/* * (c) 2003, 2004 Advanced Micro Devices, Inc. * Your use of this code is subject to the terms and conditions of the * GNU general public license version 2. See "COPYING" or * http://www.gnu.org/licenses/gpl.html * * Support : paul.devriendt@amd.com * * Based on the powernow-k7.c module written by Dave Jones. * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs * (C) 2004 Dominik Brodowski <linux@brodo.de> * (C) 2004 Pavel Machek <pavel@suse.cz> * Licensed under the terms of the GNU GPL License version 2. * Based upon datasheets & sample CPUs kindly provided by AMD. * * Valuable input gratefully received from Dave Jones, Pavel Machek, * Dominik Brodowski, and others. * Processor information obtained from Chapter 9 (Power and Thermal Management) * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD * Opteron Processors" available for download from www.amd.com */ #include <linux/kernel.h> #include <linux/smp.h> #include <linux/module.h> #include <linux/init.h> #include <linux/cpufreq.h> #include <linux/slab.h> #include <linux/string.h> #include <asm/msr.h> #include <asm/io.h> #include <asm/delay.h> #ifdef CONFIG_X86_POWERNOW_K8_ACPI #include <linux/acpi.h> #include <acpi/processor.h> #endif #define PFX "powernow-k8: " #define BFX PFX "BIOS error: " #define VERSION "version 1.00.08a" #include "powernow-k8.h" /* serialize freq changes */ static DECLARE_MUTEX(fidvid_sem); static struct powernow_k8_data *powernow_data[NR_CPUS]; /* Return a frequency in MHz, given an input fid */ static u32 find_freq_from_fid(u32 fid) { return 800 + (fid * 100); } /* Return a frequency in KHz, given an input fid */ static u32 find_khz_freq_from_fid(u32 fid) { return 1000 * find_freq_from_fid(fid); } /* Return a voltage in miliVolts, given an input vid */ static u32 find_millivolts_from_vid(struct powernow_k8_data *data, u32 vid) { return 1550-vid*25; } /* Return the vco fid for an input fid */ static u32 convert_fid_to_vco_fid(u32 fid) { if (fid < HI_FID_TABLE_BOTTOM) { return 8 + (2 * fid); } else { return fid; } } /* * Return 1 if the pending bit is set. Unless we just instructed the processor * to transition to a new state, seeing this bit set is really bad news. */ static int pending_bit_stuck(void) { u32 lo, hi; rdmsr(MSR_FIDVID_STATUS, lo, hi); return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; } /* * Update the global current fid / vid values from the status msr. * Returns 1 on error. */ static int query_current_values_with_pending_wait(struct powernow_k8_data *data) { u32 lo, hi; u32 i = 0; lo = MSR_S_LO_CHANGE_PENDING; while (lo & MSR_S_LO_CHANGE_PENDING) { if (i++ > 0x1000000) { printk(KERN_ERR PFX "detected change pending stuck\n"); return 1; } rdmsr(MSR_FIDVID_STATUS, lo, hi); } data->currvid = hi & MSR_S_HI_CURRENT_VID; data->currfid = lo & MSR_S_LO_CURRENT_FID; return 0; } /* the isochronous relief time */ static void count_off_irt(struct powernow_k8_data *data) { udelay((1 << data->irt) * 10); return; } /* the voltage stabalization time */ static void count_off_vst(struct powernow_k8_data *data) { udelay(data->vstable * VST_UNITS_20US); return; } /* need to init the control msr to a safe value (for each cpu) */ static void fidvid_msr_init(void) { u32 lo, hi; u8 fid, vid; rdmsr(MSR_FIDVID_STATUS, lo, hi); vid = hi & MSR_S_HI_CURRENT_VID; fid = lo & MSR_S_LO_CURRENT_FID; lo = fid | (vid << MSR_C_LO_VID_SHIFT); hi = MSR_C_HI_STP_GNT_BENIGN; dprintk(PFX "cpu%d, init lo %x, hi %x\n", smp_processor_id(), lo, hi); wrmsr(MSR_FIDVID_CTL, lo, hi); } /* write the new fid value along with the other control fields to the msr */ static int write_new_fid(struct powernow_k8_data *data, u32 fid) { u32 lo; u32 savevid = data->currvid; if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { printk(KERN_ERR PFX "internal error - overflow on fid write\n"); return 1; } lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; dprintk(KERN_DEBUG PFX "writing fid %x, lo %x, hi %x\n", fid, lo, data->plllock * PLL_LOCK_CONVERSION); wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); if (query_current_values_with_pending_wait(data)) return 1; count_off_irt(data); if (savevid != data->currvid) { printk(KERN_ERR PFX "vid change on fid trans, old %x, new %x\n", savevid, data->currvid); return 1; } if (fid != data->currfid) { printk(KERN_ERR PFX "fid trans failed, fid %x, curr %x\n", fid, data->currfid); return 1; } return 0; } /* Write a new vid to the hardware */ static int write_new_vid(struct powernow_k8_data *data, u32 vid) { u32 lo; u32 savefid = data->currfid; if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { printk(KERN_ERR PFX "internal error - overflow on vid write\n"); return 1; } lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID; dprintk(KERN_DEBUG PFX "writing vid %x, lo %x, hi %x\n", vid, lo, STOP_GRANT_5NS); wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); if (query_current_values_with_pending_wait(data)) return 1; if (savefid != data->currfid) { printk(KERN_ERR PFX "fid changed on vid trans, old %x new %x\n", savefid, data->currfid); return 1; } if (vid != data->currvid) { printk(KERN_ERR PFX "vid trans failed, vid %x, curr %x\n", vid, data->currvid); return 1; } return 0; } /* * Reduce the vid by the max of step or reqvid. * Decreasing vid codes represent increasing voltages: * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of 0x1f is off. */ static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step) { if ((data->currvid - reqvid) > step) reqvid = data->currvid - step; if (write_new_vid(data, reqvid)) return 1; count_off_vst(data); return 0; } /* Change the fid and vid, by the 3 phases. */ static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid) { if (core_voltage_pre_transition(data, reqvid)) return 1; if (core_frequency_transition(data, reqfid)) return 1; if (core_voltage_post_transition(data, reqvid)) return 1; if (query_current_values_with_pending_wait(data)) return 1; if ((reqfid != data->currfid) || (reqvid != data->currvid)) { printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n", smp_processor_id(), reqfid, reqvid, data->currfid, data->currvid); return 1; } dprintk(KERN_INFO PFX "transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", smp_processor_id(), data->currfid, data->currvid); return 0; } /* Phase 1 - core voltage transition ... setup voltage */ static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid) { u32 rvosteps = data->rvo; u32 savefid = data->currfid; dprintk(KERN_DEBUG PFX "ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n", smp_processor_id(); data->currfid, data->currvid, reqvid, data->rvo); while (data->currvid > reqvid) { dprintk(KERN_DEBUG PFX "ph1: curr 0x%x, req vid 0x%x\n", data->currvid, reqvid); if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) return 1; } while (rvosteps > 0) { if (data->currvid == 0) { rvosteps = 0; } else { dprintk(KERN_DEBUG PFX "ph1: changing vid for rvo, req 0x%x\n", data->currvid - 1); if (decrease_vid_code_by_step(data, data->currvid - 1, 1)) return 1; rvosteps--; } } if (query_current_values_with_pending_wait(data)) return 1; if (savefid != data->currfid) { printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid); return 1; } dprintk(KERN_DEBUG PFX "ph1 complete, currfid 0x%x, currvid 0x%x\n", data->currfid, data->currvid); return 0; } /* Phase 2 - core frequency transition */ static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) { u32 vcoreqfid; u32 vcocurrfid; u32 vcofiddiff; u32 savevid = data->currvid; if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) { printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n", reqfid, data->currfid); return 1; } if (data->currfid == reqfid) { printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid); return 0; } dprintk(KERN_DEBUG PFX "ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n", smp_processor_id(), data->currfid, data->currvid, reqfid); vcoreqfid = convert_fid_to_vco_fid(reqfid); vcocurrfid = convert_fid_to_vco_fid(data->currfid); vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid : vcoreqfid - vcocurrfid; while (vcofiddiff > 2) { if (reqfid > data->currfid) { if (data->currfid > LO_FID_TABLE_TOP) { if (write_new_fid(data, data->currfid + 2)) { return 1; } } else { if (write_new_fid (data, 2 + convert_fid_to_vco_fid(data->currfid))) { return 1; } } } else { if (write_new_fid(data, data->currfid - 2)) return 1; } vcocurrfid = convert_fid_to_vco_fid(data->currfid); vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid : vcoreqfid - vcocurrfid; } if (write_new_fid(data, reqfid)) return 1; if (query_current_values_with_pending_wait(data)) return 1; if (data->currfid != reqfid) { printk(KERN_ERR PFX "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n", data->currfid, reqfid); return 1; } if (savevid != data->currvid) { printk(KERN_ERR PFX "ph2: vid changed, save %x, curr %x\n", savevid, data->currvid); return 1; } dprintk(KERN_DEBUG PFX "ph2 complete, currfid 0x%x, currvid 0x%x\n", data->currfid, data->currvid); return 0; } /* Phase 3 - core voltage transition flow ... jump to the final vid. */ static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid) { u32 savefid = data->currfid; u32 savereqvid = reqvid; dprintk(KERN_DEBUG PFX "ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", smp_processor_id(), data->currfid, data->currvid); if (reqvid != data->currvid) { if (write_new_vid(data, reqvid)) return 1; if (savefid != data->currfid) { printk(KERN_ERR PFX "ph3: bad fid change, save %x, curr %x\n", savefid, data->currfid); return 1; } if (data->currvid != reqvid) { printk(KERN_ERR PFX "ph3: failed vid transition\n, req %x, curr %x", reqvid, data->currvid); return 1; } } if (query_current_values_with_pending_wait(data)) return 1; if (savereqvid != data->currvid) { dprintk(KERN_ERR PFX "ph3 failed, currvid 0x%x\n", data->currvid); return 1; } if (savefid != data->currfid) { dprintk(KERN_ERR PFX "ph3 failed, currfid changed 0x%x\n", data->currfid); return 1; } dprintk(KERN_DEBUG PFX "ph3 complete, currfid 0x%x, currvid 0x%x\n", data->currfid, data->currvid); return 0; } static int check_supported_cpu(unsigned int cpu) { cpumask_t oldmask = CPU_MASK_ALL; u32 eax, ebx, ecx, edx; unsigned int rc = 0; oldmask = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(cpu)); schedule(); if (smp_processor_id() != cpu) { printk(KERN_ERR "limiting to cpu %u failed\n", cpu); goto out; } if (current_cpu_data.x86_vendor != X86_VENDOR_AMD) goto out; eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); if ((eax & CPUID_XFAM_MOD) == ATHLON64_XFAM_MOD) { dprintk(KERN_DEBUG PFX "AMD Althon 64 Processor found\n"); } else if ((eax & CPUID_XFAM_MOD) == OPTERON_XFAM_MOD) { dprintk(KERN_DEBUG PFX "AMD Opteron Processor found\n"); } else { printk(KERN_INFO PFX "AMD Athlon 64 or AMD Opteron processor required\n"); goto out; } eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { printk(KERN_INFO PFX "No frequency change capabilities detected\n"); goto out; } cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) { printk(KERN_INFO PFX "Power state transitions not supported\n"); goto out; } rc = 1; out: set_cpus_allowed(current, oldmask); schedule(); return rc; } static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) { unsigned int j; u8 lastfid = 0xff; for (j = 0; j < data->numps; j++) { if (pst[j].vid > LEAST_VID) { printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid); return -EINVAL; } if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */ printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j); return -ENODEV; } if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */ printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j); return -ENODEV; } if ((pst[j].fid > MAX_FID) || (pst[j].fid & 1) || (j && (pst[j].fid < HI_FID_TABLE_BOTTOM))) { /* Only first fid is allowed to be in "low" range */ printk(KERN_ERR PFX "fid %d invalid : 0x%x\n", j, pst[j].fid); return -EINVAL; } if (pst[j].fid < lastfid) lastfid = pst[j].fid; } if (lastfid & 1) { printk(KERN_ERR PFX "lastfid invalid\n"); return -EINVAL; } if (lastfid > LO_FID_TABLE_TOP) printk(KERN_INFO PFX "first fid not from lo freq table\n"); return 0; } static void print_basics(struct powernow_k8_data *data) { int j; for (j = 0; j < data->numps; j++) { printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x (%d mV)\n", j, data->powernow_table[j].index & 0xff, data->powernow_table[j].frequency/1000, data->powernow_table[j].index >> 8, find_millivolts_from_vid(data, data->powernow_table[j].index >> 8)); } if (data->batps) printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps); } static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) { struct cpufreq_frequency_table *powernow_table; unsigned int j; if (data->batps) { /* use ACPI support to get full speed on mains power */ printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps); data->numps = data->batps; } for ( j=1; j<data->numps; j++ ) { if (pst[j-1].fid >= pst[j].fid) { printk(KERN_ERR PFX "PST out of sequence\n"); return -EINVAL; } } if (data->numps < 2) { printk(KERN_ERR PFX "no p states to transition\n"); return -ENODEV; } if (check_pst_table(data, pst, maxvid)) return -EINVAL; powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) * (data->numps + 1)), GFP_KERNEL); if (!powernow_table) { printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); return -ENOMEM; } for (j = 0; j < data->numps; j++) { powernow_table[j].index = pst[j].fid; /* lower 8 bits */ powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid); } powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; powernow_table[data->numps].index = 0; if (query_current_values_with_pending_wait(data)) { kfree(powernow_table); return -EIO; } dprintk(KERN_INFO PFX "cfid %x, cvid %x\n", data->currfid, data->currvid); data->powernow_table = powernow_table; print_basics(data); for (j = 0; j < data->numps; j++) if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid)) return 0; dprintk(KERN_ERR PFX "currfid/vid do not match PST, ignoring\n"); return 0; } /* Find and validate the PSB/PST table in BIOS. */ static int find_psb_table(struct powernow_k8_data *data) { struct psb_s *psb; unsigned int i; u32 mvs; u8 maxvid; for (i = 0xc0000; i < 0xffff0; i += 0x10) { /* Scan BIOS looking for the signature. */ /* It can not be at ffff0 - it is too big. */ psb = phys_to_virt(i); if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) continue; dprintk(KERN_DEBUG PFX "found PSB header at 0x%p\n", psb); dprintk(KERN_DEBUG PFX "table vers: 0x%x\n", psb->tableversion); if (psb->tableversion != PSB_VERSION_1_4) { printk(KERN_INFO BFX "PSB table is not v1.4\n"); return -ENODEV; } dprintk(KERN_DEBUG PFX "flags: 0x%x\n", psb->flags1); if (psb->flags1) { printk(KERN_ERR BFX "unknown flags\n"); return -ENODEV; } data->vstable = psb->voltagestabilizationtime; dprintk(KERN_INFO PFX "voltage stabilization time: %d(*20us)\n", data->vstable); dprintk(KERN_DEBUG PFX "flags2: 0x%x\n", psb->flags2); data->rvo = psb->flags2 & 3; data->irt = ((psb->flags2) >> 2) & 3; mvs = ((psb->flags2) >> 4) & 3; data->vidmvs = 1 << mvs; data->batps = ((psb->flags2) >> 6) & 3; dprintk(KERN_INFO PFX "ramp voltage offset: %d\n", data->rvo); dprintk(KERN_INFO PFX "isochronous relief time: %d\n", data->irt); dprintk(KERN_INFO PFX "maximum voltage step: %d - %x\n", mvs, data->vidmvs); dprintk(KERN_DEBUG PFX "numpst: 0x%x\n", psb->numpst); if (psb->numpst != 1) { printk(KERN_ERR BFX "numpst must be 1\n"); return -ENODEV; } data->plllock = psb->plllocktime; dprintk(KERN_INFO PFX "plllocktime: %x (units 1us)\n", psb->plllocktime); dprintk(KERN_INFO PFX "maxfid: %x\n", psb->maxfid); dprintk(KERN_INFO PFX "maxvid: %x\n", psb->maxvid); maxvid = psb->maxvid; data->numps = psb->numpstates; dprintk(KERN_INFO PFX "numpstates: %x\n", data->numps); return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid); } /* * If you see this message, complain to BIOS manufacturer. If * he tells you "we do not support Linux" or some similar * nonsense, remember that Windows 2000 uses the same legacy * mechanism that the old Linux PSB driver uses. Tell them it * is broken with Windows 2000. * * The reference to the AMD documentation is chapter 9 in the * BIOS and Kernel Developer's Guide, which is available on * www.amd.com */ printk(KERN_ERR PFX "BIOS error - no PSB\n"); return -ENODEV; } #ifdef CONFIG_X86_POWERNOW_K8_ACPI static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { if (!data->acpi_data.state_count) return; data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK; data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK; data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK; data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK); data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK; } static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { int i; int cntlofreq = 0; struct cpufreq_frequency_table *powernow_table; if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { dprintk(KERN_DEBUG PFX "register performance failed\n"); return -EIO; } /* verify the data contained in the ACPI structures */ if (data->acpi_data.state_count <= 1) { dprintk(KERN_DEBUG PFX "No ACPI P-States\n"); goto err_out; } if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) || (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) { dprintk(KERN_DEBUG PFX "Invalid control/status registers\n"); goto err_out; } /* fill in data->powernow_table */ powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1)), GFP_KERNEL); if (!powernow_table) { dprintk(KERN_ERR PFX "powernow_table memory alloc failure\n"); goto err_out; } for (i = 0; i < data->acpi_data.state_count; i++) { u32 fid = data->acpi_data.states[i].control & FID_MASK; u32 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK; dprintk(KERN_INFO PFX " %d : fid %x, vid %x\n", i, fid, vid); powernow_table[i].index = fid; /* lower 8 bits */ powernow_table[i].index |= (vid << 8); /* upper 8 bits */ powernow_table[i].frequency = find_khz_freq_from_fid(fid); /* verify frequency is OK */ if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) || (powernow_table[i].frequency < (MIN_FREQ * 1000))) { dprintk(KERN_INFO PFX "invalid freq %u kHz\n", powernow_table[i].frequency); powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; continue; } /* verify only 1 entry from the lo frequency table */ if ((fid < HI_FID_TABLE_BOTTOM) && (cntlofreq++)) { printk(KERN_ERR PFX "Too many lo freq table entries\n"); goto err_out; } if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) { printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n", powernow_table[i].frequency, (unsigned int) (data->acpi_data.states[i].core_frequency * 1000)); powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID; continue; } } powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END; powernow_table[data->acpi_data.state_count].index = 0; data->powernow_table = powernow_table; /* fill in data */ data->numps = data->acpi_data.state_count; print_basics(data); powernow_k8_acpi_pst_values(data, 0); return 0; err_out: acpi_processor_unregister_performance(&data->acpi_data, data->cpu); /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */ data->acpi_data.state_count = 0; return -ENODEV; } static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { if (data->acpi_data.state_count) acpi_processor_unregister_performance(&data->acpi_data, data->cpu); } #else static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; } static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; } static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; } #endif /* CONFIG_X86_POWERNOW_K8_ACPI */ /* Take a frequency, and issue the fid/vid transition command */ static int transition_frequency(struct powernow_k8_data *data, unsigned int index) { u32 fid; u32 vid; int res; struct cpufreq_freqs freqs; dprintk(KERN_DEBUG PFX "cpu %d transition to index %u\n", smp_processor_id(), index ); /* fid are the lower 8 bits of the index we stored into * the cpufreq frequency table in find_psb_table, vid are * the upper 8 bits. */ fid = data->powernow_table[index].index & 0xFF; vid = (data->powernow_table[index].index & 0xFF00) >> 8; dprintk(KERN_DEBUG PFX "table matched fid 0x%x, giving vid 0x%x\n", fid, vid); if (query_current_values_with_pending_wait(data)) return 1; if ((data->currvid == vid) && (data->currfid == fid)) { dprintk(KERN_DEBUG PFX "target matches current values (fid 0x%x, vid 0x%x)\n", fid, vid); return 0; } if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) { printk(KERN_ERR PFX "ignoring illegal change in lo freq table-%x to %x\n", data->currfid, fid); return 1; } dprintk(KERN_DEBUG PFX "cpu %d, changing to fid 0x%x, vid 0x%x\n", smp_processor_id(), fid, vid); freqs.cpu = data->cpu; freqs.old = find_khz_freq_from_fid(data->currfid); freqs.new = find_khz_freq_from_fid(fid); cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); down(&fidvid_sem); res = transition_fid_vid(data, fid, vid); up(&fidvid_sem); freqs.new = find_khz_freq_from_fid(data->currfid); cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); return res; } /* Driver entry point to switch to the target frequency */ static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation) { cpumask_t oldmask = CPU_MASK_ALL; struct powernow_k8_data *data = powernow_data[pol->cpu]; u32 checkfid = data->currfid; u32 checkvid = data->currvid; unsigned int newstate; int ret = -EIO; /* only run on specific CPU from here on */ oldmask = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(pol->cpu)); schedule(); if (smp_processor_id() != pol->cpu) { printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu); goto err_out; } /* from this point, do not exit without restoring preempt and cpu */ preempt_disable(); if (pending_bit_stuck()) { printk(KERN_ERR PFX "failing targ, change pending bit set\n"); goto err_out; } dprintk(KERN_DEBUG PFX "targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", pol->cpu, targfreq, pol->min, pol->max, relation); if (query_current_values_with_pending_wait(data)) { ret = -EIO; goto err_out; } dprintk(KERN_DEBUG PFX "targ: curr fid 0x%x, vid 0x%x\n", data->currfid, data->currvid); if ((checkvid != data->currvid) || (checkfid != data->currfid)) { printk(KERN_ERR PFX "error - out of sync, fid 0x%x 0x%x, vid 0x%x 0x%x\n", checkfid, data->currfid, checkvid, data->currvid); } if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate)) goto err_out; powernow_k8_acpi_pst_values(data, newstate); if (transition_frequency(data, newstate)) { printk(KERN_ERR PFX "transition frequency failed\n"); ret = 1; goto err_out; } pol->cur = find_khz_freq_from_fid(data->currfid); ret = 0; err_out: preempt_enable_no_resched(); set_cpus_allowed(current, oldmask); schedule(); return ret; } /* Driver entry point to verify the policy and range of frequencies */ static int powernowk8_verify(struct cpufreq_policy *pol) { struct powernow_k8_data *data = powernow_data[pol->cpu]; return cpufreq_frequency_table_verify(pol, data->powernow_table); } /* per CPU init entry point to the driver */ static int __init powernowk8_cpu_init(struct cpufreq_policy *pol) { struct powernow_k8_data *data; cpumask_t oldmask = CPU_MASK_ALL; int rc; if (!check_supported_cpu(pol->cpu)) return -ENODEV; data = kmalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); if (!data) { printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); return -ENOMEM; } memset(data,0,sizeof(struct powernow_k8_data)); data->cpu = pol->cpu; if (powernow_k8_cpu_init_acpi(data)) { /* * Use the PSB BIOS structure. This is only availabe on * an UP version, and is deprecated by AMD. */ if (pol->cpu != 0) { printk(KERN_ERR PFX "init not cpu 0\n"); kfree(data); return -ENODEV; } if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) { printk(KERN_INFO PFX "MP systems not supported by PSB BIOS structure\n"); kfree(data); return 0; } rc = find_psb_table(data); if (rc) { kfree(data); return -ENODEV; } } /* only run on specific CPU from here on */ oldmask = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(pol->cpu)); schedule(); if (smp_processor_id() != pol->cpu) { printk(KERN_ERR "limiting to cpu %u failed\n", pol->cpu); goto err_out; } if (pending_bit_stuck()) { printk(KERN_ERR PFX "failing init, change pending bit set\n"); goto err_out; } if (query_current_values_with_pending_wait(data)) goto err_out; fidvid_msr_init(); /* run on any CPU again */ set_cpus_allowed(current, oldmask); schedule(); pol->governor = CPUFREQ_DEFAULT_GOVERNOR; /* Take a crude guess here. * That guess was in microseconds, so multiply with 1000 */ pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US) + (3 * (1 << data->irt) * 10)) * 1000; pol->cur = find_khz_freq_from_fid(data->currfid); dprintk(KERN_DEBUG PFX "policy current frequency %d kHz\n", pol->cur); /* min/max the cpu is capable of */ if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { printk(KERN_ERR PFX "invalid powernow_table\n"); kfree(data->powernow_table); kfree(data); return -EINVAL; } cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); printk(KERN_INFO PFX "cpu_init done, current fid 0x%x, vid 0x%x\n", data->currfid, data->currvid); powernow_data[pol->cpu] = data; return 0; err_out: set_cpus_allowed(current, oldmask); schedule(); kfree(data); return -ENODEV; } static int __exit powernowk8_cpu_exit (struct cpufreq_policy *pol) { struct powernow_k8_data *data = powernow_data[pol->cpu]; if (!data) return -EINVAL; powernow_k8_cpu_exit_acpi(data); cpufreq_frequency_table_put_attr(pol->cpu); kfree(data->powernow_table); kfree(data); return 0; } static struct freq_attr* powernow_k8_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver cpufreq_amd64_driver = { .verify = powernowk8_verify, .target = powernowk8_target, .init = powernowk8_cpu_init, .exit = powernowk8_cpu_exit, .name = "powernow-k8", .owner = THIS_MODULE, .attr = powernow_k8_attr, }; /* driver entry point for init */ static int __init powernowk8_init(void) { unsigned int i, supported_cpus = 0; for (i=0; i<NR_CPUS; i++) { if (!cpu_online(i)) continue; if (check_supported_cpu(i)) supported_cpus++; } if (supported_cpus == num_online_cpus()) { printk(KERN_INFO PFX "Found %d AMD Athlon 64 / Opteron processors (" VERSION ")\n", supported_cpus); return cpufreq_register_driver(&cpufreq_amd64_driver); } return -ENODEV; } /* driver entry point for term */ static void __exit powernowk8_exit(void) { dprintk(KERN_INFO PFX "exit\n"); cpufreq_unregister_driver(&cpufreq_amd64_driver); } MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>"); MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); MODULE_LICENSE("GPL"); module_init(powernowk8_init); module_exit(powernowk8_exit);