_feedback_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4), LEVEL0_MPLL_FB_DIV(divider),
~LEVEL0_MPLL_FB_DIV_MASK);
}
static void rv6xx_memory_clock_entry_set_reference_divider(struct radeon_device *rdev,
u32 index, u32 divider)
{
WREG32_P(MPLL_FREQ_LEVEL_0 + (index * 4),
LEVEL0_MPLL_REF_DIV(divider), ~LEVEL0_MPLL_REF_DIV_MASK);
}
static void rv6xx_vid_response_set_brt(struct radeon_device *rdev, u32 rt)
{
WREG32_P(VID_RT, BRT(rt), ~BRT_MASK);
}
static void rv6xx_enable_engine_feedback_and_reference_sync(struct radeon_device *rdev)
{
WREG32_P(SPLL_CNTL_MODE, SPLL_DIV_SYNC, ~SPLL_DIV_SYNC);
}
static u64 rv6xx_clocks_per_unit(u32 unit)
{
u64 tmp = 1 << (2 * unit);
return tmp;
}
static u32 rv6xx_scale_count_given_unit(struct radeon_device *rdev,
u32 unscaled_count, u32 unit)
{
u32 count_per_unit = (u32)rv6xx_clocks_per_unit(unit);
return (unscaled_count + count_per_unit - 1) / count_per_unit;
}
static u32 rv6xx_compute_count_for_delay(struct radeon_device *rdev,
u32 delay_us, u32 unit)
{
u32 ref_clk = rdev->clock.spll.reference_freq;
return rv6xx_scale_count_given_unit(rdev, delay_us * (ref_clk / 100), unit);
}
static void rv6xx_calculate_engine_speed_stepping_parameters(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.sclks[R600_POWER_LEVEL_LOW] =
state->low.sclk;
pi->hw.sclks[R600_POWER_LEVEL_MEDIUM] =
state->medium.sclk;
pi->hw.sclks[R600_POWER_LEVEL_HIGH] =
state->high.sclk;
pi->hw.low_sclk_index = R600_POWER_LEVEL_LOW;
pi->hw.medium_sclk_index = R600_POWER_LEVEL_MEDIUM;
pi->hw.high_sclk_index = R600_POWER_LEVEL_HIGH;
}
static void rv6xx_calculate_memory_clock_stepping_parameters(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.mclks[R600_POWER_LEVEL_CTXSW] =
state->high.mclk;
pi->hw.mclks[R600_POWER_LEVEL_HIGH] =
state->high.mclk;
pi->hw.mclks[R600_POWER_LEVEL_MEDIUM] =
state->medium.mclk;
pi->hw.mclks[R600_POWER_LEVEL_LOW] =
state->low.mclk;
pi->hw.high_mclk_index = R600_POWER_LEVEL_HIGH;
if (state->high.mclk == state->medium.mclk)
pi->hw.medium_mclk_index =
pi->hw.high_mclk_index;
else
pi->hw.medium_mclk_index = R600_POWER_LEVEL_MEDIUM;
if (state->medium.mclk == state->low.mclk)
pi->hw.low_mclk_index =
pi->hw.medium_mclk_index;
else
pi->hw.low_mclk_index = R600_POWER_LEVEL_LOW;
}
static void rv6xx_calculate_voltage_stepping_parameters(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.vddc[R600_POWER_LEVEL_CTXSW] = state->high.vddc;
pi->hw.vddc[R600_POWER_LEVEL_HIGH] = state->high.vddc;
pi->hw.vddc[R600_POWER_LEVEL_MEDIUM] = state->medium.vddc;
pi->hw.vddc[R600_POWER_LEVEL_LOW] = state->low.vddc;
pi->hw.backbias[R600_POWER_LEVEL_CTXSW] =
(state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.backbias[R600_POWER_LEVEL_HIGH] =
(state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.backbias[R600_POWER_LEVEL_MEDIUM] =
(state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.backbias[R600_POWER_LEVEL_LOW] =
(state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ? true : false;
pi->hw.pcie_gen2[R600_POWER_LEVEL_HIGH] =
(state->high.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false;
pi->hw.pcie_gen2[R600_POWER_LEVEL_MEDIUM] =
(state->medium.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false;
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW] =
(state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) ? true : false;
pi->hw.high_vddc_index = R600_POWER_LEVEL_HIGH;
if ((state->high.vddc == state->medium.vddc) &&
((state->high.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ==
(state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE)))
pi->hw.medium_vddc_index =
pi->hw.high_vddc_index;
else
pi->hw.medium_vddc_index = R600_POWER_LEVEL_MEDIUM;
if ((state->medium.vddc == state->low.vddc) &&
((state->medium.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) ==
(state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE)))
pi->hw.low_vddc_index =
pi->hw.medium_vddc_index;
else
pi->hw.medium_vddc_index = R600_POWER_LEVEL_LOW;
}
static inline u32 rv6xx_calculate_vco_frequency(u32 ref_clock,
struct atom_clock_dividers *dividers,
u32 fb_divider_scale)
{
return ref_clock * ((dividers->fb_div & ~1) << fb_divider_scale) /
(dividers->ref_div + 1);
}
static inline u32 rv6xx_calculate_spread_spectrum_clk_v(u32 vco_freq, u32 ref_freq,
u32 ss_rate, u32 ss_percent,
u32 fb_divider_scale)
{
u32 fb_divider = vco_freq / ref_freq;
return (ss_percent * ss_rate * 4 * (fb_divider * fb_divider) /
(5375 * ((vco_freq * 10) / (4096 >> fb_divider_scale))));
}
static inline u32 rv6xx_calculate_spread_spectrum_clk_s(u32 ss_rate, u32 ref_freq)
{
return (((ref_freq * 10) / (ss_rate * 2)) - 1) / 4;
}
static void rv6xx_program_engine_spread_spectrum(struct radeon_device *rdev,
u32 clock, enum r600_power_level level)
{
u32 ref_clk = rdev->clock.spll.reference_freq;
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
struct atom_clock_dividers dividers;
struct radeon_atom_ss ss;
u32 vco_freq, clk_v, clk_s;
rv6xx_enable_engine_spread_spectrum(rdev, level, false);
if (clock && pi->sclk_ss) {
if (radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, clock, false, &dividers) == 0) {
vco_freq = rv6xx_calculate_vco_frequency(ref_clk, &dividers,
pi->fb_div_scale);
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_ENGINE_SS, vco_freq)) {
clk_v = rv6xx_calculate_spread_spectrum_clk_v(vco_freq,
(ref_clk / (dividers.ref_div + 1)),
ss.rate,
ss.percentage,
pi->fb_div_scale);
clk_s = rv6xx_calculate_spread_spectrum_clk_s(ss.rate,
(ref_clk / (dividers.ref_div + 1)));
rv6xx_set_engine_spread_spectrum_clk_v(rdev, level, clk_v);
rv6xx_set_engine_spread_spectrum_clk_s(rdev, level, clk_s);
rv6xx_enable_engine_spread_spectrum(rdev, level, true);
}
}
}
}
static void rv6xx_program_sclk_spread_spectrum_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_engine_spread_spectrum(rdev,
pi->hw.sclks[R600_POWER_LEVEL_HIGH],
R600_POWER_LEVEL_HIGH);
rv6xx_program_engine_spread_spectrum(rdev,
pi->hw.sclks[R600_POWER_LEVEL_MEDIUM],
R600_POWER_LEVEL_MEDIUM);
}
static int rv6xx_program_mclk_stepping_entry(struct radeon_device *rdev,
u32 entry, u32 clock)
{
struct atom_clock_dividers dividers;
if (radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM, clock, false, &dividers))
return -EINVAL;
rv6xx_memory_clock_entry_set_reference_divider(rdev, entry, dividers.ref_div);
rv6xx_memory_clock_entry_set_feedback_divider(rdev, entry, dividers.fb_div);
rv6xx_memory_clock_entry_set_post_divider(rdev, entry, dividers.post_div);
if (dividers.enable_post_div)
rv6xx_memory_clock_entry_enable_post_divider(rdev, entry, true);
else
rv6xx_memory_clock_entry_enable_post_divider(rdev, entry, false);
return 0;
}
static void rv6xx_program_mclk_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
int i;
for (i = 1; i < R600_PM_NUMBER_OF_MCLKS; i++) {
if (pi->hw.mclks[i])
rv6xx_program_mclk_stepping_entry(rdev, i,
pi->hw.mclks[i]);
}
}
static void rv6xx_find_memory_clock_with_highest_vco(struct radeon_device *rdev,
u32 requested_memory_clock,
u32 ref_clk,
struct atom_clock_dividers *dividers,
u32 *vco_freq)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
struct atom_clock_dividers req_dividers;
u32 vco_freq_temp;
if (radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM,
requested_memory_clock, false, &req_dividers) == 0) {
vco_freq_temp = rv6xx_calculate_vco_frequency(ref_clk, &req_dividers,
pi->fb_div_scale);
if (vco_freq_temp > *vco_freq) {
*dividers = req_dividers;
*vco_freq = vco_freq_temp;
}
}
}
static void rv6xx_program_mclk_spread_spectrum_parameters(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 ref_clk = rdev->clock.mpll.reference_freq;
struct atom_clock_dividers dividers;
struct radeon_atom_ss ss;
u32 vco_freq = 0, clk_v, clk_s;
rv6xx_enable_memory_spread_spectrum(rdev, false);
if (pi->mclk_ss) {
rv6xx_find_memory_clock_with_highest_vco(rdev,
pi->hw.mclks[pi->hw.high_mclk_index],
ref_clk,
&dividers,
&vco_freq);
rv6xx_find_memory_clock_with_highest_vco(rdev,
pi->hw.mclks[pi->hw.medium_mclk_index],
ref_clk,
&dividers,
&vco_freq);
rv6xx_find_memory_clock_with_highest_vco(rdev,
pi->hw.mclks[pi->hw.low_mclk_index],
ref_clk,
&dividers,
&vco_freq);
if (vco_freq) {
if (radeon_atombios_get_asic_ss_info(rdev, &ss,
ASIC_INTERNAL_MEMORY_SS, vco_freq)) {
clk_v = rv6xx_calculate_spread_spectrum_clk_v(vco_freq,
(ref_clk / (dividers.ref_div + 1)),
ss.rate,
ss.percentage,
pi->fb_div_scale);
clk_s = rv6xx_calculate_spread_spectrum_clk_s(ss.rate,
(ref_clk / (dividers.ref_div + 1)));
rv6xx_set_memory_spread_spectrum_clk_v(rdev, clk_v);
rv6xx_set_memory_spread_spectrum_clk_s(rdev, clk_s);
rv6xx_enable_memory_spread_spectrum(rdev, true);
}
}
}
}
static int rv6xx_program_voltage_stepping_entry(struct radeon_device *rdev,
u32 entry, u16 voltage)
{
u32 mask, set_pins;
int ret;
ret = radeon_atom_get_voltage_gpio_settings(rdev, voltage,
SET_VOLTAGE_TYPE_ASIC_VDDC,
&set_pins, &mask);
if (ret)
return ret;
r600_voltage_control_program_voltages(rdev, entry, set_pins);
return 0;
}
static void rv6xx_program_voltage_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
int i;
for (i = 1; i < R600_PM_NUMBER_OF_VOLTAGE_LEVELS; i++)
rv6xx_program_voltage_stepping_entry(rdev, i,
pi->hw.vddc[i]);
}
static void rv6xx_program_backbias_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->hw.backbias[1])
WREG32_P(VID_UPPER_GPIO_CNTL, MEDIUM_BACKBIAS_VALUE, ~MEDIUM_BACKBIAS_VALUE);
else
WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~MEDIUM_BACKBIAS_VALUE);
if (pi->hw.backbias[2])
WREG32_P(VID_UPPER_GPIO_CNTL, HIGH_BACKBIAS_VALUE, ~HIGH_BACKBIAS_VALUE);
else
WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~HIGH_BACKBIAS_VALUE);
}
static void rv6xx_program_sclk_spread_spectrum_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_engine_spread_spectrum(rdev,
pi->hw.sclks[R600_POWER_LEVEL_LOW],
R600_POWER_LEVEL_LOW);
}
static void rv6xx_program_mclk_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->hw.mclks[0])
rv6xx_program_mclk_stepping_entry(rdev, 0,
pi->hw.mclks[0]);
}
static void rv6xx_program_voltage_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_voltage_stepping_entry(rdev, 0,
pi->hw.vddc[0]);
}
static void rv6xx_program_backbias_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->hw.backbias[0])
WREG32_P(VID_UPPER_GPIO_CNTL, LOW_BACKBIAS_VALUE, ~LOW_BACKBIAS_VALUE);
else
WREG32_P(VID_UPPER_GPIO_CNTL, 0, ~LOW_BACKBIAS_VALUE);
}
static u32 calculate_memory_refresh_rate(struct radeon_device *rdev,
u32 engine_clock)
{
u32 dram_rows, dram_refresh_rate;
u32 tmp;
tmp = (RREG32(RAMCFG) & NOOFROWS_MASK) >> NOOFROWS_SHIFT;
dram_rows = 1 << (tmp + 10);
dram_refresh_rate = 1 << ((RREG32(MC_SEQ_RESERVE_M) & 0x3) + 3);
return ((engine_clock * 10) * dram_refresh_rate / dram_rows - 32) / 64;
}
static void rv6xx_program_memory_timing_parameters(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 sqm_ratio;
u32 arb_refresh_rate;
u32 high_clock;
if (pi->hw.sclks[R600_POWER_LEVEL_HIGH] <
(pi->hw.sclks[R600_POWER_LEVEL_LOW] * 0xFF / 0x40))
high_clock = pi->hw.sclks[R600_POWER_LEVEL_HIGH];
else
high_clock =
pi->hw.sclks[R600_POWER_LEVEL_LOW] * 0xFF / 0x40;
radeon_atom_set_engine_dram_timings(rdev, high_clock, 0);
sqm_ratio = (STATE0(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_LOW]) |
STATE1(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_MEDIUM]) |
STATE2(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_HIGH]) |
STATE3(64 * high_clock / pi->hw.sclks[R600_POWER_LEVEL_HIGH]));
WREG32(SQM_RATIO, sqm_ratio);
arb_refresh_rate =
(POWERMODE0(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_LOW])) |
POWERMODE1(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_MEDIUM])) |
POWERMODE2(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_MEDIUM])) |
POWERMODE3(calculate_memory_refresh_rate(rdev,
pi->hw.sclks[R600_POWER_LEVEL_HIGH])));
WREG32(ARB_RFSH_RATE, arb_refresh_rate);
}
static void rv6xx_program_mpll_timing_parameters(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_set_mpll_lock_time(rdev, R600_MPLLLOCKTIME_DFLT *
pi->mpll_ref_div);
r600_set_mpll_reset_time(rdev, R600_MPLLRESETTIME_DFLT);
}
static void rv6xx_program_bsp(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u32 ref_clk = rdev->clock.spll.reference_freq;
r600_calculate_u_and_p(R600_ASI_DFLT,
ref_clk, 16,
&pi->bsp,
&pi->bsu);
r600_set_bsp(rdev, pi->bsu, pi->bsp);
}
static void rv6xx_program_at(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_set_at(rdev,
(pi->hw.rp[0] * pi->bsp) / 200,
(pi->hw.rp[1] * pi->bsp) / 200,
(pi->hw.lp[2] * pi->bsp) / 200,
(pi->hw.lp[1] * pi->bsp) / 200);
}
static void rv6xx_program_git(struct radeon_device *rdev)
{
r600_set_git(rdev, R600_GICST_DFLT);
}
static void rv6xx_program_tp(struct radeon_device *rdev)
{
int i;
for (i = 0; i < R600_PM_NUMBER_OF_TC; i++)
r600_set_tc(rdev, i, r600_utc[i], r600_dtc[i]);
r600_select_td(rdev, R600_TD_DFLT);
}
static void rv6xx_program_vc(struct radeon_device *rdev)
{
r600_set_vrc(rdev, R600_VRC_DFLT);
}
static void rv6xx_clear_vc(struct radeon_device *rdev)
{
r600_set_vrc(rdev, 0);
}
static void rv6xx_program_tpp(struct radeon_device *rdev)
{
r600_set_tpu(rdev, R600_TPU_DFLT);
r600_set_tpc(rdev, R600_TPC_DFLT);
}
static void rv6xx_program_sstp(struct radeon_device *rdev)
{
r600_set_sstu(rdev, R600_SSTU_DFLT);
r600_set_sst(rdev, R600_SST_DFLT);
}
static void rv6xx_program_fcp(struct radeon_device *rdev)
{
r600_set_fctu(rdev, R600_FCTU_DFLT);
r600_set_fct(rdev, R600_FCT_DFLT);
}
static void rv6xx_program_vddc3d_parameters(struct radeon_device *rdev)
{
r600_set_vddc3d_oorsu(rdev, R600_VDDC3DOORSU_DFLT);
r600_set_vddc3d_oorphc(rdev, R600_VDDC3DOORPHC_DFLT);
r600_set_vddc3d_oorsdc(rdev, R600_VDDC3DOORSDC_DFLT);
r600_set_ctxcgtt3d_rphc(rdev, R600_CTXCGTT3DRPHC_DFLT);
r600_set_ctxcgtt3d_rsdc(rdev, R600_CTXCGTT3DRSDC_DFLT);
}
static void rv6xx_program_voltage_timing_parameters(struct radeon_device *rdev)
{
u32 rt;
r600_vid_rt_set_vru(rdev, R600_VRU_DFLT);
r600_vid_rt_set_vrt(rdev,
rv6xx_compute_count_for_delay(rdev,
rdev->pm.dpm.voltage_response_time,
R600_VRU_DFLT));
rt = rv6xx_compute_count_for_delay(rdev,
rdev->pm.dpm.backbias_response_time,
R600_VRU_DFLT);
rv6xx_vid_response_set_brt(rdev, (rt + 0x1F) >> 5);
}
static void rv6xx_program_engine_speed_parameters(struct radeon_device *rdev)
{
r600_vid_rt_set_ssu(rdev, R600_SPLLSTEPUNIT_DFLT);
rv6xx_enable_engine_feedback_and_reference_sync(rdev);
}
static u64 rv6xx_get_master_voltage_mask(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
u64 master_mask = 0;
int i;
for (i = 0; i < R600_PM_NUMBER_OF_VOLTAGE_LEVELS; i++) {
u32 tmp_mask, tmp_set_pins;
int ret;
ret = radeon_atom_get_voltage_gpio_settings(rdev,
pi->hw.vddc[i],
SET_VOLTAGE_TYPE_ASIC_VDDC,
&tmp_set_pins, &tmp_mask);
if (ret == 0)
master_mask |= tmp_mask;
}
return master_mask;
}
static void rv6xx_program_voltage_gpio_pins(struct radeon_device *rdev)
{
r600_voltage_control_enable_pins(rdev,
rv6xx_get_master_voltage_mask(rdev));
}
static void rv6xx_enable_static_voltage_control(struct radeon_device *rdev, bool enable)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
if (enable)
radeon_atom_set_voltage(rdev,
new_state->low.vddc,
SET_VOLTAGE_TYPE_ASIC_VDDC);
else
r600_voltage_control_deactivate_static_control(rdev,
rv6xx_get_master_voltage_mask(rdev));
}
static void rv6xx_enable_display_gap(struct radeon_device *rdev, bool enable)
{
if (enable) {
u32 tmp = (DISP1_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM) |
DISP2_GAP(R600_PM_DISPLAY_GAP_VBLANK_OR_WM) |
DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) |
DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE) |
VBI_TIMER_COUNT(0x3FFF) |
VBI_TIMER_UNIT(7));
WREG32(CG_DISPLAY_GAP_CNTL, tmp);
WREG32_P(MCLK_PWRMGT_CNTL, USE_DISPLAY_GAP, ~USE_DISPLAY_GAP);
} else
WREG32_P(MCLK_PWRMGT_CNTL, 0, ~USE_DISPLAY_GAP);
}
static void rv6xx_program_power_level_enter_state(struct radeon_device *rdev)
{
r600_power_level_set_enter_index(rdev, R600_POWER_LEVEL_MEDIUM);
}
static void rv6xx_calculate_t(u32 l_f, u32 h_f, int h,
int d_l, int d_r, u8 *l, u8 *r)
{
int a_n, a_d, h_r, l_r;
h_r = d_l;
l_r = 100 - d_r;
a_n = (int)h_f * d_l + (int)l_f * (h - d_r);
a_d = (int)l_f * l_r + (int)h_f * h_r;
if (a_d != 0) {
*l = d_l - h_r * a_n / a_d;
*r = d_r + l_r * a_n / a_d;
}
}
static void rv6xx_calculate_ap(struct radeon_device *rdev,
struct rv6xx_ps *state)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.lp[0] = 0;
pi->hw.rp[R600_PM_NUMBER_OF_ACTIVITY_LEVELS - 1]
= 100;
rv6xx_calculate_t(state->low.sclk,
state->medium.sclk,
R600_AH_DFLT,
R600_LMP_DFLT,
R600_RLP_DFLT,
&pi->hw.lp[1],
&pi->hw.rp[0]);
rv6xx_calculate_t(state->medium.sclk,
state->high.sclk,
R600_AH_DFLT,
R600_LHP_DFLT,
R600_RMP_DFLT,
&pi->hw.lp[2],
&pi->hw.rp[1]);
}
static void rv6xx_calculate_stepping_parameters(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
rv6xx_calculate_engine_speed_stepping_parameters(rdev, new_state);
rv6xx_calculate_memory_clock_stepping_parameters(rdev, new_state);
rv6xx_calculate_voltage_stepping_parameters(rdev, new_state);
rv6xx_calculate_ap(rdev, new_state);
}
static void rv6xx_program_stepping_parameters_except_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_mclk_stepping_parameters_except_lowest_entry(rdev);
if (pi->voltage_control)
rv6xx_program_voltage_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_backbias_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_sclk_spread_spectrum_parameters_except_lowest_entry(rdev);
rv6xx_program_mclk_spread_spectrum_parameters(rdev);
rv6xx_program_memory_timing_parameters(rdev);
}
static void rv6xx_program_stepping_parameters_lowest_entry(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_mclk_stepping_parameters_lowest_entry(rdev);
if (pi->voltage_control)
rv6xx_program_voltage_stepping_parameters_lowest_entry(rdev);
rv6xx_program_backbias_stepping_parameters_lowest_entry(rdev);
rv6xx_program_sclk_spread_spectrum_parameters_lowest_entry(rdev);
}
static void rv6xx_program_power_level_low(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_LOW,
pi->hw.low_vddc_index);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_LOW,
pi->hw.low_mclk_index);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_LOW,
pi->hw.low_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_LOW,
R600_DISPLAY_WATERMARK_LOW);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_LOW,
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]);
}
static void rv6xx_program_power_level_low_to_lowest_state(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_LOW, 0);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_LOW, 0);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_LOW, 0);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_LOW,
R600_DISPLAY_WATERMARK_LOW);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_LOW,
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]);
}
static void rv6xx_program_power_level_medium(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_vddc_index);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_mclk_index);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_MEDIUM,
R600_DISPLAY_WATERMARK_LOW);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.pcie_gen2[R600_POWER_LEVEL_MEDIUM]);
}
static void rv6xx_program_power_level_medium_for_transition(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_program_mclk_stepping_entry(rdev,
R600_POWER_LEVEL_CTXSW,
pi->hw.mclks[pi->hw.low_mclk_index]);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_MEDIUM, 1);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
R600_POWER_LEVEL_CTXSW);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.medium_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_MEDIUM,
R600_DISPLAY_WATERMARK_LOW);
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_MEDIUM, false);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_MEDIUM,
pi->hw.pcie_gen2[R600_POWER_LEVEL_LOW]);
}
static void rv6xx_program_power_level_high(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
r600_power_level_set_voltage_index(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.high_vddc_index);
r600_power_level_set_mem_clock_index(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.high_mclk_index);
r600_power_level_set_eng_clock_index(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.high_sclk_index);
r600_power_level_set_watermark_id(rdev, R600_POWER_LEVEL_HIGH,
R600_DISPLAY_WATERMARK_HIGH);
r600_power_level_set_pcie_gen2(rdev, R600_POWER_LEVEL_HIGH,
pi->hw.pcie_gen2[R600_POWER_LEVEL_HIGH]);
}
static void rv6xx_enable_backbias(struct radeon_device *rdev, bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL,
~(BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL));
else
WREG32_P(GENERAL_PWRMGT, 0,
~(BACKBIAS_VALUE | BACKBIAS_PAD_EN | BACKBIAS_DPM_CNTL));
}
static void rv6xx_program_display_gap(struct radeon_device *rdev)
{
u32 tmp = RREG32(CG_DISPLAY_GAP_CNTL);
tmp &= ~(DISP1_GAP_MCHG_MASK | DISP2_GAP_MCHG_MASK);
if (RREG32(AVIVO_D1CRTC_CONTROL) & AVIVO_CRTC_EN) {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
} else if (RREG32(AVIVO_D2CRTC_CONTROL) & AVIVO_CRTC_EN) {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_VBLANK);
} else {
tmp |= DISP1_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
tmp |= DISP2_GAP_MCHG(R600_PM_DISPLAY_GAP_IGNORE);
}
WREG32(CG_DISPLAY_GAP_CNTL, tmp);
}
static void rv6xx_set_sw_voltage_to_safe(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(rdev->pm.dpm.current_ps);
u16 safe_voltage;
safe_voltage = (new_state->low.vddc >= old_state->low.vddc) ?
new_state->low.vddc : old_state->low.vddc;
rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW,
safe_voltage);
WREG32_P(GENERAL_PWRMGT, SW_GPIO_INDEX(R600_POWER_LEVEL_CTXSW),
~SW_GPIO_INDEX_MASK);
}
static void rv6xx_set_sw_voltage_to_low(struct radeon_device *rdev)
{
struct rv6xx_ps *old_state = rv6xx_get_ps(rdev->pm.dpm.current_ps);
rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW,
old_state->low.vddc);
WREG32_P(GENERAL_PWRMGT, SW_GPIO_INDEX(R600_POWER_LEVEL_CTXSW),
~SW_GPIO_INDEX_MASK);
}
static void rv6xx_set_safe_backbias(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(rdev->pm.dpm.current_ps);
if ((new_state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE) &&
(old_state->low.flags & ATOM_PPLIB_R600_FLAGS_BACKBIASENABLE))
WREG32_P(GENERAL_PWRMGT, BACKBIAS_VALUE, ~BACKBIAS_VALUE);
else
WREG32_P(GENERAL_PWRMGT, 0, ~BACKBIAS_VALUE);
}
static void rv6xx_set_safe_pcie_gen2(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(rdev->pm.dpm.current_ps);
if ((new_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) !=
(old_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2))
rv6xx_force_pcie_gen1(rdev);
}
static void rv6xx_enable_dynamic_voltage_control(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, VOLT_PWRMGT_EN, ~VOLT_PWRMGT_EN);
else
WREG32_P(GENERAL_PWRMGT, 0, ~VOLT_PWRMGT_EN);
}
static void rv6xx_enable_dynamic_backbias_control(struct radeon_device *rdev,
bool enable)
{
if (enable)
WREG32_P(GENERAL_PWRMGT, BACKBIAS_DPM_CNTL, ~BACKBIAS_DPM_CNTL);
else
WREG32_P(GENERAL_PWRMGT, 0, ~BACKBIAS_DPM_CNTL);
}
static int rv6xx_step_sw_voltage(struct radeon_device *rdev,
u16 initial_voltage,
u16 target_voltage)
{
u16 current_voltage;
u16 true_target_voltage;
u16 voltage_step;
int signed_voltage_step;
if ((radeon_atom_get_voltage_step(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC,
&voltage_step)) ||
(radeon_atom_round_to_true_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC,
initial_voltage, &current_voltage)) ||
(radeon_atom_round_to_true_voltage(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC,
target_voltage, &true_target_voltage)))
return -EINVAL;
if (true_target_voltage < current_voltage)
signed_voltage_step = -(int)voltage_step;
else
signed_voltage_step = voltage_step;
while (current_voltage != true_target_voltage) {
current_voltage += signed_voltage_step;
rv6xx_program_voltage_stepping_entry(rdev, R600_POWER_LEVEL_CTXSW,
current_voltage);
msleep((rdev->pm.dpm.voltage_response_time + 999) / 1000);
}
return 0;
}
static int rv6xx_step_voltage_if_increasing(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(rdev->pm.dpm.current_ps);
if (new_state->low.vddc > old_state->low.vddc)
return rv6xx_step_sw_voltage(rdev,
old_state->low.vddc,
new_state->low.vddc);
return 0;
}
static int rv6xx_step_voltage_if_decreasing(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(rdev->pm.dpm.current_ps);
if (new_state->low.vddc < old_state->low.vddc)
return rv6xx_step_sw_voltage(rdev,
old_state->low.vddc,
new_state->low.vddc);
else
return 0;
}
static void rv6xx_enable_high(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if ((pi->restricted_levels < 1) ||
(pi->restricted_levels == 3))
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, true);
}
static void rv6xx_enable_medium(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->restricted_levels < 2)
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
}
static void rv6xx_set_dpm_event_sources(struct radeon_device *rdev, u32 sources)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
bool want_thermal_protection;
enum radeon_dpm_event_src dpm_event_src;
switch (sources) {
case 0:
default:
want_thermal_protection = false;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGITAL;
break;
case (1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_EXTERNAL;
break;
case ((1 << RADEON_DPM_AUTO_THROTTLE_SRC_EXTERNAL) |
(1 << RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL)):
want_thermal_protection = true;
dpm_event_src = RADEON_DPM_EVENT_SRC_DIGIAL_OR_EXTERNAL;
break;
}
if (want_thermal_protection) {
WREG32_P(CG_THERMAL_CTRL, DPM_EVENT_SRC(dpm_event_src), ~DPM_EVENT_SRC_MASK);
if (pi->thermal_protection)
WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS);
} else {
WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS);
}
}
static void rv6xx_enable_auto_throttle_source(struct radeon_device *rdev,
enum radeon_dpm_auto_throttle_src source,
bool enable)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (enable) {
if (!(pi->active_auto_throttle_sources & (1 << source))) {
pi->active_auto_throttle_sources |= 1 << source;
rv6xx_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
} else {
if (pi->active_auto_throttle_sources & (1 << source)) {
pi->active_auto_throttle_sources &= ~(1 << source);
rv6xx_set_dpm_event_sources(rdev, pi->active_auto_throttle_sources);
}
}
}
static void rv6xx_enable_thermal_protection(struct radeon_device *rdev,
bool enable)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (pi->active_auto_throttle_sources)
r600_enable_thermal_protection(rdev, enable);
}
static void rv6xx_generate_transition_stepping(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_ps *old_state = rv6xx_get_ps(rdev->pm.dpm.current_ps);
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_generate_steps(rdev,
old_state->low.sclk,
new_state->low.sclk,
0, &pi->hw.medium_sclk_index);
}
static void rv6xx_generate_low_step(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.low_sclk_index = 0;
rv6xx_generate_single_step(rdev,
new_state->low.sclk,
0);
}
static void rv6xx_invalidate_intermediate_steps(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_invalidate_intermediate_steps_range(rdev, 0,
pi->hw.medium_sclk_index);
}
static void rv6xx_generate_stepping_table(struct radeon_device *rdev)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
pi->hw.low_sclk_index = 0;
rv6xx_generate_steps(rdev,
new_state->low.sclk,
new_state->medium.sclk,
0,
&pi->hw.medium_sclk_index);
rv6xx_generate_steps(rdev,
new_state->medium.sclk,
new_state->high.sclk,
pi->hw.medium_sclk_index,
&pi->hw.high_sclk_index);
}
static void rv6xx_enable_spread_spectrum(struct radeon_device *rdev,
bool enable)
{
if (enable)
rv6xx_enable_dynamic_spread_spectrum(rdev, true);
else {
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_LOW, false);
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_MEDIUM, false);
rv6xx_enable_engine_spread_spectrum(rdev, R600_POWER_LEVEL_HIGH, false);
rv6xx_enable_dynamic_spread_spectrum(rdev, false);
rv6xx_enable_memory_spread_spectrum(rdev, false);
}
}
static void rv6xx_reset_lvtm_data_sync(struct radeon_device *rdev)
{
if (ASIC_IS_DCE3(rdev))
WREG32_P(DCE3_LVTMA_DATA_SYNCHRONIZATION, LVTMA_PFREQCHG, ~LVTMA_PFREQCHG);
else
WREG32_P(LVTMA_DATA_SYNCHRONIZATION, LVTMA_PFREQCHG, ~LVTMA_PFREQCHG);
}
static void rv6xx_enable_dynamic_pcie_gen2(struct radeon_device *rdev,
bool enable)
{
struct rv6xx_ps *new_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
if (enable) {
rv6xx_enable_bif_dynamic_pcie_gen2(rdev, true);
rv6xx_enable_pcie_gen2_support(rdev);
r600_enable_dynamic_pcie_gen2(rdev, true);
} else {
if (!(new_state->low.flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2))
rv6xx_force_pcie_gen1(rdev);
rv6xx_enable_bif_dynamic_pcie_gen2(rdev, false);
r600_enable_dynamic_pcie_gen2(rdev, false);
}
}
int rv6xx_dpm_enable(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (r600_dynamicpm_enabled(rdev))
return -EINVAL;
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_backbias(rdev, true);
if (pi->dynamic_ss)
rv6xx_enable_spread_spectrum(rdev, true);
rv6xx_program_mpll_timing_parameters(rdev);
rv6xx_program_bsp(rdev);
rv6xx_program_git(rdev);
rv6xx_program_tp(rdev);
rv6xx_program_tpp(rdev);
rv6xx_program_sstp(rdev);
rv6xx_program_fcp(rdev);
rv6xx_program_vddc3d_parameters(rdev);
rv6xx_program_voltage_timing_parameters(rdev);
rv6xx_program_engine_speed_parameters(rdev);
rv6xx_enable_display_gap(rdev, true);
if (pi->display_gap == false)
rv6xx_enable_display_gap(rdev, false);
rv6xx_program_power_level_enter_state(rdev);
rv6xx_calculate_stepping_parameters(rdev);
if (pi->voltage_control)
rv6xx_program_voltage_gpio_pins(rdev);
rv6xx_generate_stepping_table(rdev);
rv6xx_program_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_stepping_parameters_lowest_entry(rdev);
rv6xx_program_power_level_low(rdev);
rv6xx_program_power_level_medium(rdev);
rv6xx_program_power_level_high(rdev);
rv6xx_program_vc(rdev);
rv6xx_program_at(rdev);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, true);
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
r600_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
rdev->irq.dpm_thermal = true;
radeon_irq_set(rdev);
}
rv6xx_enable_auto_throttle_source(rdev, RADEON_DPM_AUTO_THROTTLE_SRC_THERMAL, true);
r600_start_dpm(rdev);
if (pi->voltage_control)
rv6xx_enable_static_voltage_control(rdev, false);
if (pi->dynamic_pcie_gen2)
rv6xx_enable_dynamic_pcie_gen2(rdev, true);
if (pi->gfx_clock_gating)
r600_gfx_clockgating_enable(rdev, true);
return 0;
}
void rv6xx_dpm_disable(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
if (!r600_dynamicpm_enabled(rdev))
return;
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
rv6xx_enable_display_gap(rdev, false);
rv6xx_clear_vc(rdev);
r600_set_at(rdev, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
if (pi->thermal_protection)
r600_enable_thermal_protection(rdev, false);
r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW);
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, false);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_backbias(rdev, false);
rv6xx_enable_spread_spectrum(rdev, false);
if (pi->voltage_control)
rv6xx_enable_static_voltage_control(rdev, true);
if (pi->dynamic_pcie_gen2)
rv6xx_enable_dynamic_pcie_gen2(rdev, false);
if (rdev->irq.installed &&
r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
rdev->irq.dpm_thermal = false;
radeon_irq_set(rdev);
}
if (pi->gfx_clock_gating)
r600_gfx_clockgating_enable(rdev, false);
r600_stop_dpm(rdev);
}
int rv6xx_dpm_set_power_state(struct radeon_device *rdev)
{
struct rv6xx_power_info *pi = rv6xx_get_pi(rdev);
rv6xx_clear_vc(rdev);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_set_at(rdev, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF);
if (pi->thermal_protection)
r600_enable_thermal_protection(rdev, false);
r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW);
r600_power_level_enable(rdev, R600_POWER_LEVEL_HIGH, false);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false);
rv6xx_generate_transition_stepping(rdev);
rv6xx_program_power_level_medium_for_transition(rdev);
if (pi->voltage_control) {
rv6xx_set_sw_voltage_to_safe(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
rv6xx_set_sw_voltage_to_low(rdev);
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_set_safe_backbias(rdev);
if (pi->dynamic_pcie_gen2)
rv6xx_set_safe_pcie_gen2(rdev);
if (pi->voltage_control)
rv6xx_enable_dynamic_voltage_control(rdev, false);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_dynamic_backbias_control(rdev, false);
if (pi->voltage_control) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
rv6xx_step_voltage_if_increasing(rdev);
msleep((rdev->pm.dpm.voltage_response_time + 999) / 1000);
}
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, true);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, false);
r600_wait_for_power_level_unequal(rdev, R600_POWER_LEVEL_LOW);
rv6xx_generate_low_step(rdev);
rv6xx_invalidate_intermediate_steps(rdev);
rv6xx_calculate_stepping_parameters(rdev);
rv6xx_program_stepping_parameters_lowest_entry(rdev);
rv6xx_program_power_level_low_to_lowest_state(rdev);
r600_power_level_enable(rdev, R600_POWER_LEVEL_LOW, true);
r600_wait_for_power_level(rdev, R600_POWER_LEVEL_LOW);
r600_power_level_enable(rdev, R600_POWER_LEVEL_MEDIUM, false);
if (pi->voltage_control) {
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC)
rv6xx_step_voltage_if_decreasing(rdev);
rv6xx_enable_dynamic_voltage_control(rdev, true);
}
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS)
rv6xx_enable_dynamic_backbias_control(rdev, true);
if (pi->dynamic_pcie_gen2)
rv6xx_enable_dynamic_pcie_gen2(rdev, true);
rv6xx_reset_lvtm_data_sync(rdev);
rv6xx_generate_stepping_table(rdev);
rv6xx_program_stepping_parameters_except_lowest_entry(rdev);
rv6xx_program_power_level_low(rdev);
rv6xx_program_power_level_medium(rdev);
rv6xx_program_power_level_high(rdev);
rv6xx_enable_medium(rdev);
rv6xx_enable_high(rdev);
if (pi->thermal_protection)
rv6xx_enable_thermal_protection(rdev, true);
rv6xx_program_vc(rdev);
rv6xx_program_at(rdev);
return 0;
}
void rv6xx_setup_asic(struct radeon_device *rdev)
{
r600_enable_acpi_pm(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s)
rv6xx_enable_l0s(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1)
rv6xx_enable_l1(rdev);
if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1)
rv6xx_enable_pll_sleep_in_l1(rdev);
}
void rv6xx_dpm_display_configuration_changed(struct radeon_device *rdev)
{
rv6xx_program_display_gap(rdev);
}
union power_info {
struct _ATOM_POWERPLAY_INFO info;
struct _ATOM_POWERPLAY_INFO_V2 info_2;
struct _ATOM_POWERPLAY_INFO_V3 info_3;
struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
};
union pplib_clock_info {
struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
};
union pplib_power_state {
struct _ATOM_PPLIB_STATE v1;
struct _ATOM_PPLIB_STATE_V2 v2;
};
static void rv6xx_parse_pplib_non_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps,
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info)
{
rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
rps->class = le16_to_cpu(non_clock_info->usClassification);
rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
if (r600_is_uvd_state(rps->class, rps->class2)) {
rps->vclk = RV6XX_DEFAULT_VCLK_FREQ;
rps->dclk = RV6XX_DEFAULT_DCLK_FREQ;
} else {
rps->vclk = 0;
rps->dclk = 0;
}
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT)
rdev->pm.dpm.boot_ps = rps;
if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
rdev->pm.dpm.uvd_ps = rps;
}
static void rv6xx_parse_pplib_clock_info(struct radeon_device *rdev,
struct radeon_ps *rps, int index,
union pplib_clock_info *clock_info)
{
struct rv6xx_ps *ps = rv6xx_get_ps(rps);
u32 sclk, mclk;
u16 vddc;
struct rv6xx_pl *pl;
switch (index) {
case 0:
pl = &ps->low;
break;
case 1:
pl = &ps->medium;
break;
case 2:
default:
pl = &ps->high;
break;
}
sclk = le16_to_cpu(clock_info->r600.usEngineClockLow);
sclk |= clock_info->r600.ucEngineClockHigh << 16;
mclk = le16_to_cpu(clock_info->r600.usMemoryClockLow);
mclk |= clock_info->r600.ucMemoryClockHigh << 16;
pl->mclk = mclk;
pl->sclk = sclk;
pl->vddc = le16_to_cpu(clock_info->r600.usVDDC);
pl->flags = le32_to_cpu(clock_info->r600.ulFlags);
/* patch up vddc if necessary */
if (pl->vddc == 0xff01) {
if (radeon_atom_get_max_vddc(rdev, 0, 0, &vddc) == 0)
pl->vddc = vddc;
}
/* fix up pcie gen2 */
if (pl->flags & ATOM_PPLIB_R600_FLAGS_PCIEGEN2) {
if ((rdev->family == CHIP_RV610) || (rdev->family == CHIP_RV630)) {
if (pl->vddc < 1100)
pl->flags &= ~ATOM_PPLIB_R600_FLAGS_PCIEGEN2;
}
}
/* patch up boot state */
if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
u16 vddc, vddci;
radeon_atombios_get_default_voltages(rdev, &vddc, &vddci);
pl->mclk = rdev->clock.default_mclk;
pl->sclk = rdev->clock.default_sclk;
pl->vddc = vddc;
}
}
static int rv6xx_parse_power_table(struct radeon_device *rdev)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
union pplib_power_state *power_state;
int i, j;
union pplib_clock_info *clock_info;
union power_info *power_info;
int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
u16 data_offset;
u8 frev, crev;
struct rv6xx_ps *ps;
if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset))
return -EINVAL;
power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
power_info->pplib.ucNumStates, GFP_KERNEL);
if (!rdev->pm.dpm.ps)
return -ENOMEM;
rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
for (i = 0; i < power_info->pplib.ucNumStates; i++) {
power_state = (union pplib_power_state *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usStateArrayOffset) +
i * power_info->pplib.ucStateEntrySize);
non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset) +
(power_state->v1.ucNonClockStateIndex *
power_info->pplib.ucNonClockSize));
if (power_info->pplib.ucStateEntrySize - 1) {
ps = kzalloc(sizeof(struct rv6xx_ps), GFP_KERNEL);
if (ps == NULL) {
kfree(rdev->pm.dpm.ps);
return -ENOMEM;
}
rdev->pm.dpm.ps[i].ps_priv = ps;
rv6xx_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
non_clock_info);
for (j = 0; j < (power_info->pplib.ucStateEntrySize - 1); j++) {
clock_info = (union pplib_clock_info *)
(mode_info->atom_context->bios + data_offset +
le16_to_cpu(power_info->pplib.usClockInfoArrayOffset) +
(power_state->v1.ucClockStateIndices[j] *
power_info->pplib.ucClockInfoSize));
rv6xx_parse_pplib_clock_info(rdev,
&rdev->pm.dpm.ps[i], j,
clock_info);
}
}
}
rdev->pm.dpm.num_ps = power_info->pplib.ucNumStates;
return 0;
}
int rv6xx_dpm_init(struct radeon_device *rdev)
{
int index = GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info);
uint16_t data_offset, size;
uint8_t frev, crev;
struct atom_clock_dividers dividers;
struct rv6xx_power_info *pi;
int ret;
pi = kzalloc(sizeof(struct rv6xx_power_info), GFP_KERNEL);
if (pi == NULL)
return -ENOMEM;
rdev->pm.dpm.priv = pi;
ret = rv6xx_parse_power_table(rdev);
if (ret)
return ret;
if (rdev->pm.dpm.voltage_response_time == 0)
rdev->pm.dpm.voltage_response_time = R600_VOLTAGERESPONSETIME_DFLT;
if (rdev->pm.dpm.backbias_response_time == 0)
rdev->pm.dpm.backbias_response_time = R600_BACKBIASRESPONSETIME_DFLT;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
0, false, &dividers);
if (ret)
pi->spll_ref_div = dividers.ref_div + 1;
else
pi->spll_ref_div = R600_REFERENCEDIVIDER_DFLT;
ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_MEMORY_PLL_PARAM,
0, false, &dividers);
if (ret)
pi->mpll_ref_div = dividers.ref_div + 1;
else
pi->mpll_ref_div = R600_REFERENCEDIVIDER_DFLT;
if (rdev->family >= CHIP_RV670)
pi->fb_div_scale = 1;
else
pi->fb_div_scale = 0;
pi->voltage_control =
radeon_atom_is_voltage_gpio(rdev, SET_VOLTAGE_TYPE_ASIC_VDDC);
pi->gfx_clock_gating = true;
if (atom_parse_data_header(rdev->mode_info.atom_context, index, &size,
&frev, &crev, &data_offset)) {
pi->sclk_ss = true;
pi->mclk_ss = true;
pi->dynamic_ss = true;
} else {
pi->sclk_ss = false;
pi->mclk_ss = false;
pi->dynamic_ss = false;
}
pi->dynamic_pcie_gen2 = true;
if (pi->gfx_clock_gating &&
(rdev->pm.int_thermal_type != THERMAL_TYPE_NONE))
pi->thermal_protection = true;
else
pi->thermal_protection = false;
pi->display_gap = true;
return 0;
}
void rv6xx_dpm_print_power_state(struct radeon_device *rdev,
struct radeon_ps *rps)
{
struct rv6xx_ps *ps = rv6xx_get_ps(rps);
struct rv6xx_pl *pl;
r600_dpm_print_class_info(rps->class, rps->class2);
r600_dpm_print_cap_info(rps->caps);
printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
pl = &ps->low;
printk("\t\tpower level 0 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
pl = &ps->medium;
printk("\t\tpower level 1 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
pl = &ps->high;
printk("\t\tpower level 2 sclk: %u mclk: %u vddc: %u\n",
pl->sclk, pl->mclk, pl->vddc);
r600_dpm_print_ps_status(rdev, rps);
}
void rv6xx_dpm_fini(struct radeon_device *rdev)
{
int i;
for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
kfree(rdev->pm.dpm.ps[i].ps_priv);
}
kfree(rdev->pm.dpm.ps);
kfree(rdev->pm.dpm.priv);
}
u32 rv6xx_dpm_get_sclk(struct radeon_device *rdev, bool low)
{
struct rv6xx_ps *requested_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
if (low)
return requested_state->low.sclk;
else
return requested_state->high.sclk;
}
u32 rv6xx_dpm_get_mclk(struct radeon_device *rdev, bool low)
{
struct rv6xx_ps *requested_state = rv6xx_get_ps(rdev->pm.dpm.requested_ps);
if (low)
return requested_state->low.mclk;
else
return requested_state->high.mclk;
}
/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#ifndef __RV6XX_DPM_H__
#define __RV6XX_DPM_H__
#include "r600_dpm.h"
/* Represents a single SCLK step. */
struct rv6xx_sclk_stepping
{
u32 vco_frequency;
u32 post_divider;
};
struct rv6xx_pm_hw_state {
u32 sclks[R600_PM_NUMBER_OF_ACTIVITY_LEVELS];
u32 mclks[R600_PM_NUMBER_OF_MCLKS];
u16 vddc[R600_PM_NUMBER_OF_VOLTAGE_LEVELS];
bool backbias[R600_PM_NUMBER_OF_VOLTAGE_LEVELS];
bool pcie_gen2[R600_PM_NUMBER_OF_ACTIVITY_LEVELS];
u8 high_sclk_index;
u8 medium_sclk_index;
u8 low_sclk_index;
u8 high_mclk_index;
u8 medium_mclk_index;
u8 low_mclk_index;
u8 high_vddc_index;
u8 medium_vddc_index;
u8 low_vddc_index;
u8 rp[R600_PM_NUMBER_OF_ACTIVITY_LEVELS];
u8 lp[R600_PM_NUMBER_OF_ACTIVITY_LEVELS];
};
struct rv6xx_power_info {
/* flags */
bool voltage_control;
bool sclk_ss;
bool mclk_ss;
bool dynamic_ss;
bool dynamic_pcie_gen2;
bool thermal_protection;
bool display_gap;
bool gfx_clock_gating;
/* clk values */
u32 fb_div_scale;
u32 spll_ref_div;
u32 mpll_ref_div;
u32 bsu;
u32 bsp;
/* */
u32 active_auto_throttle_sources;
/* current power state */
u32 restricted_levels;
struct rv6xx_pm_hw_state hw;
};
struct rv6xx_pl {
u32 sclk;
u32 mclk;
u16 vddc;
u32 flags;
};
struct rv6xx_ps {
struct rv6xx_pl high;
struct rv6xx_pl medium;
struct rv6xx_pl low;
};
#define RV6XX_DEFAULT_VCLK_FREQ 40000 /* 10 khz */
#define RV6XX_DEFAULT_DCLK_FREQ 30000 /* 10 khz */
#endif
/*
* Copyright 2011 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef RV6XXD_H
#define RV6XXD_H
/* RV6xx power management */
#define SPLL_CNTL_MODE 0x60c
# define SPLL_DIV_SYNC (1 << 5)
#define GENERAL_PWRMGT 0x618
# define GLOBAL_PWRMGT_EN (1 << 0)
# define STATIC_PM_EN (1 << 1)
# define MOBILE_SU (1 << 2)
# define THERMAL_PROTECTION_DIS (1 << 3)
# define THERMAL_PROTECTION_TYPE (1 << 4)
# define ENABLE_GEN2PCIE (1 << 5)
# define SW_GPIO_INDEX(x) ((x) << 6)
# define SW_GPIO_INDEX_MASK (3 << 6)
# define LOW_VOLT_D2_ACPI (1 << 8)
# define LOW_VOLT_D3_ACPI (1 << 9)
# define VOLT_PWRMGT_EN (1 << 10)
# define BACKBIAS_PAD_EN (1 << 16)
# define BACKBIAS_VALUE (1 << 17)
# define BACKBIAS_DPM_CNTL (1 << 18)
# define DYN_SPREAD_SPECTRUM_EN (1 << 21)
#define MCLK_PWRMGT_CNTL 0x624
# define MPLL_PWRMGT_OFF (1 << 0)
# define YCLK_TURNOFF (1 << 1)
# define MPLL_TURNOFF (1 << 2)
# define SU_MCLK_USE_BCLK (1 << 3)
# define DLL_READY (1 << 4)
# define MC_BUSY (1 << 5)
# define MC_INT_CNTL (1 << 7)
# define MRDCKA_SLEEP (1 << 8)
# define MRDCKB_SLEEP (1 << 9)
# define MRDCKC_SLEEP (1 << 10)
# define MRDCKD_SLEEP (1 << 11)
# define MRDCKE_SLEEP (1 << 12)
# define MRDCKF_SLEEP (1 << 13)
# define MRDCKG_SLEEP (1 << 14)
# define MRDCKH_SLEEP (1 << 15)
# define MRDCKA_RESET (1 << 16)
# define MRDCKB_RESET (1 << 17)
# define MRDCKC_RESET (1 << 18)
# define MRDCKD_RESET (1 << 19)
# define MRDCKE_RESET (1 << 20)
# define MRDCKF_RESET (1 << 21)
# define MRDCKG_RESET (1 << 22)
# define MRDCKH_RESET (1 << 23)
# define DLL_READY_READ (1 << 24)
# define USE_DISPLAY_GAP (1 << 25)
# define USE_DISPLAY_URGENT_NORMAL (1 << 26)
# define USE_DISPLAY_GAP_CTXSW (1 << 27)
# define MPLL_TURNOFF_D2 (1 << 28)
# define USE_DISPLAY_URGENT_CTXSW (1 << 29)
#define MPLL_FREQ_LEVEL_0 0x6e8
# define LEVEL0_MPLL_POST_DIV(x) ((x) << 0)
# define LEVEL0_MPLL_POST_DIV_MASK (0xff << 0)
# define LEVEL0_MPLL_FB_DIV(x) ((x) << 8)
# define LEVEL0_MPLL_FB_DIV_MASK (0xfff << 8)
# define LEVEL0_MPLL_REF_DIV(x) ((x) << 20)
# define LEVEL0_MPLL_REF_DIV_MASK (0x3f << 20)
# define LEVEL0_MPLL_DIV_EN (1 << 28)
# define LEVEL0_DLL_BYPASS (1 << 29)
# define LEVEL0_DLL_RESET (1 << 30)
#define VID_RT 0x6f8
# define VID_CRT(x) ((x) << 0)
# define VID_CRT_MASK (0x1fff << 0)
# define VID_CRTU(x) ((x) << 13)
# define VID_CRTU_MASK (7 << 13)
# define SSTU(x) ((x) << 16)
# define SSTU_MASK (7 << 16)
# define VID_SWT(x) ((x) << 19)
# define VID_SWT_MASK (0x1f << 19)
# define BRT(x) ((x) << 24)
# define BRT_MASK (0xff << 24)
#define TARGET_AND_CURRENT_PROFILE_INDEX 0x70c
# define TARGET_PROFILE_INDEX_MASK (3 << 0)
# define TARGET_PROFILE_INDEX_SHIFT 0
# define CURRENT_PROFILE_INDEX_MASK (3 << 2)
# define CURRENT_PROFILE_INDEX_SHIFT 2
# define DYN_PWR_ENTER_INDEX(x) ((x) << 4)
# define DYN_PWR_ENTER_INDEX_MASK (3 << 4)
# define DYN_PWR_ENTER_INDEX_SHIFT 4
# define CURR_MCLK_INDEX_MASK (3 << 6)
# define CURR_MCLK_INDEX_SHIFT 6
# define CURR_SCLK_INDEX_MASK (0x1f << 8)
# define CURR_SCLK_INDEX_SHIFT 8
# define CURR_VID_INDEX_MASK (3 << 13)
# define CURR_VID_INDEX_SHIFT 13
#define VID_UPPER_GPIO_CNTL 0x740
# define CTXSW_UPPER_GPIO_VALUES(x) ((x) << 0)
# define CTXSW_UPPER_GPIO_VALUES_MASK (7 << 0)
# define HIGH_UPPER_GPIO_VALUES(x) ((x) << 3)
# define HIGH_UPPER_GPIO_VALUES_MASK (7 << 3)
# define MEDIUM_UPPER_GPIO_VALUES(x) ((x) << 6)
# define MEDIUM_UPPER_GPIO_VALUES_MASK (7 << 6)
# define LOW_UPPER_GPIO_VALUES(x) ((x) << 9)
# define LOW_UPPER_GPIO_VALUES_MASK (7 << 9)
# define CTXSW_BACKBIAS_VALUE (1 << 12)
# define HIGH_BACKBIAS_VALUE (1 << 13)
# define MEDIUM_BACKBIAS_VALUE (1 << 14)
# define LOW_BACKBIAS_VALUE (1 << 15)
#define CG_DISPLAY_GAP_CNTL 0x7dc
# define DISP1_GAP(x) ((x) << 0)
# define DISP1_GAP_MASK (3 << 0)
# define DISP2_GAP(x) ((x) << 2)
# define DISP2_GAP_MASK (3 << 2)
# define VBI_TIMER_COUNT(x) ((x) << 4)
# define VBI_TIMER_COUNT_MASK (0x3fff << 4)
# define VBI_TIMER_UNIT(x) ((x) << 20)
# define VBI_TIMER_UNIT_MASK (7 << 20)
# define DISP1_GAP_MCHG(x) ((x) << 24)
# define DISP1_GAP_MCHG_MASK (3 << 24)
# define DISP2_GAP_MCHG(x) ((x) << 26)
# define DISP2_GAP_MCHG_MASK (3 << 26)
#define CG_THERMAL_CTRL 0x7f0
# define DPM_EVENT_SRC(x) ((x) << 0)
# define DPM_EVENT_SRC_MASK (7 << 0)
# define THERM_INC_CLK (1 << 3)
# define TOFFSET(x) ((x) << 4)
# define TOFFSET_MASK (0xff << 4)
# define DIG_THERM_DPM(x) ((x) << 12)
# define DIG_THERM_DPM_MASK (0xff << 12)
# define CTF_SEL(x) ((x) << 20)
# define CTF_SEL_MASK (7 << 20)
# define CTF_PAD_POLARITY (1 << 23)
# define CTF_PAD_EN (1 << 24)
#define CG_SPLL_SPREAD_SPECTRUM_LOW 0x820
# define SSEN (1 << 0)
# define CLKS(x) ((x) << 3)
# define CLKS_MASK (0xff << 3)
# define CLKS_SHIFT 3
# define CLKV(x) ((x) << 11)
# define CLKV_MASK (0x7ff << 11)
# define CLKV_SHIFT 11
#define CG_MPLL_SPREAD_SPECTRUM 0x830
#define CITF_CNTL 0x200c
# define BLACKOUT_RD (1 << 0)
# define BLACKOUT_WR (1 << 1)
#define RAMCFG 0x2408
#define NOOFBANK_SHIFT 0
#define NOOFBANK_MASK 0x00000001
#define NOOFRANK_SHIFT 1
#define NOOFRANK_MASK 0x00000002
#define NOOFROWS_SHIFT 2
#define NOOFROWS_MASK 0x0000001C
#define NOOFCOLS_SHIFT 5
#define NOOFCOLS_MASK 0x00000060
#define CHANSIZE_SHIFT 7
#define CHANSIZE_MASK 0x00000080
#define BURSTLENGTH_SHIFT 8
#define BURSTLENGTH_MASK 0x00000100
#define CHANSIZE_OVERRIDE (1 << 10)
#define SQM_RATIO 0x2424
# define STATE0(x) ((x) << 0)
# define STATE0_MASK (0xff << 0)
# define STATE1(x) ((x) << 8)
# define STATE1_MASK (0xff << 8)
# define STATE2(x) ((x) << 16)
# define STATE2_MASK (0xff << 16)
# define STATE3(x) ((x) << 24)
# define STATE3_MASK (0xff << 24)
#define ARB_RFSH_CNTL 0x2460
# define ENABLE (1 << 0)
#define ARB_RFSH_RATE 0x2464
# define POWERMODE0(x) ((x) << 0)
# define POWERMODE0_MASK (0xff << 0)
# define POWERMODE1(x) ((x) << 8)
# define POWERMODE1_MASK (0xff << 8)
# define POWERMODE2(x) ((x) << 16)
# define POWERMODE2_MASK (0xff << 16)
# define POWERMODE3(x) ((x) << 24)
# define POWERMODE3_MASK (0xff << 24)
#define MC_SEQ_DRAM 0x2608
# define CKE_DYN (1 << 12)
#define MC_SEQ_CMD 0x26c4
#define MC_SEQ_RESERVE_S 0x2890
#define MC_SEQ_RESERVE_M 0x2894
#define LVTMA_DATA_SYNCHRONIZATION 0x7adc
# define LVTMA_PFREQCHG (1 << 8)
#define DCE3_LVTMA_DATA_SYNCHRONIZATION 0x7f98
/* PCIE indirect regs */
#define PCIE_P_CNTL 0x40
# define P_PLL_PWRDN_IN_L1L23 (1 << 3)
# define P_PLL_BUF_PDNB (1 << 4)
# define P_PLL_PDNB (1 << 9)
# define P_ALLOW_PRX_FRONTEND_SHUTOFF (1 << 12)
/* PCIE PORT indirect regs */
#define PCIE_LC_CNTL 0xa0
# define LC_L0S_INACTIVITY(x) ((x) << 8)
# define LC_L0S_INACTIVITY_MASK (0xf << 8)
# define LC_L0S_INACTIVITY_SHIFT 8
# define LC_L1_INACTIVITY(x) ((x) << 12)
# define LC_L1_INACTIVITY_MASK (0xf << 12)
# define LC_L1_INACTIVITY_SHIFT 12
# define LC_PMI_TO_L1_DIS (1 << 16)
# define LC_ASPM_TO_L1_DIS (1 << 24)
#define PCIE_LC_SPEED_CNTL 0xa4
# define LC_GEN2_EN (1 << 0)
# define LC_INITIATE_LINK_SPEED_CHANGE (1 << 7)
# define LC_CURRENT_DATA_RATE (1 << 11)
# define LC_HW_VOLTAGE_IF_CONTROL(x) ((x) << 12)
# define LC_HW_VOLTAGE_IF_CONTROL_MASK (3 << 12)
# define LC_HW_VOLTAGE_IF_CONTROL_SHIFT 12
# define LC_OTHER_SIDE_EVER_SENT_GEN2 (1 << 23)
# define LC_OTHER_SIDE_SUPPORTS_GEN2 (1 << 24)
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment