Commit ddf30f7f authored by Anirudh Venkataramanan's avatar Anirudh Venkataramanan Committed by Jeff Kirsher

ice: Add handler to configure SR-IOV

This patch implements parts of ice_sriov_configure and VF reset flow.

To create virtual functions (VFs), the user sets a value in num_vfs
through sysfs. This results in the kernel calling the handler for
.sriov_configure which is ice_sriov_configure.

VF setup first starts with a VF reset, followed by allocation of the VF
VSI using ice_vf_vsi_setup. Once the VF setup is complete a state bit
ICE_VF_STATE_INIT is set in the vf->states bitmap to indicate that
the VF is ready to go.

Also for VF reset to go into effect, it's necessary to issue a disable
queue command (ice_aqc_opc_dis_txqs). So this patch updates multiple
functions in the disable queue flow to take additional parameters that
distinguish if queues are being disabled due to VF reset.
Signed-off-by: default avatarAnirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: default avatarAndrew Bowers <andrewx.bowers@intel.com>
Signed-off-by: default avatarJeff Kirsher <jeffrey.t.kirsher@intel.com>
parent 75d2b253
...@@ -16,3 +16,4 @@ ice-y := ice_main.o \ ...@@ -16,3 +16,4 @@ ice-y := ice_main.o \
ice_lib.o \ ice_lib.o \
ice_txrx.o \ ice_txrx.o \
ice_ethtool.o ice_ethtool.o
ice-$(CONFIG_PCI_IOV) += ice_virtchnl_pf.o
...@@ -28,6 +28,7 @@ ...@@ -28,6 +28,7 @@
#include <linux/ip.h> #include <linux/ip.h>
#include <linux/ipv6.h> #include <linux/ipv6.h>
#include <linux/if_bridge.h> #include <linux/if_bridge.h>
#include <linux/avf/virtchnl.h>
#include <net/ipv6.h> #include <net/ipv6.h>
#include "ice_devids.h" #include "ice_devids.h"
#include "ice_type.h" #include "ice_type.h"
...@@ -35,6 +36,7 @@ ...@@ -35,6 +36,7 @@
#include "ice_switch.h" #include "ice_switch.h"
#include "ice_common.h" #include "ice_common.h"
#include "ice_sched.h" #include "ice_sched.h"
#include "ice_virtchnl_pf.h"
extern const char ice_drv_ver[]; extern const char ice_drv_ver[];
#define ICE_BAR0 0 #define ICE_BAR0 0
...@@ -65,6 +67,12 @@ extern const char ice_drv_ver[]; ...@@ -65,6 +67,12 @@ extern const char ice_drv_ver[];
#define ICE_INVAL_Q_INDEX 0xffff #define ICE_INVAL_Q_INDEX 0xffff
#define ICE_INVAL_VFID 256 #define ICE_INVAL_VFID 256
#define ICE_MAX_VF_COUNT 256 #define ICE_MAX_VF_COUNT 256
#define ICE_MAX_QS_PER_VF 256
#define ICE_MIN_QS_PER_VF 1
#define ICE_DFLT_QS_PER_VF 4
#define ICE_MAX_INTR_PER_VF 65
#define ICE_MIN_INTR_PER_VF (ICE_MIN_QS_PER_VF + 1)
#define ICE_DFLT_INTR_PER_VF (ICE_DFLT_QS_PER_VF + 1)
#define ICE_VSIQF_HKEY_ARRAY_SIZE ((VSIQF_HKEY_MAX_INDEX + 1) * 4) #define ICE_VSIQF_HKEY_ARRAY_SIZE ((VSIQF_HKEY_MAX_INDEX + 1) * 4)
...@@ -135,10 +143,20 @@ enum ice_state { ...@@ -135,10 +143,20 @@ enum ice_state {
__ICE_EMPR_RECV, /* set by OICR handler */ __ICE_EMPR_RECV, /* set by OICR handler */
__ICE_SUSPENDED, /* set on module remove path */ __ICE_SUSPENDED, /* set on module remove path */
__ICE_RESET_FAILED, /* set by reset/rebuild */ __ICE_RESET_FAILED, /* set by reset/rebuild */
/* When checking for the PF to be in a nominal operating state, the
* bits that are grouped at the beginning of the list need to be
* checked. Bits occurring before __ICE_STATE_NOMINAL_CHECK_BITS will
* be checked. If you need to add a bit into consideration for nominal
* operating state, it must be added before
* __ICE_STATE_NOMINAL_CHECK_BITS. Do not move this entry's position
* without appropriate consideration.
*/
__ICE_STATE_NOMINAL_CHECK_BITS,
__ICE_ADMINQ_EVENT_PENDING, __ICE_ADMINQ_EVENT_PENDING,
__ICE_MAILBOXQ_EVENT_PENDING, __ICE_MAILBOXQ_EVENT_PENDING,
__ICE_MDD_EVENT_PENDING, __ICE_MDD_EVENT_PENDING,
__ICE_FLTR_OVERFLOW_PROMISC, __ICE_FLTR_OVERFLOW_PROMISC,
__ICE_VF_DIS,
__ICE_CFG_BUSY, __ICE_CFG_BUSY,
__ICE_SERVICE_SCHED, __ICE_SERVICE_SCHED,
__ICE_SERVICE_DIS, __ICE_SERVICE_DIS,
...@@ -243,6 +261,7 @@ enum ice_pf_flags { ...@@ -243,6 +261,7 @@ enum ice_pf_flags {
ICE_FLAG_MSIX_ENA, ICE_FLAG_MSIX_ENA,
ICE_FLAG_FLTR_SYNC, ICE_FLAG_FLTR_SYNC,
ICE_FLAG_RSS_ENA, ICE_FLAG_RSS_ENA,
ICE_FLAG_SRIOV_ENA,
ICE_FLAG_SRIOV_CAPABLE, ICE_FLAG_SRIOV_CAPABLE,
ICE_PF_FLAGS_NBITS /* must be last */ ICE_PF_FLAGS_NBITS /* must be last */
}; };
...@@ -259,7 +278,12 @@ struct ice_pf { ...@@ -259,7 +278,12 @@ struct ice_pf {
struct ice_vsi **vsi; /* VSIs created by the driver */ struct ice_vsi **vsi; /* VSIs created by the driver */
struct ice_sw *first_sw; /* first switch created by firmware */ struct ice_sw *first_sw; /* first switch created by firmware */
/* Virtchnl/SR-IOV config info */
struct ice_vf *vf;
int num_alloc_vfs; /* actual number of VFs allocated */
u16 num_vfs_supported; /* num VFs supported for this PF */ u16 num_vfs_supported; /* num VFs supported for this PF */
u16 num_vf_qps; /* num queue pairs per VF */
u16 num_vf_msix; /* num vectors per VF */
DECLARE_BITMAP(state, __ICE_STATE_NBITS); DECLARE_BITMAP(state, __ICE_STATE_NBITS);
DECLARE_BITMAP(avail_txqs, ICE_MAX_TXQS); DECLARE_BITMAP(avail_txqs, ICE_MAX_TXQS);
DECLARE_BITMAP(avail_rxqs, ICE_MAX_RXQS); DECLARE_BITMAP(avail_rxqs, ICE_MAX_RXQS);
......
...@@ -2287,6 +2287,8 @@ ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, ...@@ -2287,6 +2287,8 @@ ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
* @num_qgrps: number of groups in the list * @num_qgrps: number of groups in the list
* @qg_list: the list of groups to disable * @qg_list: the list of groups to disable
* @buf_size: the total size of the qg_list buffer in bytes * @buf_size: the total size of the qg_list buffer in bytes
* @rst_src: if called due to reset, specifies the RST source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL * @cd: pointer to command details structure or NULL
* *
* Disable LAN Tx queue (0x0C31) * Disable LAN Tx queue (0x0C31)
...@@ -2294,6 +2296,7 @@ ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps, ...@@ -2294,6 +2296,7 @@ ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
static enum ice_status static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size, struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd) struct ice_sq_cd *cd)
{ {
struct ice_aqc_dis_txqs *cmd; struct ice_aqc_dis_txqs *cmd;
...@@ -2303,14 +2306,45 @@ ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, ...@@ -2303,14 +2306,45 @@ ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
cmd = &desc.params.dis_txqs; cmd = &desc.params.dis_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs); ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
if (!qg_list) /* qg_list can be NULL only in VM/VF reset flow */
if (!qg_list && !rst_src)
return ICE_ERR_PARAM; return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS) if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM; return ICE_ERR_PARAM;
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->num_entries = num_qgrps; cmd->num_entries = num_qgrps;
cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
ICE_AQC_Q_DIS_TIMEOUT_M);
switch (rst_src) {
case ICE_VM_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
cmd->vmvf_and_timeout |=
cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_VF_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
/* In this case, FW expects vmvf_num to be absolute VF id */
cmd->vmvf_and_timeout |=
cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_NO_RESET:
default:
break;
}
/* If no queue group info, we are in a reset flow. Issue the AQ */
if (!qg_list)
goto do_aq;
/* set RD bit to indicate that command buffer is provided by the driver
* and it needs to be read by the firmware
*/
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
for (i = 0; i < num_qgrps; ++i) { for (i = 0; i < num_qgrps; ++i) {
/* Calculate the size taken up by the queue IDs in this group */ /* Calculate the size taken up by the queue IDs in this group */
sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id); sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
...@@ -2326,6 +2360,7 @@ ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps, ...@@ -2326,6 +2360,7 @@ ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
if (buf_size != sz) if (buf_size != sz)
return ICE_ERR_PARAM; return ICE_ERR_PARAM;
do_aq:
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd); return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
} }
...@@ -2632,13 +2667,16 @@ ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps, ...@@ -2632,13 +2667,16 @@ ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_qgrps,
* @num_queues: number of queues * @num_queues: number of queues
* @q_ids: pointer to the q_id array * @q_ids: pointer to the q_id array
* @q_teids: pointer to queue node teids * @q_teids: pointer to queue node teids
* @rst_src: if called due to reset, specifies the RST source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL * @cd: pointer to command details structure or NULL
* *
* This function removes queues and their corresponding nodes in SW DB * This function removes queues and their corresponding nodes in SW DB
*/ */
enum ice_status enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids, ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
u32 *q_teids, struct ice_sq_cd *cd) u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{ {
enum ice_status status = ICE_ERR_DOES_NOT_EXIST; enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
struct ice_aqc_dis_txq_item qg_list; struct ice_aqc_dis_txq_item qg_list;
...@@ -2647,6 +2685,15 @@ ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids, ...@@ -2647,6 +2685,15 @@ ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY) if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG; return ICE_ERR_CFG;
/* if queue is disabled already yet the disable queue command has to be
* sent to complete the VF reset, then call ice_aq_dis_lan_txq without
* any queue information
*/
if (!num_queues && rst_src)
return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src, vmvf_num,
NULL);
mutex_lock(&pi->sched_lock); mutex_lock(&pi->sched_lock);
for (i = 0; i < num_queues; i++) { for (i = 0; i < num_queues; i++) {
...@@ -2659,7 +2706,8 @@ ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids, ...@@ -2659,7 +2706,8 @@ ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
qg_list.num_qs = 1; qg_list.num_qs = 1;
qg_list.q_id[0] = cpu_to_le16(q_ids[i]); qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list, status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
sizeof(qg_list), cd); sizeof(qg_list), rst_src, vmvf_num,
cd);
if (status) if (status)
break; break;
......
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
#include "ice.h" #include "ice.h"
#include "ice_type.h" #include "ice_type.h"
#include "ice_switch.h" #include "ice_switch.h"
#include <linux/avf/virtchnl.h>
void ice_debug_cq(struct ice_hw *hw, u32 mask, void *desc, void *buf, void ice_debug_cq(struct ice_hw *hw, u32 mask, void *desc, void *buf,
u16 buf_len); u16 buf_len);
...@@ -89,7 +90,8 @@ ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask, ...@@ -89,7 +90,8 @@ ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
struct ice_sq_cd *cd); struct ice_sq_cd *cd);
enum ice_status enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids, ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
u32 *q_teids, struct ice_sq_cd *cmd_details); u32 *q_teids, enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cmd_details);
enum ice_status enum ice_status
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap, ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
u16 *max_lanqs); u16 *max_lanqs);
......
...@@ -90,10 +90,16 @@ ...@@ -90,10 +90,16 @@
#define GLGEN_RTRIG_CORER_M BIT(0) #define GLGEN_RTRIG_CORER_M BIT(0)
#define GLGEN_RTRIG_GLOBR_M BIT(1) #define GLGEN_RTRIG_GLOBR_M BIT(1)
#define GLGEN_STAT 0x000B612C #define GLGEN_STAT 0x000B612C
#define GLGEN_VFLRSTAT(_i) (0x00093A04 + ((_i) * 4))
#define PFGEN_CTRL 0x00091000 #define PFGEN_CTRL 0x00091000
#define PFGEN_CTRL_PFSWR_M BIT(0) #define PFGEN_CTRL_PFSWR_M BIT(0)
#define PFGEN_STATE 0x00088000 #define PFGEN_STATE 0x00088000
#define PRTGEN_STATUS 0x000B8100 #define PRTGEN_STATUS 0x000B8100
#define VFGEN_RSTAT(_VF) (0x00074000 + ((_VF) * 4))
#define VPGEN_VFRSTAT(_VF) (0x00090800 + ((_VF) * 4))
#define VPGEN_VFRSTAT_VFRD_M BIT(0)
#define VPGEN_VFRTRIG(_VF) (0x00090000 + ((_VF) * 4))
#define VPGEN_VFRTRIG_VFSWR_M BIT(0)
#define PFHMC_ERRORDATA 0x00520500 #define PFHMC_ERRORDATA 0x00520500
#define PFHMC_ERRORINFO 0x00520400 #define PFHMC_ERRORINFO 0x00520400
#define GLINT_DYN_CTL(_INT) (0x00160000 + ((_INT) * 4)) #define GLINT_DYN_CTL(_INT) (0x00160000 + ((_INT) * 4))
...@@ -106,6 +112,13 @@ ...@@ -106,6 +112,13 @@
#define GLINT_ITR(_i, _INT) (0x00154000 + ((_i) * 8192 + (_INT) * 4)) #define GLINT_ITR(_i, _INT) (0x00154000 + ((_i) * 8192 + (_INT) * 4))
#define GLINT_RATE(_INT) (0x0015A000 + ((_INT) * 4)) #define GLINT_RATE(_INT) (0x0015A000 + ((_INT) * 4))
#define GLINT_RATE_INTRL_ENA_M BIT(6) #define GLINT_RATE_INTRL_ENA_M BIT(6)
#define GLINT_VECT2FUNC(_INT) (0x00162000 + ((_INT) * 4))
#define GLINT_VECT2FUNC_VF_NUM_S 0
#define GLINT_VECT2FUNC_VF_NUM_M ICE_M(0xFF, 0)
#define GLINT_VECT2FUNC_PF_NUM_S 12
#define GLINT_VECT2FUNC_PF_NUM_M ICE_M(0x7, 12)
#define GLINT_VECT2FUNC_IS_PF_S 16
#define GLINT_VECT2FUNC_IS_PF_M BIT(16)
#define PFINT_FW_CTL 0x0016C800 #define PFINT_FW_CTL 0x0016C800
#define PFINT_FW_CTL_MSIX_INDX_M ICE_M(0x7FF, 0) #define PFINT_FW_CTL_MSIX_INDX_M ICE_M(0x7FF, 0)
#define PFINT_FW_CTL_ITR_INDX_S 11 #define PFINT_FW_CTL_ITR_INDX_S 11
...@@ -137,6 +150,12 @@ ...@@ -137,6 +150,12 @@
#define QINT_TQCTL_MSIX_INDX_S 0 #define QINT_TQCTL_MSIX_INDX_S 0
#define QINT_TQCTL_ITR_INDX_S 11 #define QINT_TQCTL_ITR_INDX_S 11
#define QINT_TQCTL_CAUSE_ENA_M BIT(30) #define QINT_TQCTL_CAUSE_ENA_M BIT(30)
#define VPINT_ALLOC(_VF) (0x001D1000 + ((_VF) * 4))
#define VPINT_ALLOC_FIRST_S 0
#define VPINT_ALLOC_FIRST_M ICE_M(0x7FF, 0)
#define VPINT_ALLOC_LAST_S 12
#define VPINT_ALLOC_LAST_M ICE_M(0x7FF, 12)
#define VPINT_ALLOC_VALID_M BIT(31)
#define QRX_CONTEXT(_i, _QRX) (0x00280000 + ((_i) * 8192 + (_QRX) * 4)) #define QRX_CONTEXT(_i, _QRX) (0x00280000 + ((_i) * 8192 + (_QRX) * 4))
#define QRX_CTRL(_QRX) (0x00120000 + ((_QRX) * 4)) #define QRX_CTRL(_QRX) (0x00120000 + ((_QRX) * 4))
#define QRX_CTRL_MAX_INDEX 2047 #define QRX_CTRL_MAX_INDEX 2047
...@@ -149,6 +168,20 @@ ...@@ -149,6 +168,20 @@
#define QRX_TAIL_MAX_INDEX 2047 #define QRX_TAIL_MAX_INDEX 2047
#define QRX_TAIL_TAIL_S 0 #define QRX_TAIL_TAIL_S 0
#define QRX_TAIL_TAIL_M ICE_M(0x1FFF, 0) #define QRX_TAIL_TAIL_M ICE_M(0x1FFF, 0)
#define VPLAN_RX_QBASE(_VF) (0x00072000 + ((_VF) * 4))
#define VPLAN_RX_QBASE_VFFIRSTQ_S 0
#define VPLAN_RX_QBASE_VFFIRSTQ_M ICE_M(0x7FF, 0)
#define VPLAN_RX_QBASE_VFNUMQ_S 16
#define VPLAN_RX_QBASE_VFNUMQ_M ICE_M(0xFF, 16)
#define VPLAN_RXQ_MAPENA(_VF) (0x00073000 + ((_VF) * 4))
#define VPLAN_RXQ_MAPENA_RX_ENA_M BIT(0)
#define VPLAN_TX_QBASE(_VF) (0x001D1800 + ((_VF) * 4))
#define VPLAN_TX_QBASE_VFFIRSTQ_S 0
#define VPLAN_TX_QBASE_VFFIRSTQ_M ICE_M(0x3FFF, 0)
#define VPLAN_TX_QBASE_VFNUMQ_S 16
#define VPLAN_TX_QBASE_VFNUMQ_M ICE_M(0xFF, 16)
#define VPLAN_TXQ_MAPENA(_VF) (0x00073800 + ((_VF) * 4))
#define VPLAN_TXQ_MAPENA_TX_ENA_M BIT(0)
#define GL_MDET_RX 0x00294C00 #define GL_MDET_RX 0x00294C00
#define GL_MDET_RX_QNUM_S 0 #define GL_MDET_RX_QNUM_S 0
#define GL_MDET_RX_QNUM_M ICE_M(0x7FFF, 0) #define GL_MDET_RX_QNUM_M ICE_M(0x7FFF, 0)
...@@ -196,6 +229,9 @@ ...@@ -196,6 +229,9 @@
#define PF_FUNC_RID 0x0009E880 #define PF_FUNC_RID 0x0009E880
#define PF_FUNC_RID_FUNC_NUM_S 0 #define PF_FUNC_RID_FUNC_NUM_S 0
#define PF_FUNC_RID_FUNC_NUM_M ICE_M(0x7, 0) #define PF_FUNC_RID_FUNC_NUM_M ICE_M(0x7, 0)
#define PF_PCI_CIAA 0x0009E580
#define PF_PCI_CIAA_VF_NUM_S 12
#define PF_PCI_CIAD 0x0009E500
#define GL_PWR_MODE_CTL 0x000B820C #define GL_PWR_MODE_CTL 0x000B820C
#define GL_PWR_MODE_CTL_CAR_MAX_BW_S 30 #define GL_PWR_MODE_CTL_CAR_MAX_BW_S 30
#define GL_PWR_MODE_CTL_CAR_MAX_BW_M ICE_M(0x3, 30) #define GL_PWR_MODE_CTL_CAR_MAX_BW_M ICE_M(0x3, 30)
...@@ -276,5 +312,7 @@ ...@@ -276,5 +312,7 @@
#define GLV_UPTCH(_i) (0x0030A004 + ((_i) * 8)) #define GLV_UPTCH(_i) (0x0030A004 + ((_i) * 8))
#define GLV_UPTCL(_i) (0x0030A000 + ((_i) * 8)) #define GLV_UPTCL(_i) (0x0030A000 + ((_i) * 8))
#define VSIQF_HKEY_MAX_INDEX 12 #define VSIQF_HKEY_MAX_INDEX 12
#define VFINT_DYN_CTLN(_i) (0x00003800 + ((_i) * 4))
#define VFINT_DYN_CTLN_CLEARPBA_M BIT(1)
#endif /* _ICE_HW_AUTOGEN_H_ */ #endif /* _ICE_HW_AUTOGEN_H_ */
...@@ -1784,8 +1784,11 @@ int ice_vsi_stop_rx_rings(struct ice_vsi *vsi) ...@@ -1784,8 +1784,11 @@ int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
/** /**
* ice_vsi_stop_tx_rings - Disable Tx rings * ice_vsi_stop_tx_rings - Disable Tx rings
* @vsi: the VSI being configured * @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative id of VF/VM
*/ */
int ice_vsi_stop_tx_rings(struct ice_vsi *vsi) int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num)
{ {
struct ice_pf *pf = vsi->back; struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw; struct ice_hw *hw = &pf->hw;
...@@ -1837,7 +1840,7 @@ int ice_vsi_stop_tx_rings(struct ice_vsi *vsi) ...@@ -1837,7 +1840,7 @@ int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M); GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
} }
status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids, status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
NULL); rst_src, rel_vmvf_num, NULL);
/* if the disable queue command was exercised during an active reset /* if the disable queue command was exercised during an active reset
* flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as * flow, ICE_ERR_RESET_ONGOING is returned. This is not an error as
* the reset operation disables queues at the hardware level anyway. * the reset operation disables queues at the hardware level anyway.
......
...@@ -31,7 +31,8 @@ int ice_vsi_start_rx_rings(struct ice_vsi *vsi); ...@@ -31,7 +31,8 @@ int ice_vsi_start_rx_rings(struct ice_vsi *vsi);
int ice_vsi_stop_rx_rings(struct ice_vsi *vsi); int ice_vsi_stop_rx_rings(struct ice_vsi *vsi);
int ice_vsi_stop_tx_rings(struct ice_vsi *vsi); int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
u16 rel_vmvf_num);
int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena); int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena);
......
...@@ -2185,6 +2185,8 @@ static void ice_remove(struct pci_dev *pdev) ...@@ -2185,6 +2185,8 @@ static void ice_remove(struct pci_dev *pdev)
set_bit(__ICE_DOWN, pf->state); set_bit(__ICE_DOWN, pf->state);
ice_service_task_stop(pf); ice_service_task_stop(pf);
if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
ice_free_vfs(pf);
ice_vsi_release_all(pf); ice_vsi_release_all(pf);
ice_free_irq_msix_misc(pf); ice_free_irq_msix_misc(pf);
ice_for_each_vsi(pf, i) { ice_for_each_vsi(pf, i) {
...@@ -2220,6 +2222,7 @@ static struct pci_driver ice_driver = { ...@@ -2220,6 +2222,7 @@ static struct pci_driver ice_driver = {
.id_table = ice_pci_tbl, .id_table = ice_pci_tbl,
.probe = ice_probe, .probe = ice_probe,
.remove = ice_remove, .remove = ice_remove,
.sriov_configure = ice_sriov_configure,
}; };
/** /**
...@@ -2955,7 +2958,7 @@ int ice_down(struct ice_vsi *vsi) ...@@ -2955,7 +2958,7 @@ int ice_down(struct ice_vsi *vsi)
} }
ice_vsi_dis_irq(vsi); ice_vsi_dis_irq(vsi);
tx_err = ice_vsi_stop_tx_rings(vsi); tx_err = ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0);
if (tx_err) if (tx_err)
netdev_err(vsi->netdev, netdev_err(vsi->netdev,
"Failed stop Tx rings, VSI %d error %d\n", "Failed stop Tx rings, VSI %d error %d\n",
...@@ -3357,6 +3360,7 @@ static void ice_rebuild(struct ice_pf *pf) ...@@ -3357,6 +3360,7 @@ static void ice_rebuild(struct ice_pf *pf)
goto err_vsi_rebuild; goto err_vsi_rebuild;
} }
ice_reset_all_vfs(pf, true);
/* if we get here, reset flow is successful */ /* if we get here, reset flow is successful */
clear_bit(__ICE_RESET_FAILED, pf->state); clear_bit(__ICE_RESET_FAILED, pf->state);
return; return;
......
...@@ -104,6 +104,15 @@ struct ice_link_status { ...@@ -104,6 +104,15 @@ struct ice_link_status {
u8 module_type[ICE_MODULE_TYPE_TOTAL_BYTE]; u8 module_type[ICE_MODULE_TYPE_TOTAL_BYTE];
}; };
/* Different reset sources for which a disable queue AQ call has to be made in
* order to clean the TX scheduler as a part of the reset
*/
enum ice_disq_rst_src {
ICE_NO_RESET = 0,
ICE_VM_RESET,
ICE_VF_RESET,
};
/* PHY info such as phy_type, etc... */ /* PHY info such as phy_type, etc... */
struct ice_phy_info { struct ice_phy_info {
struct ice_link_status link_info; struct ice_link_status link_info;
...@@ -130,6 +139,7 @@ struct ice_hw_common_caps { ...@@ -130,6 +139,7 @@ struct ice_hw_common_caps {
/* Virtualization support */ /* Virtualization support */
u8 sr_iov_1_1; /* SR-IOV enabled */ u8 sr_iov_1_1; /* SR-IOV enabled */
/* RSS related capabilities */ /* RSS related capabilities */
u16 rss_table_size; /* 512 for PFs and 64 for VFs */ u16 rss_table_size; /* 512 for PFs and 64 for VFs */
u8 rss_table_entry_width; /* RSS Entry width in bits */ u8 rss_table_entry_width; /* RSS Entry width in bits */
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_lib.h"
/**
* ice_get_vf_vector - get VF interrupt vector register offset
* @vf_msix: number of MSIx vector per VF on a PF
* @vf_id: VF identifier
* @i: index of MSIx vector
*/
static u32 ice_get_vf_vector(int vf_msix, int vf_id, int i)
{
return ((i == 0) ? VFINT_DYN_CTLN(vf_id) :
VFINT_DYN_CTLN(((vf_msix - 1) * (vf_id)) + (i - 1)));
}
/**
* ice_free_vf_res - Free a VF's resources
* @vf: pointer to the VF info
*/
static void ice_free_vf_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
int i, pf_vf_msix;
/* First, disable VF's configuration API to prevent OS from
* accessing the VF's VSI after it's freed or invalidated.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* free vsi & disconnect it from the parent uplink */
if (vf->lan_vsi_idx) {
ice_vsi_release(pf->vsi[vf->lan_vsi_idx]);
vf->lan_vsi_idx = 0;
vf->lan_vsi_num = 0;
vf->num_mac = 0;
}
pf_vf_msix = pf->num_vf_msix;
/* Disable interrupts so that VF starts in a known state */
for (i = 0; i < pf_vf_msix; i++) {
u32 reg_idx;
reg_idx = ice_get_vf_vector(pf_vf_msix, vf->vf_id, i);
wr32(&pf->hw, reg_idx, VFINT_DYN_CTLN_CLEARPBA_M);
ice_flush(&pf->hw);
}
/* reset some of the state variables keeping track of the resources */
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
}
/***********************enable_vf routines*****************************/
/**
* ice_dis_vf_mappings
* @vf: pointer to the VF structure
*/
static void ice_dis_vf_mappings(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int first, last, v;
struct ice_hw *hw;
hw = &pf->hw;
vsi = pf->vsi[vf->lan_vsi_idx];
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
first = vf->first_vector_idx;
last = first + pf->num_vf_msix - 1;
for (v = first; v <= last; v++) {
u32 reg;
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
GLINT_VECT2FUNC_IS_PF_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
else
dev_err(&pf->pdev->dev,
"Scattered mode for VF Tx queues is not yet implemented\n");
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
else
dev_err(&pf->pdev->dev,
"Scattered mode for VF Rx queues is not yet implemented\n");
}
/**
* ice_free_vfs - Free all VFs
* @pf: pointer to the PF structure
*/
void ice_free_vfs(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
int tmp, i;
if (!pf->vf)
return;
while (test_and_set_bit(__ICE_VF_DIS, pf->state))
usleep_range(1000, 2000);
/* Avoid wait time by stopping all VFs at the same time */
for (i = 0; i < pf->num_alloc_vfs; i++) {
if (!test_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states))
continue;
/* stop rings without wait time */
ice_vsi_stop_tx_rings(pf->vsi[pf->vf[i].lan_vsi_idx],
ICE_NO_RESET, i);
ice_vsi_stop_rx_rings(pf->vsi[pf->vf[i].lan_vsi_idx]);
clear_bit(ICE_VF_STATE_ENA, pf->vf[i].vf_states);
}
/* Disable IOV before freeing resources. This lets any VF drivers
* running in the host get themselves cleaned up before we yank
* the carpet out from underneath their feet.
*/
if (!pci_vfs_assigned(pf->pdev))
pci_disable_sriov(pf->pdev);
else
dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n");
tmp = pf->num_alloc_vfs;
pf->num_vf_qps = 0;
pf->num_alloc_vfs = 0;
for (i = 0; i < tmp; i++) {
if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
/* disable VF qp mappings */
ice_dis_vf_mappings(&pf->vf[i]);
/* Set this state so that assigned VF vectors can be
* reclaimed by PF for reuse in ice_vsi_release(). No
* need to clear this bit since pf->vf array is being
* freed anyways after this for loop
*/
set_bit(ICE_VF_STATE_CFG_INTR, pf->vf[i].vf_states);
ice_free_vf_res(&pf->vf[i]);
}
}
devm_kfree(&pf->pdev->dev, pf->vf);
pf->vf = NULL;
/* This check is for when the driver is unloaded while VFs are
* assigned. Setting the number of VFs to 0 through sysfs is caught
* before this function ever gets called.
*/
if (!pci_vfs_assigned(pf->pdev)) {
int vf_id;
/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
* work correctly when SR-IOV gets re-enabled.
*/
for (vf_id = 0; vf_id < tmp; vf_id++) {
u32 reg_idx, bit_idx;
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
}
}
clear_bit(__ICE_VF_DIS, pf->state);
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
}
/**
* ice_trigger_vf_reset - Reset a VF on HW
* @vf: pointer to the VF structure
* @is_vflr: true if VFLR was issued, false if not
*
* Trigger hardware to start a reset for a particular VF. Expects the caller
* to wait the proper amount of time to allow hardware to reset the VF before
* it cleans up and restores VF functionality.
*/
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr)
{
struct ice_pf *pf = vf->pf;
u32 reg, reg_idx, bit_idx;
struct ice_hw *hw;
int vf_abs_id, i;
hw = &pf->hw;
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
/* Inform VF that it is no longer active, as a warning */
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
/* Disable VF's configuration API during reset. The flag is re-enabled
* in ice_alloc_vf_res(), when it's safe again to access VF's VSI.
* It's normally disabled in ice_free_vf_res(), but it's safer
* to do it earlier to give some time to finish to any VF config
* functions that may still be running at this point.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* In the case of a VFLR, the HW has already reset the VF and we
* just need to clean up, so don't hit the VFRTRIG register.
*/
if (!is_vflr) {
/* reset VF using VPGEN_VFRTRIG reg */
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg |= VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
}
/* clear the VFLR bit in GLGEN_VFLRSTAT */
reg_idx = (vf_abs_id) / 32;
bit_idx = (vf_abs_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
ice_flush(hw);
wr32(hw, PF_PCI_CIAA,
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
for (i = 0; i < 100; i++) {
reg = rd32(hw, PF_PCI_CIAD);
if ((reg & VF_TRANS_PENDING_M) != 0)
dev_err(&pf->pdev->dev,
"VF %d PCI transactions stuck\n", vf->vf_id);
udelay(1);
}
}
/**
* ice_vsi_set_pvid - Set port VLAN id for the VSI
* @vsi: the VSI being changed
* @vid: the VLAN id to set as a PVID
*/
static int ice_vsi_set_pvid(struct ice_vsi *vsi, u16 vid)
{
struct device *dev = &vsi->back->pdev->dev;
struct ice_hw *hw = &vsi->back->hw;
struct ice_vsi_ctx ctxt = { 0 };
enum ice_status status;
ctxt.info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_TAGGED |
ICE_AQ_VSI_PVLAN_INSERT_PVID |
ICE_AQ_VSI_VLAN_EMOD_STR;
ctxt.info.pvid = cpu_to_le16(vid);
ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
if (status) {
dev_info(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
status, hw->adminq.sq_last_status);
return -EIO;
}
vsi->info.pvid = ctxt.info.pvid;
vsi->info.vlan_flags = ctxt.info.vlan_flags;
return 0;
}
/**
* ice_vf_vsi_setup - Set up a VF VSI
* @pf: board private structure
* @pi: pointer to the port_info instance
* @vf_id: defines VF id to which this VSI connects.
*
* Returns pointer to the successfully allocated VSI struct on success,
* otherwise returns NULL on failure.
*/
static struct ice_vsi *
ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id)
{
return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id);
}
/**
* ice_alloc_vsi_res - Setup VF VSI and its resources
* @vf: pointer to the VF structure
*
* Returns 0 on success, negative value on failure
*/
static int ice_alloc_vsi_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
LIST_HEAD(tmp_add_list);
u8 broadcast[ETH_ALEN];
struct ice_vsi *vsi;
int status = 0;
vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id);
if (!vsi) {
dev_err(&pf->pdev->dev, "Failed to create VF VSI\n");
return -ENOMEM;
}
vf->lan_vsi_idx = vsi->idx;
vf->lan_vsi_num = vsi->vsi_num;
/* first vector index is the VFs OICR index */
vf->first_vector_idx = vsi->hw_base_vector;
/* Since hw_base_vector holds the vector where data queue interrupts
* starts, increment by 1 since VFs allocated vectors include OICR intr
* as well.
*/
vsi->hw_base_vector += 1;
/* Check if port VLAN exist before, and restore it accordingly */
if (vf->port_vlan_id)
ice_vsi_set_pvid(vsi, vf->port_vlan_id);
eth_broadcast_addr(broadcast);
status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
if (status)
goto ice_alloc_vsi_res_exit;
if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
status = ice_add_mac_to_list(vsi, &tmp_add_list,
vf->dflt_lan_addr.addr);
if (status)
goto ice_alloc_vsi_res_exit;
}
status = ice_add_mac(&pf->hw, &tmp_add_list);
if (status)
dev_err(&pf->pdev->dev, "could not add mac filters\n");
/* Clear this bit after VF initialization since we shouldn't reclaim
* and reassign interrupts for synchronous or asynchronous VFR events.
* We don't want to reconfigure interrupts since AVF driver doesn't
* expect vector assignment to be changed unless there is a request for
* more vectors.
*/
clear_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states);
ice_alloc_vsi_res_exit:
ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
return status;
}
/**
* ice_alloc_vf_res - Allocate VF resources
* @vf: pointer to the VF structure
*/
static int ice_alloc_vf_res(struct ice_vf *vf)
{
int status;
/* setup VF VSI and necessary resources */
status = ice_alloc_vsi_res(vf);
if (status)
goto ice_alloc_vf_res_exit;
if (vf->trusted)
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
else
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
/* VF is now completely initialized */
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
return status;
ice_alloc_vf_res_exit:
ice_free_vf_res(vf);
return status;
}
/**
* ice_ena_vf_mappings
* @vf: pointer to the VF structure
*
* Enable VF vectors and queues allocation by writing the details into
* respective registers.
*/
static void ice_ena_vf_mappings(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int first, last, v;
struct ice_hw *hw;
int abs_vf_id;
u32 reg;
hw = &pf->hw;
vsi = pf->vsi[vf->lan_vsi_idx];
first = vf->first_vector_idx;
last = (first + pf->num_vf_msix) - 1;
abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
/* VF Vector allocation */
reg = (((first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) |
((last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) |
VPINT_ALLOC_VALID_M);
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
/* map the interrupts to its functions */
for (v = first; v <= last; v++) {
reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
GLINT_VECT2FUNC_VF_NUM_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
/* VF Tx queues allocation */
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id),
VPLAN_TXQ_MAPENA_TX_ENA_M);
/* set the VF PF Tx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
VPLAN_TX_QBASE_VFFIRSTQ_M) |
(((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
VPLAN_TX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
} else {
dev_err(&pf->pdev->dev,
"Scattered mode for VF Tx queues is not yet implemented\n");
}
/* VF Rx queues allocation */
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id),
VPLAN_RXQ_MAPENA_RX_ENA_M);
/* set the VF PF Rx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
VPLAN_RX_QBASE_VFFIRSTQ_M) |
(((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
VPLAN_RX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
} else {
dev_err(&pf->pdev->dev,
"Scattered mode for VF Rx queues is not yet implemented\n");
}
}
/**
* ice_determine_res
* @pf: pointer to the PF structure
* @avail_res: available resources in the PF structure
* @max_res: maximum resources that can be given per VF
* @min_res: minimum resources that can be given per VF
*
* Returns non-zero value if resources (queues/vectors) are available or
* returns zero if PF cannot accommodate for all num_alloc_vfs.
*/
static int
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
{
bool checked_min_res = false;
int res;
/* start by checking if PF can assign max number of resources for
* all num_alloc_vfs.
* if yes, return number per VF
* If no, divide by 2 and roundup, check again
* repeat the loop till we reach a point where even minimum resources
* are not available, in that case return 0
*/
res = max_res;
while ((res >= min_res) && !checked_min_res) {
int num_all_res;
num_all_res = pf->num_alloc_vfs * res;
if (num_all_res <= avail_res)
return res;
if (res == min_res)
checked_min_res = true;
res = DIV_ROUND_UP(res, 2);
}
return 0;
}
/**
* ice_check_avail_res - check if vectors and queues are available
* @pf: pointer to the PF structure
*
* This function is where we calculate actual number of resources for VF VSIs,
* we don't reserve ahead of time during probe. Returns success if vectors and
* queues resources are available, otherwise returns error code
*/
static int ice_check_avail_res(struct ice_pf *pf)
{
u16 num_msix, num_txq, num_rxq;
if (!pf->num_alloc_vfs)
return -EINVAL;
/* Grab from HW interrupts common pool
* Note: By the time the user decides it needs more vectors in a VF
* its already too late since one must decide this prior to creating the
* VF interface. So the best we can do is take a guess as to what the
* user might want.
*
* We have two policies for vector allocation:
* 1. if num_alloc_vfs is from 1 to 16, then we consider this as small
* number of NFV VFs used for NFV appliances, since this is a special
* case, we try to assign maximum vectors per VF (65) as much as
* possible, based on determine_resources algorithm.
* 2. if num_alloc_vfs is from 17 to 256, then its large number of
* regular VFs which are not used for any special purpose. Hence try to
* grab default interrupt vectors (5 as supported by AVF driver).
*/
if (pf->num_alloc_vfs <= 16) {
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
ICE_MAX_INTR_PER_VF,
ICE_MIN_INTR_PER_VF);
} else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) {
num_msix = ice_determine_res(pf, pf->num_avail_hw_msix,
ICE_DFLT_INTR_PER_VF,
ICE_MIN_INTR_PER_VF);
} else {
dev_err(&pf->pdev->dev,
"Number of VFs %d exceeds max VF count %d\n",
pf->num_alloc_vfs, ICE_MAX_VF_COUNT);
return -EIO;
}
if (!num_msix)
return -EIO;
/* Grab from the common pool
* start by requesting Default queues (4 as supported by AVF driver),
* Note that, the main difference between queues and vectors is, latter
* can only be reserved at init time but queues can be requested by VF
* at runtime through Virtchnl, that is the reason we start by reserving
* few queues.
*/
num_txq = ice_determine_res(pf, pf->q_left_tx, ICE_DFLT_QS_PER_VF,
ICE_MIN_QS_PER_VF);
num_rxq = ice_determine_res(pf, pf->q_left_rx, ICE_DFLT_QS_PER_VF,
ICE_MIN_QS_PER_VF);
if (!num_txq || !num_rxq)
return -EIO;
/* since AVF driver works with only queue pairs which means, it expects
* to have equal number of Rx and Tx queues, so take the minimum of
* available Tx or Rx queues
*/
pf->num_vf_qps = min_t(int, num_txq, num_rxq);
pf->num_vf_msix = num_msix;
return 0;
}
/**
* ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset
* @vf: pointer to the VF structure
*
* Cleanup a VF after the hardware reset is finished. Expects the caller to
* have verified whether the reset is finished properly, and ensure the
* minimum amount of wait time has passed. Reallocate VF resources back to make
* VF state active
*/
static void ice_cleanup_and_realloc_vf(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_hw *hw;
u32 reg;
hw = &pf->hw;
/* PF software completes the flow by notifying VF that reset flow is
* completed. This is done by enabling hardware by clearing the reset
* bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT
* register to VFR completed (done at the end of this function)
* By doing this we allow HW to access VF memory at any point. If we
* did it any sooner, HW could access memory while it was being freed
* in ice_free_vf_res(), causing an IOMMU fault.
*
* On the other hand, this needs to be done ASAP, because the VF driver
* is waiting for this to happen and may report a timeout. It's
* harmless, but it gets logged into Guest OS kernel log, so best avoid
* it.
*/
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
/* reallocate VF resources to finish resetting the VSI state */
if (!ice_alloc_vf_res(vf)) {
ice_ena_vf_mappings(vf);
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
vf->num_vlan = 0;
}
/* Tell the VF driver the reset is done. This needs to be done only
* after VF has been fully initialized, because the VF driver may
* request resources immediately after setting this flag.
*/
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}
/**
* ice_reset_all_vfs - reset all allocated VFs in one go
* @pf: pointer to the PF structure
* @is_vflr: true if VFLR was issued, false if not
*
* First, tell the hardware to reset each VF, then do all the waiting in one
* chunk, and finally finish restoring each VF after the wait. This is useful
* during PF routines which need to reset all VFs, as otherwise it must perform
* these resets in a serialized fashion.
*
* Returns true if any VFs were reset, and false otherwise.
*/
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
{
struct ice_hw *hw = &pf->hw;
int v, i;
/* If we don't have any VFs, then there is nothing to reset */
if (!pf->num_alloc_vfs)
return false;
/* If VFs have been disabled, there is no need to reset */
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
return false;
/* Begin reset on all VFs at once */
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_trigger_vf_reset(&pf->vf[v], is_vflr);
/* Call Disable LAN Tx queue AQ call with VFR bit set and 0
* queues to inform Firmware about VF reset.
*/
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_dis_vsi_txq(pf->vsi[0]->port_info, 0, NULL, NULL,
ICE_VF_RESET, v, NULL);
/* HW requires some time to make sure it can flush the FIFO for a VF
* when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
* sequence to make sure that it has completed. We'll keep track of
* the VFs using a simple iterator that increments once that VF has
* finished resetting.
*/
for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
usleep_range(10000, 20000);
/* Check each VF in sequence */
while (v < pf->num_alloc_vfs) {
struct ice_vf *vf = &pf->vf[v];
u32 reg;
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
if (!(reg & VPGEN_VFRSTAT_VFRD_M))
break;
/* If the current VF has finished resetting, move on
* to the next VF in sequence.
*/
v++;
}
}
/* Display a warning if at least one VF didn't manage to reset in
* time, but continue on with the operation.
*/
if (v < pf->num_alloc_vfs)
dev_warn(&pf->pdev->dev, "VF reset check timeout\n");
usleep_range(10000, 20000);
/* free VF resources to begin resetting the VSI state */
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_free_vf_res(&pf->vf[v]);
if (ice_check_avail_res(pf)) {
dev_err(&pf->pdev->dev,
"Cannot allocate VF resources, try with fewer number of VFs\n");
return false;
}
/* Finish the reset on each VF */
for (v = 0; v < pf->num_alloc_vfs; v++)
ice_cleanup_and_realloc_vf(&pf->vf[v]);
ice_flush(hw);
clear_bit(__ICE_VF_DIS, pf->state);
return true;
}
/**
* ice_alloc_vfs - Allocate and set up VFs resources
* @pf: pointer to the PF structure
* @num_alloc_vfs: number of VFs to allocate
*/
static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs)
{
struct ice_hw *hw = &pf->hw;
struct ice_vf *vfs;
int i, ret;
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx),
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
ice_flush(hw);
ret = pci_enable_sriov(pf->pdev, num_alloc_vfs);
if (ret) {
pf->num_alloc_vfs = 0;
goto err_unroll_intr;
}
/* allocate memory */
vfs = devm_kcalloc(&pf->pdev->dev, num_alloc_vfs, sizeof(*vfs),
GFP_KERNEL);
if (!vfs) {
ret = -ENOMEM;
goto err_unroll_sriov;
}
pf->vf = vfs;
/* apply default profile */
for (i = 0; i < num_alloc_vfs; i++) {
vfs[i].pf = pf;
vfs[i].vf_sw_id = pf->first_sw;
vfs[i].vf_id = i;
/* assign default capabilities */
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps);
vfs[i].spoofchk = true;
/* Set this state so that PF driver does VF vector assignment */
set_bit(ICE_VF_STATE_CFG_INTR, vfs[i].vf_states);
}
pf->num_alloc_vfs = num_alloc_vfs;
/* VF resources get allocated during reset */
if (!ice_reset_all_vfs(pf, false))
goto err_unroll_sriov;
goto err_unroll_intr;
err_unroll_sriov:
pci_disable_sriov(pf->pdev);
err_unroll_intr:
/* rearm interrupts here */
ice_irq_dynamic_ena(hw, NULL, NULL);
return ret;
}
/**
* ice_pf_state_is_nominal - checks the pf for nominal state
* @pf: pointer to pf to check
*
* Check the PF's state for a collection of bits that would indicate
* the PF is in a state that would inhibit normal operation for
* driver functionality.
*
* Returns true if PF is in a nominal state.
* Returns false otherwise
*/
static bool ice_pf_state_is_nominal(struct ice_pf *pf)
{
DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 };
if (!pf)
return false;
bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS);
if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS))
return false;
return true;
}
/**
* ice_pci_sriov_ena - Enable or change number of VFs
* @pf: pointer to the PF structure
* @num_vfs: number of VFs to allocate
*/
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
{
int pre_existing_vfs = pci_num_vf(pf->pdev);
struct device *dev = &pf->pdev->dev;
int err;
if (!ice_pf_state_is_nominal(pf)) {
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
return -EBUSY;
}
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
dev_err(dev, "This device is not capable of SR-IOV\n");
return -ENODEV;
}
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
ice_free_vfs(pf);
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
return num_vfs;
if (num_vfs > pf->num_vfs_supported) {
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
num_vfs, pf->num_vfs_supported);
return -ENOTSUPP;
}
dev_info(dev, "Allocating %d VFs\n", num_vfs);
err = ice_alloc_vfs(pf, num_vfs);
if (err) {
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
return err;
}
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
return num_vfs;
}
/**
* ice_sriov_configure - Enable or change number of VFs via sysfs
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate
*
* This function is called when the user updates the number of VFs in sysfs.
*/
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
if (num_vfs)
return ice_pci_sriov_ena(pf, num_vfs);
if (!pci_vfs_assigned(pdev)) {
ice_free_vfs(pf);
} else {
dev_err(&pf->pdev->dev,
"can't free VFs because some are assigned to VMs.\n");
return -EBUSY;
}
return 0;
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2018, Intel Corporation. */
#ifndef _ICE_VIRTCHNL_PF_H_
#define _ICE_VIRTCHNL_PF_H_
#include "ice.h"
/* Static VF transaction/status register def */
#define VF_DEVICE_STATUS 0xAA
#define VF_TRANS_PENDING_M 0x20
/* Specific VF states */
enum ice_vf_states {
ICE_VF_STATE_INIT = 0,
ICE_VF_STATE_ACTIVE,
ICE_VF_STATE_ENA,
ICE_VF_STATE_DIS,
ICE_VF_STATE_MC_PROMISC,
ICE_VF_STATE_UC_PROMISC,
/* state to indicate if PF needs to do vector assignment for VF.
* This needs to be set during first time VF initialization or later
* when VF asks for more Vectors through virtchnl OP.
*/
ICE_VF_STATE_CFG_INTR,
ICE_VF_STATES_NBITS
};
/* VF capabilities */
enum ice_virtchnl_cap {
ICE_VIRTCHNL_VF_CAP_L2 = 0,
ICE_VIRTCHNL_VF_CAP_PRIVILEGE,
};
/* VF information structure */
struct ice_vf {
struct ice_pf *pf;
s16 vf_id; /* VF id in the PF space */
int first_vector_idx; /* first vector index of this VF */
struct ice_sw *vf_sw_id; /* switch id the VF VSIs connect to */
struct virtchnl_ether_addr dflt_lan_addr;
u16 port_vlan_id;
u8 trusted;
u16 lan_vsi_idx; /* index into PF struct */
u16 lan_vsi_num; /* ID as used by firmware */
unsigned long vf_caps; /* vf's adv. capabilities */
DECLARE_BITMAP(vf_states, ICE_VF_STATES_NBITS); /* VF runtime states */
u8 spoofchk;
u16 num_mac;
u16 num_vlan;
};
#ifdef CONFIG_PCI_IOV
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs);
void ice_free_vfs(struct ice_pf *pf);
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr);
#else /* CONFIG_PCI_IOV */
#define ice_free_vfs(pf) do {} while (0)
static inline bool
ice_reset_all_vfs(struct ice_pf __always_unused *pf,
bool __always_unused is_vflr)
{
return true;
}
static inline int
ice_sriov_configure(struct pci_dev __always_unused *pdev,
int __always_unused num_vfs)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_PCI_IOV */
#endif /* _ICE_VIRTCHNL_PF_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment