/* * Copyright 2001 MontaVista Software Inc. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net * Copyright (c) 2003 Maciej W. Rozycki * * Common time service routines for MIPS machines. See * Documentation/mips/time.README. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* This is for machines which generate the exact clock. */ #define USECS_PER_JIFFY (1000000/HZ) #define USECS_PER_JIFFY_FRAC ((u32)((1000000ULL << 32) / HZ)) #define TICK_SIZE (tick_nsec / 1000) u64 jiffies_64 = INITIAL_JIFFIES; EXPORT_SYMBOL(jiffies_64); /* * forward reference */ extern volatile unsigned long wall_jiffies; spinlock_t rtc_lock = SPIN_LOCK_UNLOCKED; /* * whether we emulate local_timer_interrupts for SMP machines. */ int emulate_local_timer_interrupt; /* * By default we provide the null RTC ops */ static unsigned long null_rtc_get_time(void) { return mktime(2000, 1, 1, 0, 0, 0); } static int null_rtc_set_time(unsigned long sec) { return 0; } unsigned long (*rtc_get_time)(void) = null_rtc_get_time; int (*rtc_set_time)(unsigned long) = null_rtc_set_time; int (*rtc_set_mmss)(unsigned long); /* * This version of gettimeofday has microsecond resolution and better than * microsecond precision on fast machines with cycle counter. */ void do_gettimeofday(struct timeval *tv) { unsigned long seq; unsigned long usec, sec; do { seq = read_seqbegin(&xtime_lock); usec = do_gettimeoffset(); { unsigned long lost = jiffies - wall_jiffies; if (lost) usec += lost * (1000000 / HZ); } sec = xtime.tv_sec; usec += (xtime.tv_nsec / 1000); } while (read_seqretry(&xtime_lock, seq)); while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec; tv->tv_usec = usec; } EXPORT_SYMBOL(do_gettimeofday); int do_settimeofday(struct timespec *tv) { time_t wtm_sec, sec = tv->tv_sec; long wtm_nsec, nsec = tv->tv_nsec; if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) return -EINVAL; write_seqlock_irq(&xtime_lock); /* * This is revolting. We need to set "xtime" correctly. However, the * value in this location is the value at the most recent update of * wall time. Discover what correction gettimeofday() would have * made, and then undo it! */ nsec -= do_gettimeoffset() * NSEC_PER_USEC; nsec -= (jiffies - wall_jiffies) * TICK_NSEC; wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); set_normalized_timespec(&xtime, sec, nsec); set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; write_sequnlock_irq(&xtime_lock); return 0; } EXPORT_SYMBOL(do_settimeofday); /* * Gettimeoffset routines. These routines returns the time duration * since last timer interrupt in usecs. * * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. * Otherwise use calibrate_gettimeoffset() * * If the CPU does not have counter register all, you can either supply * your own gettimeoffset() routine, or use null_gettimeoffset() routines, * which gives the same resolution as HZ. */ /* usecs per counter cycle, shifted to left by 32 bits */ static unsigned int sll32_usecs_per_cycle; /* how many counter cycles in a jiffy */ static unsigned long cycles_per_jiffy; /* Cycle counter value at the previous timer interrupt.. */ static unsigned int timerhi, timerlo; /* expirelo is the count value for next CPU timer interrupt */ static unsigned int expirelo; /* last time when xtime and rtc are sync'ed up */ static long last_rtc_update; /* the function pointer to one of the gettimeoffset funcs*/ unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; unsigned long null_gettimeoffset(void) { return 0; } unsigned long fixed_rate_gettimeoffset(void) { u32 count; unsigned long res; /* Get last timer tick in absolute kernel time */ count = read_c0_count(); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; __asm__("multu %1,%2" : "=h" (res) : "r" (count), "r" (sll32_usecs_per_cycle) : "lo", "accum"); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY - 1; return res; } /* * Cached "1/(clocks per usec) * 2^32" value. * It has to be recalculated once each jiffy. */ static unsigned long cached_quotient; /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ static unsigned long last_jiffies; /* * This is copied from dec/time.c:do_ioasic_gettimeoffset() by Maciej. */ unsigned long calibrate_div32_gettimeoffset(void) { u32 count; unsigned long res, tmp; unsigned long quotient; tmp = jiffies; quotient = cached_quotient; if (last_jiffies != tmp) { last_jiffies = tmp; if (last_jiffies != 0) { unsigned long r0; do_div64_32(r0, timerhi, timerlo, tmp); do_div64_32(quotient, USECS_PER_JIFFY, USECS_PER_JIFFY_FRAC, r0); cached_quotient = quotient; } } /* Get last timer tick in absolute kernel time */ count = read_c0_count(); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; __asm__("multu %1,%2" : "=h" (res) : "r" (count), "r" (quotient) : "lo", "accum"); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY - 1; return res; } unsigned long calibrate_div64_gettimeoffset(void) { u32 count; unsigned long res, tmp; unsigned long quotient; tmp = jiffies; quotient = cached_quotient; if (tmp && last_jiffies != tmp) { last_jiffies = tmp; __asm__(".set push\n\t" ".set noreorder\n\t" ".set noat\n\t" ".set mips3\n\t" "lwu %0,%2\n\t" "dsll32 $1,%1,0\n\t" "or $1,$1,%0\n\t" "ddivu $0,$1,%3\n\t" "mflo $1\n\t" "dsll32 %0,%4,0\n\t" "nop\n\t" "ddivu $0,%0,$1\n\t" "mflo %0\n\t" ".set pop" : "=&r" (quotient) : "r" (timerhi), "m" (timerlo), "r" (tmp), "r" (USECS_PER_JIFFY)); cached_quotient = quotient; } /* Get last timer tick in absolute kernel time */ count = read_c0_count(); /* .. relative to previous jiffy (32 bits is enough) */ count -= timerlo; __asm__("multu %1,%2" : "=h" (res) : "r" (count), "r" (quotient) : "lo", "accum"); /* * Due to possible jiffies inconsistencies, we need to check * the result so that we'll get a timer that is monotonic. */ if (res >= USECS_PER_JIFFY) res = USECS_PER_JIFFY - 1; return res; } /* * local_timer_interrupt() does profiling and process accounting * on a per-CPU basis. * * In UP mode, it is invoked from the (global) timer_interrupt. * * In SMP mode, it might invoked by per-CPU timer interrupt, or * a broadcasted inter-processor interrupt which itself is triggered * by the global timer interrupt. */ void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { if (!user_mode(regs)) { if (prof_buffer && current->pid) { unsigned long pc = regs->cp0_epc; pc -= (unsigned long) _stext; pc >>= prof_shift; /* * Dont ignore out-of-bounds pc values silently, * put them into the last histogram slot, so if * present, they will show up as a sharp peak. */ if (pc > prof_len - 1) pc = prof_len - 1; atomic_inc((atomic_t *)&prof_buffer[pc]); } } #ifdef CONFIG_SMP /* in UP mode, update_process_times() is invoked by do_timer() */ update_process_times(user_mode(regs)); #endif } /* * high-level timer interrupt service routines. This function * is set as irqaction->handler and is invoked through do_IRQ. */ irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { if (cpu_has_counter) { unsigned int count; /* ack timer interrupt, and try to set next interrupt */ expirelo += cycles_per_jiffy; write_c0_compare(expirelo); count = read_c0_count(); /* check to see if we have missed any timer interrupts */ if ((count - expirelo) < 0x7fffffff) { /* missed_timer_count++; */ expirelo = count + cycles_per_jiffy; write_c0_compare(expirelo); } /* Update timerhi/timerlo for intra-jiffy calibration. */ timerhi += count < timerlo; /* Wrap around */ timerlo = count; } /* * call the generic timer interrupt handling */ do_timer(regs); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be * called as close as possible to 500 ms before the new second starts. */ write_seqlock(&xtime_lock); if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (rtc_set_mmss(xtime.tv_sec) == 0) { last_rtc_update = xtime.tv_sec; } else { /* do it again in 60 s */ last_rtc_update = xtime.tv_sec - 600; } } write_sequnlock(&xtime_lock); /* * If jiffies has overflowed in this timer_interrupt we must * update the timer[hi]/[lo] to make fast gettimeoffset funcs * quotient calc still valid. -arca */ if (!jiffies) { timerhi = timerlo = 0; } #if !defined(CONFIG_SMP) /* * In UP mode, we call local_timer_interrupt() to do profiling * and process accouting. * * In SMP mode, local_timer_interrupt() is invoked by appropriate * low-level local timer interrupt handler. */ local_timer_interrupt(irq, dev_id, regs); #else /* CONFIG_SMP */ if (emulate_local_timer_interrupt) { /* * this is the place where we send out inter-process * interrupts and let each CPU do its own profiling * and process accouting. * * Obviously we need to call local_timer_interrupt() for * the current CPU too. */ panic("Not implemented yet!!!"); } #endif /* CONFIG_SMP */ return IRQ_HANDLED; } asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) { irq_enter(); kstat_this_cpu.irqs[irq]++; /* we keep interrupt disabled all the time */ timer_interrupt(irq, NULL, regs); irq_exit(); } asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) { irq_enter(); kstat_this_cpu.irqs[irq]++; /* we keep interrupt disabled all the time */ local_timer_interrupt(irq, NULL, regs); irq_exit(); } /* * time_init() - it does the following things. * * 1) board_time_init() - * a) (optional) set up RTC routines, * b) (optional) calibrate and set the mips_counter_frequency * (only needed if you intended to use fixed_rate_gettimeoffset * or use cpu counter as timer interrupt source) * 2) setup xtime based on rtc_get_time(). * 3) choose a appropriate gettimeoffset routine. * 4) calculate a couple of cached variables for later usage * 5) board_timer_setup() - * a) (optional) over-write any choices made above by time_init(). * b) machine specific code should setup the timer irqaction. * c) enable the timer interrupt */ void (*board_time_init)(void); void (*board_timer_setup)(struct irqaction *irq); unsigned int mips_counter_frequency; static struct irqaction timer_irqaction = { .handler = timer_interrupt, .flags = SA_INTERRUPT, .name = "timer", }; void __init time_init(void) { if (board_time_init) board_time_init(); if (!rtc_set_mmss) rtc_set_mmss = rtc_set_time; xtime.tv_sec = rtc_get_time(); xtime.tv_nsec = 0; set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec); /* choose appropriate gettimeoffset routine */ if (!cpu_has_counter) { /* no cpu counter - sorry */ do_gettimeoffset = null_gettimeoffset; } else if (mips_counter_frequency != 0) { /* we have cpu counter and know counter frequency! */ do_gettimeoffset = fixed_rate_gettimeoffset; } else if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) || (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || (current_cpu_data.isa_level == MIPS_CPU_ISA_II) ) { /* we need to calibrate the counter but we don't have * 64-bit division. */ do_gettimeoffset = calibrate_div32_gettimeoffset; } else { /* we need to calibrate the counter but we *do* have * 64-bit division. */ do_gettimeoffset = calibrate_div64_gettimeoffset; } /* caclulate cache parameters */ if (mips_counter_frequency) { cycles_per_jiffy = mips_counter_frequency / HZ; /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ /* any better way to do this? */ sll32_usecs_per_cycle = mips_counter_frequency / 100000; sll32_usecs_per_cycle = 0xffffffff / sll32_usecs_per_cycle; sll32_usecs_per_cycle *= 10; /* * For those using cpu counter as timer, this sets up the * first interrupt */ write_c0_compare(cycles_per_jiffy); write_c0_count(0); expirelo = cycles_per_jiffy; } /* * Call board specific timer interrupt setup. * * this pointer must be setup in machine setup routine. * * Even if the machine choose to use low-level timer interrupt, * it still needs to setup the timer_irqaction. * In that case, it might be better to set timer_irqaction.handler * to be NULL function so that we are sure the high-level code * is not invoked accidentally. */ board_timer_setup(&timer_irqaction); } #define FEBRUARY 2 #define STARTOFTIME 1970 #define SECDAY 86400L #define SECYR (SECDAY * 365) #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) #define days_in_year(y) (leapyear(y) ? 366 : 365) #define days_in_month(m) (month_days[(m) - 1]) static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; void to_tm(unsigned long tim, struct rtc_time *tm) { long hms, day, gday; int i; gday = day = tim / SECDAY; hms = tim % SECDAY; /* Hours, minutes, seconds are easy */ tm->tm_hour = hms / 3600; tm->tm_min = (hms % 3600) / 60; tm->tm_sec = (hms % 3600) % 60; /* Number of years in days */ for (i = STARTOFTIME; day >= days_in_year(i); i++) day -= days_in_year(i); tm->tm_year = i; /* Number of months in days left */ if (leapyear(tm->tm_year)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ /* Days are what is left over (+1) from all that. */ tm->tm_mday = day + 1; /* * Determine the day of week */ tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ } EXPORT_SYMBOL(rtc_lock); EXPORT_SYMBOL(to_tm); EXPORT_SYMBOL(rtc_set_time); EXPORT_SYMBOL(rtc_get_time);