Commit e66f840c authored by Tristram Ha's avatar Tristram Ha Committed by David S. Miller

net: dsa: ksz: Add Microchip KSZ8795 DSA driver

Add Microchip KSZ8795 DSA driver.
Signed-off-by: default avatarTristram Ha <Tristram.Ha@microchip.com>
Signed-off-by: default avatarMarek Vasut <marex@denx.de>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: David S. Miller <davem@davemloft.net>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Tristram Ha <Tristram.Ha@microchip.com>
Cc: Vivien Didelot <vivien.didelot@gmail.com>
Cc: Woojung Huh <woojung.huh@microchip.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent 016e43a2
......@@ -16,3 +16,20 @@ config NET_DSA_MICROCHIP_KSZ9477_SPI
select REGMAP_SPI
help
Select to enable support for registering switches configured through SPI.
menuconfig NET_DSA_MICROCHIP_KSZ8795
tristate "Microchip KSZ8795 series switch support"
depends on NET_DSA
select NET_DSA_MICROCHIP_KSZ_COMMON
help
This driver adds support for Microchip KSZ8795 switch chips.
config NET_DSA_MICROCHIP_KSZ8795_SPI
tristate "KSZ8795 series SPI connected switch driver"
depends on NET_DSA_MICROCHIP_KSZ8795 && SPI
select REGMAP_SPI
help
This driver accesses KSZ8795 chip through SPI.
It is required to use the KSZ8795 switch driver as the only access
is through SPI.
......@@ -2,3 +2,5 @@
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ_COMMON) += ksz_common.o
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ9477) += ksz9477.o
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ9477_SPI) += ksz9477_spi.o
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ8795) += ksz8795.o
obj-$(CONFIG_NET_DSA_MICROCHIP_KSZ8795_SPI) += ksz8795_spi.o
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ8795 switch driver
*
* Copyright (C) 2017 Microchip Technology Inc.
* Tristram Ha <Tristram.Ha@microchip.com>
*/
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "ksz_priv.h"
#include "ksz_common.h"
#include "ksz8795_reg.h"
static const struct {
char string[ETH_GSTRING_LEN];
} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
{ "rx_hi" },
{ "rx_undersize" },
{ "rx_fragments" },
{ "rx_oversize" },
{ "rx_jabbers" },
{ "rx_symbol_err" },
{ "rx_crc_err" },
{ "rx_align_err" },
{ "rx_mac_ctrl" },
{ "rx_pause" },
{ "rx_bcast" },
{ "rx_mcast" },
{ "rx_ucast" },
{ "rx_64_or_less" },
{ "rx_65_127" },
{ "rx_128_255" },
{ "rx_256_511" },
{ "rx_512_1023" },
{ "rx_1024_1522" },
{ "rx_1523_2000" },
{ "rx_2001" },
{ "tx_hi" },
{ "tx_late_col" },
{ "tx_pause" },
{ "tx_bcast" },
{ "tx_mcast" },
{ "tx_ucast" },
{ "tx_deferred" },
{ "tx_total_col" },
{ "tx_exc_col" },
{ "tx_single_col" },
{ "tx_mult_col" },
{ "rx_total" },
{ "tx_total" },
{ "rx_discards" },
{ "tx_discards" },
};
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static int ksz8795_reset_switch(struct ksz_device *dev)
{
/* reset switch */
ksz_write8(dev, REG_POWER_MANAGEMENT_1,
SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
return 0;
}
static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
{
u8 hi, lo;
/* Number of queues can only be 1, 2, or 4. */
switch (queue) {
case 4:
case 3:
queue = PORT_QUEUE_SPLIT_4;
break;
case 2:
queue = PORT_QUEUE_SPLIT_2;
break;
default:
queue = PORT_QUEUE_SPLIT_1;
}
ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
lo &= ~PORT_QUEUE_SPLIT_L;
if (queue & PORT_QUEUE_SPLIT_2)
lo |= PORT_QUEUE_SPLIT_L;
hi &= ~PORT_QUEUE_SPLIT_H;
if (queue & PORT_QUEUE_SPLIT_4)
hi |= PORT_QUEUE_SPLIT_H;
ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
/* Default is port based for egress rate limit. */
if (queue != PORT_QUEUE_SPLIT_1)
ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
true);
}
static void ksz8795_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
u64 *cnt)
{
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
ctrl_addr = addr + SWITCH_COUNTER_NUM * port;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, REG_IND_CTRL_0, ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, REG_IND_MIB_CHECK, &check);
if (check & MIB_COUNTER_VALID) {
ksz_read32(dev, REG_IND_DATA_LO, &data);
if (check & MIB_COUNTER_OVERFLOW)
*cnt += MIB_COUNTER_VALUE + 1;
*cnt += data & MIB_COUNTER_VALUE;
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
addr -= SWITCH_COUNTER_NUM;
ctrl_addr = (KS_MIB_TOTAL_RX_1 - KS_MIB_TOTAL_RX_0) * port;
ctrl_addr += addr + KS_MIB_TOTAL_RX_0;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, REG_IND_CTRL_0, ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, REG_IND_MIB_CHECK, &check);
if (check & MIB_COUNTER_VALID) {
ksz_read32(dev, REG_IND_DATA_LO, &data);
if (addr < 2) {
u64 total;
total = check & MIB_TOTAL_BYTES_H;
total <<= 32;
*cnt += total;
*cnt += data;
if (check & MIB_COUNTER_OVERFLOW) {
total = MIB_TOTAL_BYTES_H + 1;
total <<= 32;
*cnt += total;
}
} else {
if (check & MIB_COUNTER_OVERFLOW)
*cnt += MIB_PACKET_DROPPED + 1;
*cnt += data & MIB_PACKET_DROPPED;
}
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8795_freeze_mib(struct ksz_device *dev, int port, bool freeze)
{
/* enable the port for flush/freeze function */
if (freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
/* disable the port after freeze is done */
if (!freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}
static void ksz8795_port_init_cnt(struct ksz_device *dev, int port)
{
struct ksz_port_mib *mib = &dev->ports[port].mib;
/* flush all enabled port MIB counters */
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
mib->cnt_ptr = 0;
/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->reg_mib_cnt) {
dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
&mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->mib_cnt) {
dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
NULL, &mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
mib->cnt_ptr = 0;
memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
}
static void ksz8795_r_table(struct ksz_device *dev, int table, u16 addr,
u64 *data)
{
u16 ctrl_addr;
ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, REG_IND_CTRL_0, ctrl_addr);
ksz_read64(dev, REG_IND_DATA_HI, data);
mutex_unlock(&dev->alu_mutex);
}
static void ksz8795_w_table(struct ksz_device *dev, int table, u16 addr,
u64 data)
{
u16 ctrl_addr;
ctrl_addr = IND_ACC_TABLE(table) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write64(dev, REG_IND_DATA_HI, data);
ksz_write16(dev, REG_IND_CTRL_0, ctrl_addr);
mutex_unlock(&dev->alu_mutex);
}
static int ksz8795_valid_dyn_entry(struct ksz_device *dev, u8 *data)
{
int timeout = 100;
do {
ksz_read8(dev, REG_IND_DATA_CHECK, data);
timeout--;
} while ((*data & DYNAMIC_MAC_TABLE_NOT_READY) && timeout);
/* Entry is not ready for accessing. */
if (*data & DYNAMIC_MAC_TABLE_NOT_READY) {
return -EAGAIN;
/* Entry is ready for accessing. */
} else {
ksz_read8(dev, REG_IND_DATA_8, data);
/* There is no valid entry in the table. */
if (*data & DYNAMIC_MAC_TABLE_MAC_EMPTY)
return -ENXIO;
}
return 0;
}
static int ksz8795_r_dyn_mac_table(struct ksz_device *dev, u16 addr,
u8 *mac_addr, u8 *fid, u8 *src_port,
u8 *timestamp, u16 *entries)
{
u32 data_hi, data_lo;
u16 ctrl_addr;
u8 data;
int rc;
ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, REG_IND_CTRL_0, ctrl_addr);
rc = ksz8795_valid_dyn_entry(dev, &data);
if (rc == -EAGAIN) {
if (addr == 0)
*entries = 0;
} else if (rc == -ENXIO) {
*entries = 0;
/* At least one valid entry in the table. */
} else {
u64 buf = 0;
int cnt;
ksz_read64(dev, REG_IND_DATA_HI, &buf);
data_hi = (u32)(buf >> 32);
data_lo = (u32)buf;
/* Check out how many valid entry in the table. */
cnt = data & DYNAMIC_MAC_TABLE_ENTRIES_H;
cnt <<= DYNAMIC_MAC_ENTRIES_H_S;
cnt |= (data_hi & DYNAMIC_MAC_TABLE_ENTRIES) >>
DYNAMIC_MAC_ENTRIES_S;
*entries = cnt + 1;
*fid = (data_hi & DYNAMIC_MAC_TABLE_FID) >>
DYNAMIC_MAC_FID_S;
*src_port = (data_hi & DYNAMIC_MAC_TABLE_SRC_PORT) >>
DYNAMIC_MAC_SRC_PORT_S;
*timestamp = (data_hi & DYNAMIC_MAC_TABLE_TIMESTAMP) >>
DYNAMIC_MAC_TIMESTAMP_S;
mac_addr[5] = (u8)data_lo;
mac_addr[4] = (u8)(data_lo >> 8);
mac_addr[3] = (u8)(data_lo >> 16);
mac_addr[2] = (u8)(data_lo >> 24);
mac_addr[1] = (u8)data_hi;
mac_addr[0] = (u8)(data_hi >> 8);
rc = 0;
}
mutex_unlock(&dev->alu_mutex);
return rc;
}
static int ksz8795_r_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu)
{
u32 data_hi, data_lo;
u64 data;
ksz8795_r_table(dev, TABLE_STATIC_MAC, addr, &data);
data_hi = data >> 32;
data_lo = (u32)data;
if (data_hi & (STATIC_MAC_TABLE_VALID | STATIC_MAC_TABLE_OVERRIDE)) {
alu->mac[5] = (u8)data_lo;
alu->mac[4] = (u8)(data_lo >> 8);
alu->mac[3] = (u8)(data_lo >> 16);
alu->mac[2] = (u8)(data_lo >> 24);
alu->mac[1] = (u8)data_hi;
alu->mac[0] = (u8)(data_hi >> 8);
alu->port_forward = (data_hi & STATIC_MAC_TABLE_FWD_PORTS) >>
STATIC_MAC_FWD_PORTS_S;
alu->is_override =
(data_hi & STATIC_MAC_TABLE_OVERRIDE) ? 1 : 0;
data_hi >>= 1;
alu->is_use_fid = (data_hi & STATIC_MAC_TABLE_USE_FID) ? 1 : 0;
alu->fid = (data_hi & STATIC_MAC_TABLE_FID) >>
STATIC_MAC_FID_S;
return 0;
}
return -ENXIO;
}
static void ksz8795_w_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu)
{
u32 data_hi, data_lo;
u64 data;
data_lo = ((u32)alu->mac[2] << 24) |
((u32)alu->mac[3] << 16) |
((u32)alu->mac[4] << 8) | alu->mac[5];
data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
data_hi |= (u32)alu->port_forward << STATIC_MAC_FWD_PORTS_S;
if (alu->is_override)
data_hi |= STATIC_MAC_TABLE_OVERRIDE;
if (alu->is_use_fid) {
data_hi |= STATIC_MAC_TABLE_USE_FID;
data_hi |= (u32)alu->fid << STATIC_MAC_FID_S;
}
if (alu->is_static)
data_hi |= STATIC_MAC_TABLE_VALID;
else
data_hi &= ~STATIC_MAC_TABLE_OVERRIDE;
data = (u64)data_hi << 32 | data_lo;
ksz8795_w_table(dev, TABLE_STATIC_MAC, addr, data);
}
static void ksz8795_from_vlan(u16 vlan, u8 *fid, u8 *member, u8 *valid)
{
*fid = vlan & VLAN_TABLE_FID;
*member = (vlan & VLAN_TABLE_MEMBERSHIP) >> VLAN_TABLE_MEMBERSHIP_S;
*valid = !!(vlan & VLAN_TABLE_VALID);
}
static void ksz8795_to_vlan(u8 fid, u8 member, u8 valid, u16 *vlan)
{
*vlan = fid;
*vlan |= (u16)member << VLAN_TABLE_MEMBERSHIP_S;
if (valid)
*vlan |= VLAN_TABLE_VALID;
}
static void ksz8795_r_vlan_entries(struct ksz_device *dev, u16 addr)
{
u64 data;
int i;
ksz8795_r_table(dev, TABLE_VLAN, addr, &data);
addr *= 4;
for (i = 0; i < 4; i++) {
dev->vlan_cache[addr + i].table[0] = (u16)data;
data >>= VLAN_TABLE_S;
}
}
static void ksz8795_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / 4;
index = vid & 3;
ksz8795_r_table(dev, TABLE_VLAN, addr, &buf);
*vlan = data[index];
}
static void ksz8795_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / 4;
index = vid & 3;
ksz8795_r_table(dev, TABLE_VLAN, addr, &buf);
data[index] = vlan;
dev->vlan_cache[vid].table[0] = vlan;
ksz8795_w_table(dev, TABLE_VLAN, addr, buf);
}
static void ksz8795_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
{
u8 restart, speed, ctrl, link;
int processed = true;
u16 data = 0;
u8 p = phy;
switch (reg) {
case PHY_REG_CTRL:
ksz_pread8(dev, p, P_NEG_RESTART_CTRL, &restart);
ksz_pread8(dev, p, P_SPEED_STATUS, &speed);
ksz_pread8(dev, p, P_FORCE_CTRL, &ctrl);
if (restart & PORT_PHY_LOOPBACK)
data |= PHY_LOOPBACK;
if (ctrl & PORT_FORCE_100_MBIT)
data |= PHY_SPEED_100MBIT;
if (!(ctrl & PORT_AUTO_NEG_DISABLE))
data |= PHY_AUTO_NEG_ENABLE;
if (restart & PORT_POWER_DOWN)
data |= PHY_POWER_DOWN;
if (restart & PORT_AUTO_NEG_RESTART)
data |= PHY_AUTO_NEG_RESTART;
if (ctrl & PORT_FORCE_FULL_DUPLEX)
data |= PHY_FULL_DUPLEX;
if (speed & PORT_HP_MDIX)
data |= PHY_HP_MDIX;
if (restart & PORT_FORCE_MDIX)
data |= PHY_FORCE_MDIX;
if (restart & PORT_AUTO_MDIX_DISABLE)
data |= PHY_AUTO_MDIX_DISABLE;
if (restart & PORT_TX_DISABLE)
data |= PHY_TRANSMIT_DISABLE;
if (restart & PORT_LED_OFF)
data |= PHY_LED_DISABLE;
break;
case PHY_REG_STATUS:
ksz_pread8(dev, p, P_LINK_STATUS, &link);
data = PHY_100BTX_FD_CAPABLE |
PHY_100BTX_CAPABLE |
PHY_10BT_FD_CAPABLE |
PHY_10BT_CAPABLE |
PHY_AUTO_NEG_CAPABLE;
if (link & PORT_AUTO_NEG_COMPLETE)
data |= PHY_AUTO_NEG_ACKNOWLEDGE;
if (link & PORT_STAT_LINK_GOOD)
data |= PHY_LINK_STATUS;
break;
case PHY_REG_ID_1:
data = KSZ8795_ID_HI;
break;
case PHY_REG_ID_2:
data = KSZ8795_ID_LO;
break;
case PHY_REG_AUTO_NEGOTIATION:
ksz_pread8(dev, p, P_LOCAL_CTRL, &ctrl);
data = PHY_AUTO_NEG_802_3;
if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
data |= PHY_AUTO_NEG_SYM_PAUSE;
if (ctrl & PORT_AUTO_NEG_100BTX_FD)
data |= PHY_AUTO_NEG_100BTX_FD;
if (ctrl & PORT_AUTO_NEG_100BTX)
data |= PHY_AUTO_NEG_100BTX;
if (ctrl & PORT_AUTO_NEG_10BT_FD)
data |= PHY_AUTO_NEG_10BT_FD;
if (ctrl & PORT_AUTO_NEG_10BT)
data |= PHY_AUTO_NEG_10BT;
break;
case PHY_REG_REMOTE_CAPABILITY:
ksz_pread8(dev, p, P_REMOTE_STATUS, &link);
data = PHY_AUTO_NEG_802_3;
if (link & PORT_REMOTE_SYM_PAUSE)
data |= PHY_AUTO_NEG_SYM_PAUSE;
if (link & PORT_REMOTE_100BTX_FD)
data |= PHY_AUTO_NEG_100BTX_FD;
if (link & PORT_REMOTE_100BTX)
data |= PHY_AUTO_NEG_100BTX;
if (link & PORT_REMOTE_10BT_FD)
data |= PHY_AUTO_NEG_10BT_FD;
if (link & PORT_REMOTE_10BT)
data |= PHY_AUTO_NEG_10BT;
if (data & ~PHY_AUTO_NEG_802_3)
data |= PHY_REMOTE_ACKNOWLEDGE_NOT;
break;
default:
processed = false;
break;
}
if (processed)
*val = data;
}
static void ksz8795_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
{
u8 p = phy;
u8 restart, speed, ctrl, data;
switch (reg) {
case PHY_REG_CTRL:
/* Do not support PHY reset function. */
if (val & PHY_RESET)
break;
ksz_pread8(dev, p, P_SPEED_STATUS, &speed);
data = speed;
if (val & PHY_HP_MDIX)
data |= PORT_HP_MDIX;
else
data &= ~PORT_HP_MDIX;
if (data != speed)
ksz_pwrite8(dev, p, P_SPEED_STATUS, data);
ksz_pread8(dev, p, P_FORCE_CTRL, &ctrl);
data = ctrl;
if (!(val & PHY_AUTO_NEG_ENABLE))
data |= PORT_AUTO_NEG_DISABLE;
else
data &= ~PORT_AUTO_NEG_DISABLE;
/* Fiber port does not support auto-negotiation. */
if (dev->ports[p].fiber)
data |= PORT_AUTO_NEG_DISABLE;
if (val & PHY_SPEED_100MBIT)
data |= PORT_FORCE_100_MBIT;
else
data &= ~PORT_FORCE_100_MBIT;
if (val & PHY_FULL_DUPLEX)
data |= PORT_FORCE_FULL_DUPLEX;
else
data &= ~PORT_FORCE_FULL_DUPLEX;
if (data != ctrl)
ksz_pwrite8(dev, p, P_FORCE_CTRL, data);
ksz_pread8(dev, p, P_NEG_RESTART_CTRL, &restart);
data = restart;
if (val & PHY_LED_DISABLE)
data |= PORT_LED_OFF;
else
data &= ~PORT_LED_OFF;
if (val & PHY_TRANSMIT_DISABLE)
data |= PORT_TX_DISABLE;
else
data &= ~PORT_TX_DISABLE;
if (val & PHY_AUTO_NEG_RESTART)
data |= PORT_AUTO_NEG_RESTART;
else
data &= ~(PORT_AUTO_NEG_RESTART);
if (val & PHY_POWER_DOWN)
data |= PORT_POWER_DOWN;
else
data &= ~PORT_POWER_DOWN;
if (val & PHY_AUTO_MDIX_DISABLE)
data |= PORT_AUTO_MDIX_DISABLE;
else
data &= ~PORT_AUTO_MDIX_DISABLE;
if (val & PHY_FORCE_MDIX)
data |= PORT_FORCE_MDIX;
else
data &= ~PORT_FORCE_MDIX;
if (val & PHY_LOOPBACK)
data |= PORT_PHY_LOOPBACK;
else
data &= ~PORT_PHY_LOOPBACK;
if (data != restart)
ksz_pwrite8(dev, p, P_NEG_RESTART_CTRL, data);
break;
case PHY_REG_AUTO_NEGOTIATION:
ksz_pread8(dev, p, P_LOCAL_CTRL, &ctrl);
data = ctrl;
data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
PORT_AUTO_NEG_100BTX_FD |
PORT_AUTO_NEG_100BTX |
PORT_AUTO_NEG_10BT_FD |
PORT_AUTO_NEG_10BT);
if (val & PHY_AUTO_NEG_SYM_PAUSE)
data |= PORT_AUTO_NEG_SYM_PAUSE;
if (val & PHY_AUTO_NEG_100BTX_FD)
data |= PORT_AUTO_NEG_100BTX_FD;
if (val & PHY_AUTO_NEG_100BTX)
data |= PORT_AUTO_NEG_100BTX;
if (val & PHY_AUTO_NEG_10BT_FD)
data |= PORT_AUTO_NEG_10BT_FD;
if (val & PHY_AUTO_NEG_10BT)
data |= PORT_AUTO_NEG_10BT;
if (data != ctrl)
ksz_pwrite8(dev, p, P_LOCAL_CTRL, data);
break;
default:
break;
}
}
static enum dsa_tag_protocol ksz8795_get_tag_protocol(struct dsa_switch *ds,
int port)
{
return DSA_TAG_PROTO_KSZ8795;
}
static void ksz8795_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *buf)
{
int i;
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
ETH_GSTRING_LEN);
}
}
static void ksz8795_cfg_port_member(struct ksz_device *dev, int port,
u8 member)
{
u8 data;
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
data &= ~PORT_VLAN_MEMBERSHIP;
data |= (member & dev->port_mask);
ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
dev->ports[port].member = member;
}
static void ksz8795_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct ksz_device *dev = ds->priv;
int forward = dev->member;
struct ksz_port *p;
int member = -1;
u8 data;
p = &dev->ports[port];
ksz_pread8(dev, port, P_STP_CTRL, &data);
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
switch (state) {
case BR_STATE_DISABLED:
data |= PORT_LEARN_DISABLE;
if (port < SWITCH_PORT_NUM)
member = 0;
break;
case BR_STATE_LISTENING:
data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
if (port < SWITCH_PORT_NUM &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
case BR_STATE_LEARNING:
data |= PORT_RX_ENABLE;
break;
case BR_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
/* This function is also used internally. */
if (port == dev->cpu_port)
break;
/* Port is a member of a bridge. */
if (dev->br_member & BIT(port)) {
dev->member |= BIT(port);
member = dev->member;
} else {
member = dev->host_mask | p->vid_member;
}
break;
case BR_STATE_BLOCKING:
data |= PORT_LEARN_DISABLE;
if (port < SWITCH_PORT_NUM &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
ksz_pwrite8(dev, port, P_STP_CTRL, data);
p->stp_state = state;
if (data & PORT_RX_ENABLE)
dev->rx_ports |= BIT(port);
else
dev->rx_ports &= ~BIT(port);
if (data & PORT_TX_ENABLE)
dev->tx_ports |= BIT(port);
else
dev->tx_ports &= ~BIT(port);
/* Port membership may share register with STP state. */
if (member >= 0 && member != p->member)
ksz8795_cfg_port_member(dev, port, (u8)member);
/* Check if forwarding needs to be updated. */
if (state != BR_STATE_FORWARDING) {
if (dev->br_member & BIT(port))
dev->member &= ~BIT(port);
}
/* When topology has changed the function ksz_update_port_member
* should be called to modify port forwarding behavior.
*/
if (forward != dev->member)
ksz_update_port_member(dev, port);
}
static void ksz8795_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
u8 learn[TOTAL_PORT_NUM];
int first, index, cnt;
struct ksz_port *p;
if ((uint)port < TOTAL_PORT_NUM) {
first = port;
cnt = port + 1;
} else {
/* Flush all ports. */
first = 0;
cnt = dev->mib_port_cnt;
}
for (index = first; index < cnt; index++) {
p = &dev->ports[index];
if (!p->on)
continue;
ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, P_STP_CTRL,
learn[index] | PORT_LEARN_DISABLE);
}
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
for (index = first; index < cnt; index++) {
p = &dev->ports[index];
if (!p->on)
continue;
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
}
}
static int ksz8795_port_vlan_filtering(struct dsa_switch *ds, int port,
bool flag)
{
struct ksz_device *dev = ds->priv;
ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
return 0;
}
static void ksz8795_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
struct ksz_device *dev = ds->priv;
u16 data, vid, new_pvid = 0;
u8 fid, member, valid;
ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
ksz8795_r_vlan_table(dev, vid, &data);
ksz8795_from_vlan(data, &fid, &member, &valid);
/* First time to setup the VLAN entry. */
if (!valid) {
/* Need to find a way to map VID to FID. */
fid = 1;
valid = 1;
}
member |= BIT(port);
ksz8795_to_vlan(fid, member, valid, &data);
ksz8795_w_vlan_table(dev, vid, data);
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
new_pvid = vid;
}
if (new_pvid) {
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
vid &= 0xfff;
vid |= new_pvid;
ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
}
}
static int ksz8795_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
struct ksz_device *dev = ds->priv;
u16 data, vid, pvid, new_pvid = 0;
u8 fid, member, valid;
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
pvid = pvid & 0xFFF;
ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
ksz8795_r_vlan_table(dev, vid, &data);
ksz8795_from_vlan(data, &fid, &member, &valid);
member &= ~BIT(port);
/* Invalidate the entry if no more member. */
if (!member) {
fid = 0;
valid = 0;
}
if (pvid == vid)
new_pvid = 1;
ksz8795_to_vlan(fid, member, valid, &data);
ksz8795_w_vlan_table(dev, vid, data);
}
if (new_pvid != pvid)
ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, pvid);
return 0;
}
static int ksz8795_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
struct ksz_device *dev = ds->priv;
if (ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
dev->mirror_rx |= BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
dev->mirror_tx |= BIT(port);
}
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
if (dev->mirror_rx || dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
return 0;
}
static void ksz8795_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct ksz_device *dev = ds->priv;
u8 data;
if (mirror->ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
dev->mirror_rx &= ~BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
dev->mirror_tx &= ~BIT(port);
}
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!dev->mirror_rx && !dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static void ksz8795_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
struct ksz_port *p = &dev->ports[port];
u8 data8, member;
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
ksz8795_set_prio_queue(dev, port, 4);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, P_802_1P_CTRL, PORT_802_1P_REMAPPING, false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
if (cpu_port) {
/* Configure MII interface for proper network communication. */
ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
data8 &= ~PORT_INTERFACE_TYPE;
data8 &= ~PORT_GMII_1GPS_MODE;
switch (dev->interface) {
case PHY_INTERFACE_MODE_MII:
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_RMII:
data8 |= PORT_INTERFACE_RMII;
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_GMII:
data8 |= PORT_GMII_1GPS_MODE;
data8 |= PORT_INTERFACE_GMII;
p->phydev.speed = SPEED_1000;
break;
default:
data8 &= ~PORT_RGMII_ID_IN_ENABLE;
data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
data8 |= PORT_RGMII_ID_IN_ENABLE;
if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
data8 |= PORT_RGMII_ID_OUT_ENABLE;
data8 |= PORT_GMII_1GPS_MODE;
data8 |= PORT_INTERFACE_RGMII;
p->phydev.speed = SPEED_1000;
break;
}
ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
p->phydev.duplex = 1;
member = dev->port_mask;
dev->on_ports = dev->host_mask;
dev->live_ports = dev->host_mask;
} else {
member = dev->host_mask | p->vid_member;
dev->on_ports |= BIT(port);
/* Link was detected before port is enabled. */
if (p->phydev.link)
dev->live_ports |= BIT(port);
}
ksz8795_cfg_port_member(dev, port, member);
}
static void ksz8795_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
u8 remote;
int i;
ds->num_ports = dev->port_cnt + 1;
/* Switch marks the maximum frame with extra byte as oversize. */
ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
ksz_cfg(dev, S_TAIL_TAG_CTRL, SW_TAIL_TAG_ENABLE, true);
p = &dev->ports[dev->cpu_port];
p->vid_member = dev->port_mask;
p->on = 1;
ksz8795_port_setup(dev, dev->cpu_port, true);
dev->member = dev->host_mask;
for (i = 0; i < SWITCH_PORT_NUM; i++) {
p = &dev->ports[i];
/* Initialize to non-zero so that ksz_cfg_port_member() will
* be called.
*/
p->vid_member = BIT(i);
p->member = dev->port_mask;
ksz8795_port_stp_state_set(ds, i, BR_STATE_DISABLED);
/* Last port may be disabled. */
if (i == dev->port_cnt)
break;
p->on = 1;
p->phy = 1;
}
for (i = 0; i < dev->phy_port_cnt; i++) {
p = &dev->ports[i];
if (!p->on)
continue;
ksz_pread8(dev, i, P_REMOTE_STATUS, &remote);
if (remote & PORT_FIBER_MODE)
p->fiber = 1;
if (p->fiber)
ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
true);
else
ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
false);
}
}
static int ksz8795_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct alu_struct alu;
int i, ret = 0;
dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
dev->num_vlans, GFP_KERNEL);
if (!dev->vlan_cache)
return -ENOMEM;
ret = ksz8795_reset_switch(dev);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
/* Enable automatic fast aging when link changed detected. */
ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
/* Enable aggressive back off algorithm in half duplex mode. */
regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
/*
* Make sure unicast VLAN boundary is set as default and
* enable no excessive collision drop.
*/
regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
ksz8795_config_cpu_port(ds);
ksz_cfg(dev, REG_SW_CTRL_2, MULTICAST_STORM_DISABLE, true);
ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
/* set broadcast storm protection 10% rate */
regmap_update_bits(dev->regmap[1], S_REPLACE_VID_CTRL,
BROADCAST_STORM_RATE,
(BROADCAST_STORM_VALUE *
BROADCAST_STORM_PROT_RATE) / 100);
for (i = 0; i < VLAN_TABLE_ENTRIES; i++)
ksz8795_r_vlan_entries(dev, i);
/* Setup STP address for STP operation. */
memset(&alu, 0, sizeof(alu));
ether_addr_copy(alu.mac, eth_stp_addr);
alu.is_static = true;
alu.is_override = true;
alu.port_forward = dev->host_mask;
ksz8795_w_sta_mac_table(dev, 0, &alu);
ksz_init_mib_timer(dev);
return 0;
}
static const struct dsa_switch_ops ksz8795_switch_ops = {
.get_tag_protocol = ksz8795_get_tag_protocol,
.setup = ksz8795_setup,
.phy_read = ksz_phy_read16,
.phy_write = ksz_phy_write16,
.adjust_link = ksz_adjust_link,
.port_enable = ksz_enable_port,
.port_disable = ksz_disable_port,
.get_strings = ksz8795_get_strings,
.get_ethtool_stats = ksz_get_ethtool_stats,
.get_sset_count = ksz_sset_count,
.port_bridge_join = ksz_port_bridge_join,
.port_bridge_leave = ksz_port_bridge_leave,
.port_stp_state_set = ksz8795_port_stp_state_set,
.port_fast_age = ksz_port_fast_age,
.port_vlan_filtering = ksz8795_port_vlan_filtering,
.port_vlan_prepare = ksz_port_vlan_prepare,
.port_vlan_add = ksz8795_port_vlan_add,
.port_vlan_del = ksz8795_port_vlan_del,
.port_fdb_dump = ksz_port_fdb_dump,
.port_mdb_prepare = ksz_port_mdb_prepare,
.port_mdb_add = ksz_port_mdb_add,
.port_mdb_del = ksz_port_mdb_del,
.port_mirror_add = ksz8795_port_mirror_add,
.port_mirror_del = ksz8795_port_mirror_del,
};
static u32 ksz8795_get_port_addr(int port, int offset)
{
return PORT_CTRL_ADDR(port, offset);
}
static int ksz8795_switch_detect(struct ksz_device *dev)
{
u8 id1, id2;
u16 id16;
int ret;
/* read chip id */
ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
if (ret)
return ret;
id1 = id16 >> 8;
id2 = id16 & SW_CHIP_ID_M;
if (id1 != FAMILY_ID ||
(id2 != CHIP_ID_94 && id2 != CHIP_ID_95))
return -ENODEV;
dev->mib_port_cnt = TOTAL_PORT_NUM;
dev->phy_port_cnt = SWITCH_PORT_NUM;
dev->port_cnt = SWITCH_PORT_NUM;
if (id2 == CHIP_ID_95) {
u8 val;
id2 = 0x95;
ksz_read8(dev, REG_PORT_1_STATUS_0, &val);
if (val & PORT_FIBER_MODE)
id2 = 0x65;
} else if (id2 == CHIP_ID_94) {
dev->port_cnt--;
dev->last_port = dev->port_cnt;
id2 = 0x94;
}
id16 &= ~0xff;
id16 |= id2;
dev->chip_id = id16;
dev->cpu_port = dev->mib_port_cnt - 1;
dev->host_mask = BIT(dev->cpu_port);
return 0;
}
struct ksz_chip_data {
u16 chip_id;
const char *dev_name;
int num_vlans;
int num_alus;
int num_statics;
int cpu_ports;
int port_cnt;
};
static const struct ksz_chip_data ksz8795_switch_chips[] = {
{
.chip_id = 0x8795,
.dev_name = "KSZ8795",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 4, /* total physical port count */
},
{
.chip_id = 0x8794,
.dev_name = "KSZ8794",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 3, /* total physical port count */
},
{
.chip_id = 0x8765,
.dev_name = "KSZ8765",
.num_vlans = 4096,
.num_alus = 0,
.num_statics = 8,
.cpu_ports = 0x10, /* can be configured as cpu port */
.port_cnt = 4, /* total physical port count */
},
};
static int ksz8795_switch_init(struct ksz_device *dev)
{
int i;
mutex_init(&dev->stats_mutex);
mutex_init(&dev->alu_mutex);
mutex_init(&dev->vlan_mutex);
dev->ds->ops = &ksz8795_switch_ops;
for (i = 0; i < ARRAY_SIZE(ksz8795_switch_chips); i++) {
const struct ksz_chip_data *chip = &ksz8795_switch_chips[i];
if (dev->chip_id == chip->chip_id) {
dev->name = chip->dev_name;
dev->num_vlans = chip->num_vlans;
dev->num_alus = chip->num_alus;
dev->num_statics = chip->num_statics;
dev->port_cnt = chip->port_cnt;
dev->cpu_ports = chip->cpu_ports;
break;
}
}
/* no switch found */
if (!dev->cpu_ports)
return -ENODEV;
dev->port_mask = BIT(dev->port_cnt) - 1;
dev->port_mask |= dev->host_mask;
dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
i = dev->mib_port_cnt;
dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
GFP_KERNEL);
if (!dev->ports)
return -ENOMEM;
for (i = 0; i < dev->mib_port_cnt; i++) {
mutex_init(&dev->ports[i].mib.cnt_mutex);
dev->ports[i].mib.counters =
devm_kzalloc(dev->dev,
sizeof(u64) *
(TOTAL_SWITCH_COUNTER_NUM + 1),
GFP_KERNEL);
if (!dev->ports[i].mib.counters)
return -ENOMEM;
}
return 0;
}
static void ksz8795_switch_exit(struct ksz_device *dev)
{
ksz8795_reset_switch(dev);
}
static const struct ksz_dev_ops ksz8795_dev_ops = {
.get_port_addr = ksz8795_get_port_addr,
.cfg_port_member = ksz8795_cfg_port_member,
.flush_dyn_mac_table = ksz8795_flush_dyn_mac_table,
.port_setup = ksz8795_port_setup,
.r_phy = ksz8795_r_phy,
.w_phy = ksz8795_w_phy,
.r_dyn_mac_table = ksz8795_r_dyn_mac_table,
.r_sta_mac_table = ksz8795_r_sta_mac_table,
.w_sta_mac_table = ksz8795_w_sta_mac_table,
.r_mib_cnt = ksz8795_r_mib_cnt,
.r_mib_pkt = ksz8795_r_mib_pkt,
.freeze_mib = ksz8795_freeze_mib,
.port_init_cnt = ksz8795_port_init_cnt,
.shutdown = ksz8795_reset_switch,
.detect = ksz8795_switch_detect,
.init = ksz8795_switch_init,
.exit = ksz8795_switch_exit,
};
int ksz8795_switch_register(struct ksz_device *dev)
{
return ksz_switch_register(dev, &ksz8795_dev_ops);
}
EXPORT_SYMBOL(ksz8795_switch_register);
MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
MODULE_LICENSE("GPL");
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Microchip KSZ8795 register definitions
*
* Copyright (c) 2017 Microchip Technology Inc.
* Tristram Ha <Tristram.Ha@microchip.com>
*/
#ifndef __KSZ8795_REG_H
#define __KSZ8795_REG_H
#define KS_PORT_M 0x1F
#define KS_PRIO_M 0x3
#define KS_PRIO_S 2
#define REG_CHIP_ID0 0x00
#define FAMILY_ID 0x87
#define REG_CHIP_ID1 0x01
#define SW_CHIP_ID_M 0xF0
#define SW_CHIP_ID_S 4
#define SW_REVISION_M 0x0E
#define SW_REVISION_S 1
#define SW_START 0x01
#define CHIP_ID_94 0x60
#define CHIP_ID_95 0x90
#define REG_SW_CTRL_0 0x02
#define SW_NEW_BACKOFF BIT(7)
#define SW_GLOBAL_RESET BIT(6)
#define SW_FLUSH_DYN_MAC_TABLE BIT(5)
#define SW_FLUSH_STA_MAC_TABLE BIT(4)
#define SW_LINK_AUTO_AGING BIT(0)
#define REG_SW_CTRL_1 0x03
#define SW_HUGE_PACKET BIT(6)
#define SW_TX_FLOW_CTRL_DISABLE BIT(5)
#define SW_RX_FLOW_CTRL_DISABLE BIT(4)
#define SW_CHECK_LENGTH BIT(3)
#define SW_AGING_ENABLE BIT(2)
#define SW_FAST_AGING BIT(1)
#define SW_AGGR_BACKOFF BIT(0)
#define REG_SW_CTRL_2 0x04
#define UNICAST_VLAN_BOUNDARY BIT(7)
#define MULTICAST_STORM_DISABLE BIT(6)
#define SW_BACK_PRESSURE BIT(5)
#define FAIR_FLOW_CTRL BIT(4)
#define NO_EXC_COLLISION_DROP BIT(3)
#define SW_LEGAL_PACKET_DISABLE BIT(1)
#define REG_SW_CTRL_3 0x05
#define WEIGHTED_FAIR_QUEUE_ENABLE BIT(3)
#define SW_VLAN_ENABLE BIT(7)
#define SW_IGMP_SNOOP BIT(6)
#define SW_MIRROR_RX_TX BIT(0)
#define REG_SW_CTRL_4 0x06
#define SW_HALF_DUPLEX_FLOW_CTRL BIT(7)
#define SW_HALF_DUPLEX BIT(6)
#define SW_FLOW_CTRL BIT(5)
#define SW_10_MBIT BIT(4)
#define SW_REPLACE_VID BIT(3)
#define BROADCAST_STORM_RATE_HI 0x07
#define REG_SW_CTRL_5 0x07
#define BROADCAST_STORM_RATE_LO 0xFF
#define BROADCAST_STORM_RATE 0x07FF
#define REG_SW_CTRL_6 0x08
#define SW_MIB_COUNTER_FLUSH BIT(7)
#define SW_MIB_COUNTER_FREEZE BIT(6)
#define SW_MIB_COUNTER_CTRL_ENABLE KS_PORT_M
#define REG_SW_CTRL_9 0x0B
#define SPI_CLK_125_MHZ 0x80
#define SPI_CLK_62_5_MHZ 0x40
#define SPI_CLK_31_25_MHZ 0x00
#define SW_LED_MODE_M 0x3
#define SW_LED_MODE_S 4
#define SW_LED_LINK_ACT_SPEED 0
#define SW_LED_LINK_ACT 1
#define SW_LED_LINK_ACT_DUPLEX 2
#define SW_LED_LINK_DUPLEX 3
#define REG_SW_CTRL_10 0x0C
#define SW_TAIL_TAG_ENABLE BIT(1)
#define SW_PASS_PAUSE BIT(0)
#define REG_SW_CTRL_11 0x0D
#define REG_POWER_MANAGEMENT_1 0x0E
#define SW_PLL_POWER_DOWN BIT(5)
#define SW_POWER_MANAGEMENT_MODE_M 0x3
#define SW_POWER_MANAGEMENT_MODE_S 3
#define SW_POWER_NORMAL 0
#define SW_ENERGY_DETECTION 1
#define SW_SOFTWARE_POWER_DOWN 2
#define REG_POWER_MANAGEMENT_2 0x0F
#define REG_PORT_1_CTRL_0 0x10
#define REG_PORT_2_CTRL_0 0x20
#define REG_PORT_3_CTRL_0 0x30
#define REG_PORT_4_CTRL_0 0x40
#define REG_PORT_5_CTRL_0 0x50
#define PORT_BROADCAST_STORM BIT(7)
#define PORT_DIFFSERV_ENABLE BIT(6)
#define PORT_802_1P_ENABLE BIT(5)
#define PORT_BASED_PRIO_S 3
#define PORT_BASED_PRIO_M KS_PRIO_M
#define PORT_BASED_PRIO_0 0
#define PORT_BASED_PRIO_1 1
#define PORT_BASED_PRIO_2 2
#define PORT_BASED_PRIO_3 3
#define PORT_INSERT_TAG BIT(2)
#define PORT_REMOVE_TAG BIT(1)
#define PORT_QUEUE_SPLIT_L BIT(0)
#define REG_PORT_1_CTRL_1 0x11
#define REG_PORT_2_CTRL_1 0x21
#define REG_PORT_3_CTRL_1 0x31
#define REG_PORT_4_CTRL_1 0x41
#define REG_PORT_5_CTRL_1 0x51
#define PORT_MIRROR_SNIFFER BIT(7)
#define PORT_MIRROR_RX BIT(6)
#define PORT_MIRROR_TX BIT(5)
#define PORT_VLAN_MEMBERSHIP KS_PORT_M
#define REG_PORT_1_CTRL_2 0x12
#define REG_PORT_2_CTRL_2 0x22
#define REG_PORT_3_CTRL_2 0x32
#define REG_PORT_4_CTRL_2 0x42
#define REG_PORT_5_CTRL_2 0x52
#define PORT_802_1P_REMAPPING BIT(7)
#define PORT_INGRESS_FILTER BIT(6)
#define PORT_DISCARD_NON_VID BIT(5)
#define PORT_FORCE_FLOW_CTRL BIT(4)
#define PORT_BACK_PRESSURE BIT(3)
#define PORT_TX_ENABLE BIT(2)
#define PORT_RX_ENABLE BIT(1)
#define PORT_LEARN_DISABLE BIT(0)
#define REG_PORT_1_CTRL_3 0x13
#define REG_PORT_2_CTRL_3 0x23
#define REG_PORT_3_CTRL_3 0x33
#define REG_PORT_4_CTRL_3 0x43
#define REG_PORT_5_CTRL_3 0x53
#define REG_PORT_1_CTRL_4 0x14
#define REG_PORT_2_CTRL_4 0x24
#define REG_PORT_3_CTRL_4 0x34
#define REG_PORT_4_CTRL_4 0x44
#define REG_PORT_5_CTRL_4 0x54
#define PORT_DEFAULT_VID 0x0001
#define REG_PORT_1_CTRL_5 0x15
#define REG_PORT_2_CTRL_5 0x25
#define REG_PORT_3_CTRL_5 0x35
#define REG_PORT_4_CTRL_5 0x45
#define REG_PORT_5_CTRL_5 0x55
#define PORT_ACL_ENABLE BIT(2)
#define PORT_AUTHEN_MODE 0x3
#define PORT_AUTHEN_PASS 0
#define PORT_AUTHEN_BLOCK 1
#define PORT_AUTHEN_TRAP 2
#define REG_PORT_5_CTRL_6 0x56
#define PORT_MII_INTERNAL_CLOCK BIT(7)
#define PORT_GMII_1GPS_MODE BIT(6)
#define PORT_RGMII_ID_IN_ENABLE BIT(4)
#define PORT_RGMII_ID_OUT_ENABLE BIT(3)
#define PORT_GMII_MAC_MODE BIT(2)
#define PORT_INTERFACE_TYPE 0x3
#define PORT_INTERFACE_MII 0
#define PORT_INTERFACE_RMII 1
#define PORT_INTERFACE_GMII 2
#define PORT_INTERFACE_RGMII 3
#define REG_PORT_1_CTRL_7 0x17
#define REG_PORT_2_CTRL_7 0x27
#define REG_PORT_3_CTRL_7 0x37
#define REG_PORT_4_CTRL_7 0x47
#define PORT_AUTO_NEG_ASYM_PAUSE BIT(5)
#define PORT_AUTO_NEG_SYM_PAUSE BIT(4)
#define PORT_AUTO_NEG_100BTX_FD BIT(3)
#define PORT_AUTO_NEG_100BTX BIT(2)
#define PORT_AUTO_NEG_10BT_FD BIT(1)
#define PORT_AUTO_NEG_10BT BIT(0)
#define REG_PORT_1_STATUS_0 0x18
#define REG_PORT_2_STATUS_0 0x28
#define REG_PORT_3_STATUS_0 0x38
#define REG_PORT_4_STATUS_0 0x48
/* For KSZ8765. */
#define PORT_FIBER_MODE BIT(7)
#define PORT_REMOTE_ASYM_PAUSE BIT(5)
#define PORT_REMOTE_SYM_PAUSE BIT(4)
#define PORT_REMOTE_100BTX_FD BIT(3)
#define PORT_REMOTE_100BTX BIT(2)
#define PORT_REMOTE_10BT_FD BIT(1)
#define PORT_REMOTE_10BT BIT(0)
#define REG_PORT_1_STATUS_1 0x19
#define REG_PORT_2_STATUS_1 0x29
#define REG_PORT_3_STATUS_1 0x39
#define REG_PORT_4_STATUS_1 0x49
#define PORT_HP_MDIX BIT(7)
#define PORT_REVERSED_POLARITY BIT(5)
#define PORT_TX_FLOW_CTRL BIT(4)
#define PORT_RX_FLOW_CTRL BIT(3)
#define PORT_STAT_SPEED_100MBIT BIT(2)
#define PORT_STAT_FULL_DUPLEX BIT(1)
#define PORT_REMOTE_FAULT BIT(0)
#define REG_PORT_1_LINK_MD_CTRL 0x1A
#define REG_PORT_2_LINK_MD_CTRL 0x2A
#define REG_PORT_3_LINK_MD_CTRL 0x3A
#define REG_PORT_4_LINK_MD_CTRL 0x4A
#define PORT_CABLE_10M_SHORT BIT(7)
#define PORT_CABLE_DIAG_RESULT_M 0x3
#define PORT_CABLE_DIAG_RESULT_S 5
#define PORT_CABLE_STAT_NORMAL 0
#define PORT_CABLE_STAT_OPEN 1
#define PORT_CABLE_STAT_SHORT 2
#define PORT_CABLE_STAT_FAILED 3
#define PORT_START_CABLE_DIAG BIT(4)
#define PORT_FORCE_LINK BIT(3)
#define PORT_POWER_SAVING BIT(2)
#define PORT_PHY_REMOTE_LOOPBACK BIT(1)
#define PORT_CABLE_FAULT_COUNTER_H 0x01
#define REG_PORT_1_LINK_MD_RESULT 0x1B
#define REG_PORT_2_LINK_MD_RESULT 0x2B
#define REG_PORT_3_LINK_MD_RESULT 0x3B
#define REG_PORT_4_LINK_MD_RESULT 0x4B
#define PORT_CABLE_FAULT_COUNTER_L 0xFF
#define PORT_CABLE_FAULT_COUNTER 0x1FF
#define REG_PORT_1_CTRL_9 0x1C
#define REG_PORT_2_CTRL_9 0x2C
#define REG_PORT_3_CTRL_9 0x3C
#define REG_PORT_4_CTRL_9 0x4C
#define PORT_AUTO_NEG_DISABLE BIT(7)
#define PORT_FORCE_100_MBIT BIT(6)
#define PORT_FORCE_FULL_DUPLEX BIT(5)
#define REG_PORT_1_CTRL_10 0x1D
#define REG_PORT_2_CTRL_10 0x2D
#define REG_PORT_3_CTRL_10 0x3D
#define REG_PORT_4_CTRL_10 0x4D
#define PORT_LED_OFF BIT(7)
#define PORT_TX_DISABLE BIT(6)
#define PORT_AUTO_NEG_RESTART BIT(5)
#define PORT_POWER_DOWN BIT(3)
#define PORT_AUTO_MDIX_DISABLE BIT(2)
#define PORT_FORCE_MDIX BIT(1)
#define PORT_MAC_LOOPBACK BIT(0)
#define REG_PORT_1_STATUS_2 0x1E
#define REG_PORT_2_STATUS_2 0x2E
#define REG_PORT_3_STATUS_2 0x3E
#define REG_PORT_4_STATUS_2 0x4E
#define PORT_MDIX_STATUS BIT(7)
#define PORT_AUTO_NEG_COMPLETE BIT(6)
#define PORT_STAT_LINK_GOOD BIT(5)
#define REG_PORT_1_STATUS_3 0x1F
#define REG_PORT_2_STATUS_3 0x2F
#define REG_PORT_3_STATUS_3 0x3F
#define REG_PORT_4_STATUS_3 0x4F
#define PORT_PHY_LOOPBACK BIT(7)
#define PORT_PHY_ISOLATE BIT(5)
#define PORT_PHY_SOFT_RESET BIT(4)
#define PORT_PHY_FORCE_LINK BIT(3)
#define PORT_PHY_MODE_M 0x7
#define PHY_MODE_IN_AUTO_NEG 1
#define PHY_MODE_10BT_HALF 2
#define PHY_MODE_100BT_HALF 3
#define PHY_MODE_10BT_FULL 5
#define PHY_MODE_100BT_FULL 6
#define PHY_MODE_ISOLDATE 7
#define REG_PORT_CTRL_0 0x00
#define REG_PORT_CTRL_1 0x01
#define REG_PORT_CTRL_2 0x02
#define REG_PORT_CTRL_VID 0x03
#define REG_PORT_CTRL_5 0x05
#define REG_PORT_CTRL_7 0x07
#define REG_PORT_STATUS_0 0x08
#define REG_PORT_STATUS_1 0x09
#define REG_PORT_LINK_MD_CTRL 0x0A
#define REG_PORT_LINK_MD_RESULT 0x0B
#define REG_PORT_CTRL_9 0x0C
#define REG_PORT_CTRL_10 0x0D
#define REG_PORT_STATUS_2 0x0E
#define REG_PORT_STATUS_3 0x0F
#define REG_PORT_CTRL_12 0xA0
#define REG_PORT_CTRL_13 0xA1
#define REG_PORT_RATE_CTRL_3 0xA2
#define REG_PORT_RATE_CTRL_2 0xA3
#define REG_PORT_RATE_CTRL_1 0xA4
#define REG_PORT_RATE_CTRL_0 0xA5
#define REG_PORT_RATE_LIMIT 0xA6
#define REG_PORT_IN_RATE_0 0xA7
#define REG_PORT_IN_RATE_1 0xA8
#define REG_PORT_IN_RATE_2 0xA9
#define REG_PORT_IN_RATE_3 0xAA
#define REG_PORT_OUT_RATE_0 0xAB
#define REG_PORT_OUT_RATE_1 0xAC
#define REG_PORT_OUT_RATE_2 0xAD
#define REG_PORT_OUT_RATE_3 0xAE
#define PORT_CTRL_ADDR(port, addr) \
((addr) + REG_PORT_1_CTRL_0 + (port) * \
(REG_PORT_2_CTRL_0 - REG_PORT_1_CTRL_0))
#define REG_SW_MAC_ADDR_0 0x68
#define REG_SW_MAC_ADDR_1 0x69
#define REG_SW_MAC_ADDR_2 0x6A
#define REG_SW_MAC_ADDR_3 0x6B
#define REG_SW_MAC_ADDR_4 0x6C
#define REG_SW_MAC_ADDR_5 0x6D
#define REG_IND_CTRL_0 0x6E
#define TABLE_EXT_SELECT_S 5
#define TABLE_EEE_V 1
#define TABLE_ACL_V 2
#define TABLE_PME_V 4
#define TABLE_LINK_MD_V 5
#define TABLE_EEE (TABLE_EEE_V << TABLE_EXT_SELECT_S)
#define TABLE_ACL (TABLE_ACL_V << TABLE_EXT_SELECT_S)
#define TABLE_PME (TABLE_PME_V << TABLE_EXT_SELECT_S)
#define TABLE_LINK_MD (TABLE_LINK_MD << TABLE_EXT_SELECT_S)
#define TABLE_READ BIT(4)
#define TABLE_SELECT_S 2
#define TABLE_STATIC_MAC_V 0
#define TABLE_VLAN_V 1
#define TABLE_DYNAMIC_MAC_V 2
#define TABLE_MIB_V 3
#define TABLE_STATIC_MAC (TABLE_STATIC_MAC_V << TABLE_SELECT_S)
#define TABLE_VLAN (TABLE_VLAN_V << TABLE_SELECT_S)
#define TABLE_DYNAMIC_MAC (TABLE_DYNAMIC_MAC_V << TABLE_SELECT_S)
#define TABLE_MIB (TABLE_MIB_V << TABLE_SELECT_S)
#define REG_IND_CTRL_1 0x6F
#define TABLE_ENTRY_MASK 0x03FF
#define TABLE_EXT_ENTRY_MASK 0x0FFF
#define REG_IND_DATA_8 0x70
#define REG_IND_DATA_7 0x71
#define REG_IND_DATA_6 0x72
#define REG_IND_DATA_5 0x73
#define REG_IND_DATA_4 0x74
#define REG_IND_DATA_3 0x75
#define REG_IND_DATA_2 0x76
#define REG_IND_DATA_1 0x77
#define REG_IND_DATA_0 0x78
#define REG_IND_DATA_PME_EEE_ACL 0xA0
#define REG_IND_DATA_CHECK REG_IND_DATA_6
#define REG_IND_MIB_CHECK REG_IND_DATA_4
#define REG_IND_DATA_HI REG_IND_DATA_7
#define REG_IND_DATA_LO REG_IND_DATA_3
#define REG_INT_STATUS 0x7C
#define REG_INT_ENABLE 0x7D
#define INT_PME BIT(4)
#define REG_ACL_INT_STATUS 0x7E
#define REG_ACL_INT_ENABLE 0x7F
#define INT_PORT_5 BIT(4)
#define INT_PORT_4 BIT(3)
#define INT_PORT_3 BIT(2)
#define INT_PORT_2 BIT(1)
#define INT_PORT_1 BIT(0)
#define INT_PORT_ALL \
(INT_PORT_5 | INT_PORT_4 | INT_PORT_3 | INT_PORT_2 | INT_PORT_1)
#define REG_SW_CTRL_12 0x80
#define REG_SW_CTRL_13 0x81
#define SWITCH_802_1P_MASK 3
#define SWITCH_802_1P_BASE 3
#define SWITCH_802_1P_SHIFT 2
#define SW_802_1P_MAP_M KS_PRIO_M
#define SW_802_1P_MAP_S KS_PRIO_S
#define REG_SWITCH_CTRL_14 0x82
#define SW_PRIO_MAPPING_M KS_PRIO_M
#define SW_PRIO_MAPPING_S 6
#define SW_PRIO_MAP_3_HI 0
#define SW_PRIO_MAP_2_HI 2
#define SW_PRIO_MAP_0_LO 3
#define REG_SW_CTRL_15 0x83
#define REG_SW_CTRL_16 0x84
#define REG_SW_CTRL_17 0x85
#define REG_SW_CTRL_18 0x86
#define SW_SELF_ADDR_FILTER_ENABLE BIT(6)
#define REG_SW_UNK_UCAST_CTRL 0x83
#define REG_SW_UNK_MCAST_CTRL 0x84
#define REG_SW_UNK_VID_CTRL 0x85
#define REG_SW_UNK_IP_MCAST_CTRL 0x86
#define SW_UNK_FWD_ENABLE BIT(5)
#define SW_UNK_FWD_MAP KS_PORT_M
#define REG_SW_CTRL_19 0x87
#define SW_IN_RATE_LIMIT_PERIOD_M 0x3
#define SW_IN_RATE_LIMIT_PERIOD_S 4
#define SW_IN_RATE_LIMIT_16_MS 0
#define SW_IN_RATE_LIMIT_64_MS 1
#define SW_IN_RATE_LIMIT_256_MS 2
#define SW_OUT_RATE_LIMIT_QUEUE_BASED BIT(3)
#define SW_INS_TAG_ENABLE BIT(2)
#define REG_TOS_PRIO_CTRL_0 0x90
#define REG_TOS_PRIO_CTRL_1 0x91
#define REG_TOS_PRIO_CTRL_2 0x92
#define REG_TOS_PRIO_CTRL_3 0x93
#define REG_TOS_PRIO_CTRL_4 0x94
#define REG_TOS_PRIO_CTRL_5 0x95
#define REG_TOS_PRIO_CTRL_6 0x96
#define REG_TOS_PRIO_CTRL_7 0x97
#define REG_TOS_PRIO_CTRL_8 0x98
#define REG_TOS_PRIO_CTRL_9 0x99
#define REG_TOS_PRIO_CTRL_10 0x9A
#define REG_TOS_PRIO_CTRL_11 0x9B
#define REG_TOS_PRIO_CTRL_12 0x9C
#define REG_TOS_PRIO_CTRL_13 0x9D
#define REG_TOS_PRIO_CTRL_14 0x9E
#define REG_TOS_PRIO_CTRL_15 0x9F
#define TOS_PRIO_M KS_PRIO_M
#define TOS_PRIO_S KS_PRIO_S
#define REG_SW_CTRL_20 0xA3
#define SW_GMII_DRIVE_STRENGTH_S 4
#define SW_DRIVE_STRENGTH_M 0x7
#define SW_DRIVE_STRENGTH_2MA 0
#define SW_DRIVE_STRENGTH_4MA 1
#define SW_DRIVE_STRENGTH_8MA 2
#define SW_DRIVE_STRENGTH_12MA 3
#define SW_DRIVE_STRENGTH_16MA 4
#define SW_DRIVE_STRENGTH_20MA 5
#define SW_DRIVE_STRENGTH_24MA 6
#define SW_DRIVE_STRENGTH_28MA 7
#define SW_MII_DRIVE_STRENGTH_S 0
#define REG_SW_CTRL_21 0xA4
#define SW_IPV6_MLD_OPTION BIT(3)
#define SW_IPV6_MLD_SNOOP BIT(2)
#define REG_PORT_1_CTRL_12 0xB0
#define REG_PORT_2_CTRL_12 0xC0
#define REG_PORT_3_CTRL_12 0xD0
#define REG_PORT_4_CTRL_12 0xE0
#define REG_PORT_5_CTRL_12 0xF0
#define PORT_PASS_ALL BIT(6)
#define PORT_INS_TAG_FOR_PORT_5_S 3
#define PORT_INS_TAG_FOR_PORT_5 BIT(3)
#define PORT_INS_TAG_FOR_PORT_4 BIT(2)
#define PORT_INS_TAG_FOR_PORT_3 BIT(1)
#define PORT_INS_TAG_FOR_PORT_2 BIT(0)
#define REG_PORT_1_CTRL_13 0xB1
#define REG_PORT_2_CTRL_13 0xC1
#define REG_PORT_3_CTRL_13 0xD1
#define REG_PORT_4_CTRL_13 0xE1
#define REG_PORT_5_CTRL_13 0xF1
#define PORT_QUEUE_SPLIT_H BIT(1)
#define PORT_QUEUE_SPLIT_1 0
#define PORT_QUEUE_SPLIT_2 1
#define PORT_QUEUE_SPLIT_4 2
#define PORT_DROP_TAG BIT(0)
#define REG_PORT_1_CTRL_14 0xB2
#define REG_PORT_2_CTRL_14 0xC2
#define REG_PORT_3_CTRL_14 0xD2
#define REG_PORT_4_CTRL_14 0xE2
#define REG_PORT_5_CTRL_14 0xF2
#define REG_PORT_1_CTRL_15 0xB3
#define REG_PORT_2_CTRL_15 0xC3
#define REG_PORT_3_CTRL_15 0xD3
#define REG_PORT_4_CTRL_15 0xE3
#define REG_PORT_5_CTRL_15 0xF3
#define REG_PORT_1_CTRL_16 0xB4
#define REG_PORT_2_CTRL_16 0xC4
#define REG_PORT_3_CTRL_16 0xD4
#define REG_PORT_4_CTRL_16 0xE4
#define REG_PORT_5_CTRL_16 0xF4
#define REG_PORT_1_CTRL_17 0xB5
#define REG_PORT_2_CTRL_17 0xC5
#define REG_PORT_3_CTRL_17 0xD5
#define REG_PORT_4_CTRL_17 0xE5
#define REG_PORT_5_CTRL_17 0xF5
#define REG_PORT_1_RATE_CTRL_3 0xB2
#define REG_PORT_1_RATE_CTRL_2 0xB3
#define REG_PORT_1_RATE_CTRL_1 0xB4
#define REG_PORT_1_RATE_CTRL_0 0xB5
#define REG_PORT_2_RATE_CTRL_3 0xC2
#define REG_PORT_2_RATE_CTRL_2 0xC3
#define REG_PORT_2_RATE_CTRL_1 0xC4
#define REG_PORT_2_RATE_CTRL_0 0xC5
#define REG_PORT_3_RATE_CTRL_3 0xD2
#define REG_PORT_3_RATE_CTRL_2 0xD3
#define REG_PORT_3_RATE_CTRL_1 0xD4
#define REG_PORT_3_RATE_CTRL_0 0xD5
#define REG_PORT_4_RATE_CTRL_3 0xE2
#define REG_PORT_4_RATE_CTRL_2 0xE3
#define REG_PORT_4_RATE_CTRL_1 0xE4
#define REG_PORT_4_RATE_CTRL_0 0xE5
#define REG_PORT_5_RATE_CTRL_3 0xF2
#define REG_PORT_5_RATE_CTRL_2 0xF3
#define REG_PORT_5_RATE_CTRL_1 0xF4
#define REG_PORT_5_RATE_CTRL_0 0xF5
#define RATE_CTRL_ENABLE BIT(7)
#define RATE_RATIO_M (BIT(7) - 1)
#define PORT_OUT_RATE_ENABLE BIT(7)
#define REG_PORT_1_RATE_LIMIT 0xB6
#define REG_PORT_2_RATE_LIMIT 0xC6
#define REG_PORT_3_RATE_LIMIT 0xD6
#define REG_PORT_4_RATE_LIMIT 0xE6
#define REG_PORT_5_RATE_LIMIT 0xF6
#define PORT_IN_PORT_BASED_S 6
#define PORT_RATE_PACKET_BASED_S 5
#define PORT_IN_FLOW_CTRL_S 4
#define PORT_IN_LIMIT_MODE_M 0x3
#define PORT_IN_LIMIT_MODE_S 2
#define PORT_COUNT_IFG_S 1
#define PORT_COUNT_PREAMBLE_S 0
#define PORT_IN_PORT_BASED BIT(PORT_IN_PORT_BASED_S)
#define PORT_RATE_PACKET_BASED BIT(PORT_RATE_PACKET_BASED_S)
#define PORT_IN_FLOW_CTRL BIT(PORT_IN_FLOW_CTRL_S)
#define PORT_IN_ALL 0
#define PORT_IN_UNICAST 1
#define PORT_IN_MULTICAST 2
#define PORT_IN_BROADCAST 3
#define PORT_COUNT_IFG BIT(PORT_COUNT_IFG_S)
#define PORT_COUNT_PREAMBLE BIT(PORT_COUNT_PREAMBLE_S)
#define REG_PORT_1_IN_RATE_0 0xB7
#define REG_PORT_2_IN_RATE_0 0xC7
#define REG_PORT_3_IN_RATE_0 0xD7
#define REG_PORT_4_IN_RATE_0 0xE7
#define REG_PORT_5_IN_RATE_0 0xF7
#define REG_PORT_1_IN_RATE_1 0xB8
#define REG_PORT_2_IN_RATE_1 0xC8
#define REG_PORT_3_IN_RATE_1 0xD8
#define REG_PORT_4_IN_RATE_1 0xE8
#define REG_PORT_5_IN_RATE_1 0xF8
#define REG_PORT_1_IN_RATE_2 0xB9
#define REG_PORT_2_IN_RATE_2 0xC9
#define REG_PORT_3_IN_RATE_2 0xD9
#define REG_PORT_4_IN_RATE_2 0xE9
#define REG_PORT_5_IN_RATE_2 0xF9
#define REG_PORT_1_IN_RATE_3 0xBA
#define REG_PORT_2_IN_RATE_3 0xCA
#define REG_PORT_3_IN_RATE_3 0xDA
#define REG_PORT_4_IN_RATE_3 0xEA
#define REG_PORT_5_IN_RATE_3 0xFA
#define PORT_IN_RATE_ENABLE BIT(7)
#define PORT_RATE_LIMIT_M (BIT(7) - 1)
#define REG_PORT_1_OUT_RATE_0 0xBB
#define REG_PORT_2_OUT_RATE_0 0xCB
#define REG_PORT_3_OUT_RATE_0 0xDB
#define REG_PORT_4_OUT_RATE_0 0xEB
#define REG_PORT_5_OUT_RATE_0 0xFB
#define REG_PORT_1_OUT_RATE_1 0xBC
#define REG_PORT_2_OUT_RATE_1 0xCC
#define REG_PORT_3_OUT_RATE_1 0xDC
#define REG_PORT_4_OUT_RATE_1 0xEC
#define REG_PORT_5_OUT_RATE_1 0xFC
#define REG_PORT_1_OUT_RATE_2 0xBD
#define REG_PORT_2_OUT_RATE_2 0xCD
#define REG_PORT_3_OUT_RATE_2 0xDD
#define REG_PORT_4_OUT_RATE_2 0xED
#define REG_PORT_5_OUT_RATE_2 0xFD
#define REG_PORT_1_OUT_RATE_3 0xBE
#define REG_PORT_2_OUT_RATE_3 0xCE
#define REG_PORT_3_OUT_RATE_3 0xDE
#define REG_PORT_4_OUT_RATE_3 0xEE
#define REG_PORT_5_OUT_RATE_3 0xFE
/* PME */
#define SW_PME_OUTPUT_ENABLE BIT(1)
#define SW_PME_ACTIVE_HIGH BIT(0)
#define PORT_MAGIC_PACKET_DETECT BIT(2)
#define PORT_LINK_UP_DETECT BIT(1)
#define PORT_ENERGY_DETECT BIT(0)
/* ACL */
#define ACL_FIRST_RULE_M 0xF
#define ACL_MODE_M 0x3
#define ACL_MODE_S 4
#define ACL_MODE_DISABLE 0
#define ACL_MODE_LAYER_2 1
#define ACL_MODE_LAYER_3 2
#define ACL_MODE_LAYER_4 3
#define ACL_ENABLE_M 0x3
#define ACL_ENABLE_S 2
#define ACL_ENABLE_2_COUNT 0
#define ACL_ENABLE_2_TYPE 1
#define ACL_ENABLE_2_MAC 2
#define ACL_ENABLE_2_BOTH 3
#define ACL_ENABLE_3_IP 1
#define ACL_ENABLE_3_SRC_DST_COMP 2
#define ACL_ENABLE_4_PROTOCOL 0
#define ACL_ENABLE_4_TCP_PORT_COMP 1
#define ACL_ENABLE_4_UDP_PORT_COMP 2
#define ACL_ENABLE_4_TCP_SEQN_COMP 3
#define ACL_SRC BIT(1)
#define ACL_EQUAL BIT(0)
#define ACL_MAX_PORT 0xFFFF
#define ACL_MIN_PORT 0xFFFF
#define ACL_IP_ADDR 0xFFFFFFFF
#define ACL_TCP_SEQNUM 0xFFFFFFFF
#define ACL_RESERVED 0xF8
#define ACL_PORT_MODE_M 0x3
#define ACL_PORT_MODE_S 1
#define ACL_PORT_MODE_DISABLE 0
#define ACL_PORT_MODE_EITHER 1
#define ACL_PORT_MODE_IN_RANGE 2
#define ACL_PORT_MODE_OUT_OF_RANGE 3
#define ACL_TCP_FLAG_ENABLE BIT(0)
#define ACL_TCP_FLAG_M 0xFF
#define ACL_TCP_FLAG 0xFF
#define ACL_ETH_TYPE 0xFFFF
#define ACL_IP_M 0xFFFFFFFF
#define ACL_PRIO_MODE_M 0x3
#define ACL_PRIO_MODE_S 6
#define ACL_PRIO_MODE_DISABLE 0
#define ACL_PRIO_MODE_HIGHER 1
#define ACL_PRIO_MODE_LOWER 2
#define ACL_PRIO_MODE_REPLACE 3
#define ACL_PRIO_M 0x7
#define ACL_PRIO_S 3
#define ACL_VLAN_PRIO_REPLACE BIT(2)
#define ACL_VLAN_PRIO_M 0x7
#define ACL_VLAN_PRIO_HI_M 0x3
#define ACL_VLAN_PRIO_LO_M 0x8
#define ACL_VLAN_PRIO_S 7
#define ACL_MAP_MODE_M 0x3
#define ACL_MAP_MODE_S 5
#define ACL_MAP_MODE_DISABLE 0
#define ACL_MAP_MODE_OR 1
#define ACL_MAP_MODE_AND 2
#define ACL_MAP_MODE_REPLACE 3
#define ACL_MAP_PORT_M 0x1F
#define ACL_CNT_M (BIT(11) - 1)
#define ACL_CNT_S 5
#define ACL_MSEC_UNIT BIT(4)
#define ACL_INTR_MODE BIT(3)
#define REG_PORT_ACL_BYTE_EN_MSB 0x10
#define ACL_BYTE_EN_MSB_M 0x3F
#define REG_PORT_ACL_BYTE_EN_LSB 0x11
#define ACL_ACTION_START 0xA
#define ACL_ACTION_LEN 2
#define ACL_INTR_CNT_START 0xB
#define ACL_RULESET_START 0xC
#define ACL_RULESET_LEN 2
#define ACL_TABLE_LEN 14
#define ACL_ACTION_ENABLE 0x000C
#define ACL_MATCH_ENABLE 0x1FF0
#define ACL_RULESET_ENABLE 0x2003
#define ACL_BYTE_ENABLE ((ACL_BYTE_EN_MSB_M << 8) | 0xFF)
#define ACL_MODE_ENABLE (0x10 << 8)
#define REG_PORT_ACL_CTRL_0 0x12
#define PORT_ACL_WRITE_DONE BIT(6)
#define PORT_ACL_READ_DONE BIT(5)
#define PORT_ACL_WRITE BIT(4)
#define PORT_ACL_INDEX_M 0xF
#define REG_PORT_ACL_CTRL_1 0x13
#define PORT_ACL_FORCE_DLR_MISS BIT(0)
#ifndef PHY_REG_CTRL
#define PHY_REG_CTRL 0
#define PHY_RESET BIT(15)
#define PHY_LOOPBACK BIT(14)
#define PHY_SPEED_100MBIT BIT(13)
#define PHY_AUTO_NEG_ENABLE BIT(12)
#define PHY_POWER_DOWN BIT(11)
#define PHY_MII_DISABLE BIT(10)
#define PHY_AUTO_NEG_RESTART BIT(9)
#define PHY_FULL_DUPLEX BIT(8)
#define PHY_COLLISION_TEST_NOT BIT(7)
#define PHY_HP_MDIX BIT(5)
#define PHY_FORCE_MDIX BIT(4)
#define PHY_AUTO_MDIX_DISABLE BIT(3)
#define PHY_REMOTE_FAULT_DISABLE BIT(2)
#define PHY_TRANSMIT_DISABLE BIT(1)
#define PHY_LED_DISABLE BIT(0)
#define PHY_REG_STATUS 1
#define PHY_100BT4_CAPABLE BIT(15)
#define PHY_100BTX_FD_CAPABLE BIT(14)
#define PHY_100BTX_CAPABLE BIT(13)
#define PHY_10BT_FD_CAPABLE BIT(12)
#define PHY_10BT_CAPABLE BIT(11)
#define PHY_MII_SUPPRESS_CAPABLE_NOT BIT(6)
#define PHY_AUTO_NEG_ACKNOWLEDGE BIT(5)
#define PHY_REMOTE_FAULT BIT(4)
#define PHY_AUTO_NEG_CAPABLE BIT(3)
#define PHY_LINK_STATUS BIT(2)
#define PHY_JABBER_DETECT_NOT BIT(1)
#define PHY_EXTENDED_CAPABILITY BIT(0)
#define PHY_REG_ID_1 2
#define PHY_REG_ID_2 3
#define PHY_REG_AUTO_NEGOTIATION 4
#define PHY_AUTO_NEG_NEXT_PAGE_NOT BIT(15)
#define PHY_AUTO_NEG_REMOTE_FAULT_NOT BIT(13)
#define PHY_AUTO_NEG_SYM_PAUSE BIT(10)
#define PHY_AUTO_NEG_100BT4 BIT(9)
#define PHY_AUTO_NEG_100BTX_FD BIT(8)
#define PHY_AUTO_NEG_100BTX BIT(7)
#define PHY_AUTO_NEG_10BT_FD BIT(6)
#define PHY_AUTO_NEG_10BT BIT(5)
#define PHY_AUTO_NEG_SELECTOR 0x001F
#define PHY_AUTO_NEG_802_3 0x0001
#define PHY_REG_REMOTE_CAPABILITY 5
#define PHY_REMOTE_NEXT_PAGE_NOT BIT(15)
#define PHY_REMOTE_ACKNOWLEDGE_NOT BIT(14)
#define PHY_REMOTE_REMOTE_FAULT_NOT BIT(13)
#define PHY_REMOTE_SYM_PAUSE BIT(10)
#define PHY_REMOTE_100BTX_FD BIT(8)
#define PHY_REMOTE_100BTX BIT(7)
#define PHY_REMOTE_10BT_FD BIT(6)
#define PHY_REMOTE_10BT BIT(5)
#endif
#define KSZ8795_ID_HI 0x0022
#define KSZ8795_ID_LO 0x1550
#define KSZ8795_SW_ID 0x8795
#define PHY_REG_LINK_MD 0x1D
#define PHY_START_CABLE_DIAG BIT(15)
#define PHY_CABLE_DIAG_RESULT 0x6000
#define PHY_CABLE_STAT_NORMAL 0x0000
#define PHY_CABLE_STAT_OPEN 0x2000
#define PHY_CABLE_STAT_SHORT 0x4000
#define PHY_CABLE_STAT_FAILED 0x6000
#define PHY_CABLE_10M_SHORT BIT(12)
#define PHY_CABLE_FAULT_COUNTER 0x01FF
#define PHY_REG_PHY_CTRL 0x1F
#define PHY_MODE_M 0x7
#define PHY_MODE_S 8
#define PHY_STAT_REVERSED_POLARITY BIT(5)
#define PHY_STAT_MDIX BIT(4)
#define PHY_FORCE_LINK BIT(3)
#define PHY_POWER_SAVING_ENABLE BIT(2)
#define PHY_REMOTE_LOOPBACK BIT(1)
/* Chip resource */
#define PRIO_QUEUES 4
#define KS_PRIO_IN_REG 4
#define TOTAL_PORT_NUM 5
/* Host port can only be last of them. */
#define SWITCH_PORT_NUM (TOTAL_PORT_NUM - 1)
#define KSZ8795_COUNTER_NUM 0x20
#define TOTAL_KSZ8795_COUNTER_NUM (KSZ8795_COUNTER_NUM + 4)
#define SWITCH_COUNTER_NUM KSZ8795_COUNTER_NUM
#define TOTAL_SWITCH_COUNTER_NUM TOTAL_KSZ8795_COUNTER_NUM
/* Common names used by other drivers */
#define P_BCAST_STORM_CTRL REG_PORT_CTRL_0
#define P_PRIO_CTRL REG_PORT_CTRL_0
#define P_TAG_CTRL REG_PORT_CTRL_0
#define P_MIRROR_CTRL REG_PORT_CTRL_1
#define P_802_1P_CTRL REG_PORT_CTRL_2
#define P_STP_CTRL REG_PORT_CTRL_2
#define P_LOCAL_CTRL REG_PORT_CTRL_7
#define P_REMOTE_STATUS REG_PORT_STATUS_0
#define P_FORCE_CTRL REG_PORT_CTRL_9
#define P_NEG_RESTART_CTRL REG_PORT_CTRL_10
#define P_SPEED_STATUS REG_PORT_STATUS_1
#define P_LINK_STATUS REG_PORT_STATUS_2
#define P_PASS_ALL_CTRL REG_PORT_CTRL_12
#define P_INS_SRC_PVID_CTRL REG_PORT_CTRL_12
#define P_DROP_TAG_CTRL REG_PORT_CTRL_13
#define P_RATE_LIMIT_CTRL REG_PORT_RATE_LIMIT
#define S_UNKNOWN_DA_CTRL REG_SWITCH_CTRL_12
#define S_FORWARD_INVALID_VID_CTRL REG_FORWARD_INVALID_VID
#define S_FLUSH_TABLE_CTRL REG_SW_CTRL_0
#define S_LINK_AGING_CTRL REG_SW_CTRL_0
#define S_HUGE_PACKET_CTRL REG_SW_CTRL_1
#define S_MIRROR_CTRL REG_SW_CTRL_3
#define S_REPLACE_VID_CTRL REG_SW_CTRL_4
#define S_PASS_PAUSE_CTRL REG_SW_CTRL_10
#define S_TAIL_TAG_CTRL REG_SW_CTRL_10
#define S_802_1P_PRIO_CTRL REG_SW_CTRL_12
#define S_TOS_PRIO_CTRL REG_TOS_PRIO_CTRL_0
#define S_IPV6_MLD_CTRL REG_SW_CTRL_21
#define IND_ACC_TABLE(table) ((table) << 8)
/* Driver set switch broadcast storm protection at 10% rate. */
#define BROADCAST_STORM_PROT_RATE 10
/* 148,800 frames * 67 ms / 100 */
#define BROADCAST_STORM_VALUE 9969
/**
* STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
* STATIC_MAC_TABLE_FWD_PORTS 00-001F0000-00000000
* STATIC_MAC_TABLE_VALID 00-00200000-00000000
* STATIC_MAC_TABLE_OVERRIDE 00-00400000-00000000
* STATIC_MAC_TABLE_USE_FID 00-00800000-00000000
* STATIC_MAC_TABLE_FID 00-7F000000-00000000
*/
#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
#define STATIC_MAC_TABLE_FWD_PORTS 0x001F0000
#define STATIC_MAC_TABLE_VALID 0x00200000
#define STATIC_MAC_TABLE_OVERRIDE 0x00400000
#define STATIC_MAC_TABLE_USE_FID 0x00800000
#define STATIC_MAC_TABLE_FID 0x7F000000
#define STATIC_MAC_FWD_PORTS_S 16
#define STATIC_MAC_FID_S 24
/**
* VLAN_TABLE_FID 00-007F007F-007F007F
* VLAN_TABLE_MEMBERSHIP 00-0F800F80-0F800F80
* VLAN_TABLE_VALID 00-10001000-10001000
*/
#define VLAN_TABLE_FID 0x007F
#define VLAN_TABLE_MEMBERSHIP 0x0F80
#define VLAN_TABLE_VALID 0x1000
#define VLAN_TABLE_MEMBERSHIP_S 7
#define VLAN_TABLE_S 16
/**
* DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
* DYNAMIC_MAC_TABLE_FID 00-007F0000-00000000
* DYNAMIC_MAC_TABLE_NOT_READY 00-00800000-00000000
* DYNAMIC_MAC_TABLE_SRC_PORT 00-07000000-00000000
* DYNAMIC_MAC_TABLE_TIMESTAMP 00-18000000-00000000
* DYNAMIC_MAC_TABLE_ENTRIES 7F-E0000000-00000000
* DYNAMIC_MAC_TABLE_MAC_EMPTY 80-00000000-00000000
*/
#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
#define DYNAMIC_MAC_TABLE_FID 0x007F0000
#define DYNAMIC_MAC_TABLE_SRC_PORT 0x07000000
#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x18000000
#define DYNAMIC_MAC_TABLE_ENTRIES 0xE0000000
#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x7F
#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x80
#define DYNAMIC_MAC_FID_S 16
#define DYNAMIC_MAC_SRC_PORT_S 24
#define DYNAMIC_MAC_TIMESTAMP_S 27
#define DYNAMIC_MAC_ENTRIES_S 29
#define DYNAMIC_MAC_ENTRIES_H_S 3
/**
* MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
* MIB_TOTAL_BYTES 00-0000000F-FFFFFFFF
* MIB_PACKET_DROPPED 00-00000000-0000FFFF
* MIB_COUNTER_VALID 00-00000020-00000000
* MIB_COUNTER_OVERFLOW 00-00000040-00000000
*/
#define MIB_COUNTER_OVERFLOW BIT(6)
#define MIB_COUNTER_VALID BIT(5)
#define MIB_COUNTER_VALUE 0x3FFFFFFF
#define KS_MIB_TOTAL_RX_0 0x100
#define KS_MIB_TOTAL_TX_0 0x101
#define KS_MIB_PACKET_DROPPED_RX_0 0x102
#define KS_MIB_PACKET_DROPPED_TX_0 0x103
#define KS_MIB_TOTAL_RX_1 0x104
#define KS_MIB_TOTAL_TX_1 0x105
#define KS_MIB_PACKET_DROPPED_TX_1 0x106
#define KS_MIB_PACKET_DROPPED_RX_1 0x107
#define KS_MIB_TOTAL_RX_2 0x108
#define KS_MIB_TOTAL_TX_2 0x109
#define KS_MIB_PACKET_DROPPED_TX_2 0x10A
#define KS_MIB_PACKET_DROPPED_RX_2 0x10B
#define KS_MIB_TOTAL_RX_3 0x10C
#define KS_MIB_TOTAL_TX_3 0x10D
#define KS_MIB_PACKET_DROPPED_TX_3 0x10E
#define KS_MIB_PACKET_DROPPED_RX_3 0x10F
#define KS_MIB_TOTAL_RX_4 0x110
#define KS_MIB_TOTAL_TX_4 0x111
#define KS_MIB_PACKET_DROPPED_TX_4 0x112
#define KS_MIB_PACKET_DROPPED_RX_4 0x113
#define MIB_PACKET_DROPPED 0x0000FFFF
#define MIB_TOTAL_BYTES_H 0x0000000F
#define TAIL_TAG_OVERRIDE BIT(6)
#define TAIL_TAG_LOOKUP BIT(7)
#define VLAN_TABLE_ENTRIES (4096 / 4)
#define FID_ENTRIES 128
#endif
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Microchip KSZ8795 series register access through SPI
*
* Copyright (C) 2017 Microchip Technology Inc.
* Tristram Ha <Tristram.Ha@microchip.com>
*/
#include <asm/unaligned.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include "ksz_priv.h"
#include "ksz_common.h"
#define SPI_ADDR_SHIFT 12
#define SPI_ADDR_ALIGN 3
#define SPI_TURNAROUND_SHIFT 1
KSZ_REGMAP_TABLE(ksz8795, 16, SPI_ADDR_SHIFT,
SPI_TURNAROUND_SHIFT, SPI_ADDR_ALIGN);
static int ksz8795_spi_probe(struct spi_device *spi)
{
struct ksz_device *dev;
int i, ret;
dev = ksz_switch_alloc(&spi->dev, spi);
if (!dev)
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(ksz8795_regmap_config); i++) {
dev->regmap[i] = devm_regmap_init_spi(spi,
&ksz8795_regmap_config
[i]);
if (IS_ERR(dev->regmap[i])) {
ret = PTR_ERR(dev->regmap[i]);
dev_err(&spi->dev,
"Failed to initialize regmap%i: %d\n",
ksz8795_regmap_config[i].val_bits, ret);
return ret;
}
}
if (spi->dev.platform_data)
dev->pdata = spi->dev.platform_data;
ret = ksz8795_switch_register(dev);
/* Main DSA driver may not be started yet. */
if (ret)
return ret;
spi_set_drvdata(spi, dev);
return 0;
}
static int ksz8795_spi_remove(struct spi_device *spi)
{
struct ksz_device *dev = spi_get_drvdata(spi);
if (dev)
ksz_switch_remove(dev);
return 0;
}
static void ksz8795_spi_shutdown(struct spi_device *spi)
{
struct ksz_device *dev = spi_get_drvdata(spi);
if (dev && dev->dev_ops->shutdown)
dev->dev_ops->shutdown(dev);
}
static const struct of_device_id ksz8795_dt_ids[] = {
{ .compatible = "microchip,ksz8765" },
{ .compatible = "microchip,ksz8794" },
{ .compatible = "microchip,ksz8795" },
{},
};
MODULE_DEVICE_TABLE(of, ksz8795_dt_ids);
static struct spi_driver ksz8795_spi_driver = {
.driver = {
.name = "ksz8795-switch",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(ksz8795_dt_ids),
},
.probe = ksz8795_spi_probe,
.remove = ksz8795_spi_remove,
.shutdown = ksz8795_spi_shutdown,
};
module_spi_driver(ksz8795_spi_driver);
MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch SPI Driver");
MODULE_LICENSE("GPL");
......@@ -373,7 +373,8 @@ int ksz_enable_port(struct dsa_switch *ds, int port, struct phy_device *phy)
/* setup slave port */
dev->dev_ops->port_setup(dev, port, false);
dev->dev_ops->phy_setup(dev, port, phy);
if (dev->dev_ops->phy_setup)
dev->dev_ops->phy_setup(dev, port, phy);
/* port_stp_state_set() will be called after to enable the port so
* there is no need to do anything.
......
......@@ -68,6 +68,22 @@ static inline int ksz_read32(struct ksz_device *dev, u32 reg, u32 *val)
return ret;
}
static inline int ksz_read64(struct ksz_device *dev, u32 reg, u64 *val)
{
u32 value[2];
int ret;
ret = regmap_bulk_read(dev->regmap[2], reg, value, 2);
if (!ret) {
/* Ick! ToDo: Add 64bit R/W to regmap on 32bit systems */
value[0] = swab32(value[0]);
value[1] = swab32(value[1]);
*val = swab64((u64)*value);
}
return ret;
}
static inline int ksz_write8(struct ksz_device *dev, u32 reg, u8 value)
{
return regmap_write(dev->regmap[0], reg, value);
......@@ -83,6 +99,18 @@ static inline int ksz_write32(struct ksz_device *dev, u32 reg, u32 value)
return regmap_write(dev->regmap[2], reg, value);
}
static inline int ksz_write64(struct ksz_device *dev, u32 reg, u64 value)
{
u32 val[2];
/* Ick! ToDo: Add 64bit R/W to regmap on 32bit systems */
value = swab64(value);
val[0] = swab32(value & 0xffffffffULL);
val[1] = swab32(value >> 32ULL);
return regmap_bulk_write(dev->regmap[2], reg, val, 2);
}
static inline void ksz_pread8(struct ksz_device *dev, int port, int offset,
u8 *data)
{
......
......@@ -150,6 +150,7 @@ int ksz_switch_register(struct ksz_device *dev,
const struct ksz_dev_ops *ops);
void ksz_switch_remove(struct ksz_device *dev);
int ksz8795_switch_register(struct ksz_device *dev);
int ksz9477_switch_register(struct ksz_device *dev);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment