/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/kmemleak.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/topology.h>
#include <linux/sched/signal.h>
#include <linux/delay.h>
#include <linux/crash_dump.h>
#include <linux/prefetch.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
#include "blk-stat.h"
#include "blk-wbt.h"
#include "blk-mq-sched.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

/* Must be consisitent with function below */
#define BLK_MQ_POLL_STATS_BKTS 16
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

	ddir = blk_stat_rq_ddir(rq);
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
}

/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
}

void blk_freeze_queue_start(struct request_queue *q)
{
	int freeze_depth;

	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
		percpu_ref_kill(&q->q_usage_counter);
		blk_mq_run_hw_queues(q, false);
	}
}
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);

void blk_mq_freeze_queue_wait(struct request_queue *q)
{
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);

int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);

/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_freeze_queue(struct request_queue *q)
{
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
	blk_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);

void blk_mq_unfreeze_queue(struct request_queue *q)
{
	int freeze_depth;

	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
		percpu_ref_reinit(&q->q_usage_counter);
		wake_up_all(&q->mq_freeze_wq);
	}
}
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);

/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
{
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
	rq->mq_ctx = ctx;
	rq->cmd_flags = op;
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
	rq->start_time = jiffies;
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
	rq->timeout = 0;

	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

	ctx->rq_dispatched[op_is_sync(op)]++;
}
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);

struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
{
	struct request *rq;
	unsigned int tag;

	tag = blk_mq_get_tag(data);
	if (tag != BLK_MQ_TAG_FAIL) {
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];

		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
			rq->tag = tag;
			rq->internal_tag = -1;
			data->hctx->tags->rqs[rq->tag] = rq;
		}

		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
		return rq;
	}

	return NULL;
}
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);

struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
{
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
	struct request *rq;
	int ret;

	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
	if (ret)
		return ERR_PTR(ret);

	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);

	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
	return rq;
}
EXPORT_SYMBOL(blk_mq_alloc_request);

struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
	struct request *rq;
	unsigned int cpu;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
	}
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);

	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);

	blk_queue_exit(q);

	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
{
	const int sched_tag = rq->internal_tag;
	struct request_queue *q = rq->q;

	if (rq->rq_flags & RQF_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);

	wbt_done(q->rq_wb, &rq->issue_stat);
	rq->rq_flags = 0;

	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
	blk_mq_sched_restart(hctx);
	blk_queue_exit(q);
}

static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
				     struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
}
EXPORT_SYMBOL_GPL(blk_mq_finish_request);

void blk_mq_free_request(struct request *rq)
{
	blk_mq_sched_put_request(rq);
}
EXPORT_SYMBOL_GPL(blk_mq_free_request);

inline void __blk_mq_end_request(struct request *rq, int error)
{
	blk_account_io_done(rq);

	if (rq->end_io) {
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
		rq->end_io(rq, error);
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
		blk_mq_free_request(rq);
	}
}
EXPORT_SYMBOL(__blk_mq_end_request);

void blk_mq_end_request(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_request(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_request);

static void __blk_mq_complete_request_remote(void *data)
{
	struct request *rq = data;

	rq->q->softirq_done_fn(rq);
}

static void __blk_mq_complete_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	bool shared = false;
	int cpu;

	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
		rq->q->softirq_done_fn(rq);
		return;
	}

	cpu = get_cpu();
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
		rq->csd.func = __blk_mq_complete_request_remote;
		rq->csd.info = rq;
		rq->csd.flags = 0;
		smp_call_function_single_async(ctx->cpu, &rq->csd);
	} else {
		rq->q->softirq_done_fn(rq);
	}
	put_cpu();
}

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
		return;
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
}
EXPORT_SYMBOL(blk_mq_complete_request);

int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

void blk_mq_start_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	blk_mq_sched_started_request(rq);

	trace_block_rq_issue(q, rq);

	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
		rq->rq_flags |= RQF_STATS;
		wbt_issue(q->rq_wb, &rq->issue_stat);
	}

	blk_add_timer(rq);

	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
}
EXPORT_SYMBOL(blk_mq_start_request);

/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
 * flag isn't set yet, so there may be race with timeout handler,
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
static void __blk_mq_requeue_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	wbt_requeue(q->rq_wb, &rq->issue_stat);
	blk_mq_sched_requeue_request(rq);

	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
}

void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
}
EXPORT_SYMBOL(blk_mq_requeue_request);

static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work.work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
			continue;

		rq->rq_flags &= ~RQF_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_sched_insert_request(rq, true, false, false, true);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_sched_insert_request(rq, false, false, false, true);
	}

	blk_mq_run_hw_queues(q, false);
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->rq_flags |= RQF_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_end_request(rq, -EIO);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
		return tags->rqs[tag];
	}

	return NULL;
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

struct blk_mq_timeout_data {
	unsigned long next;
	unsigned int next_set;
};

void blk_mq_rq_timed_out(struct request *req, bool reserved)
{
	const struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;

	if (ops->timeout)
		ret = ops->timeout(req, reserved);

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
}

static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;

	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return;

	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
			blk_mq_rq_timed_out(rq, reserved);
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
}

static void blk_mq_timeout_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;

	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
		return;

	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);

	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
	} else {
		struct blk_mq_hw_ctx *hctx;

		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
	}
	blk_queue_exit(q);
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		bool merged = false;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
			break;
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
			break;
		case ELEVATOR_DISCARD_MERGE:
			merged = bio_attempt_discard_merge(q, rq, bio);
			break;
		default:
			continue;
		}

		if (merged)
			ctx->rq_merged++;
		return merged;
	}

	return false;
}

struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};

	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
}
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);

static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;

	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
}

bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (rq->tag != -1)
		goto done;

	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
		data.hctx->tags->rqs[rq->tag] = rq;
	}

done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
}

static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

	list_del(&wait->task_list);
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
	int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;

	if (list_empty(list))
		return false;

	/*
	 * Now process all the entries, sending them to the driver.
	 */
	errors = queued = 0;
	do {
		struct blk_mq_queue_data bd;

		rq = list_first_entry(list, struct request, queuelist);
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;

			/*
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
			 */
			if (!blk_mq_dispatch_wait_add(hctx))
				break;

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
				break;
		}

		list_del_init(&rq->queuelist);

		bd.rq = rq;

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}

		ret = q->mq_ops->queue_rq(hctx, &bd);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			break;
		case BLK_MQ_RQ_QUEUE_BUSY:
			blk_mq_put_driver_tag_hctx(hctx, rq);
			list_add(&rq->queuelist, list);
			__blk_mq_requeue_request(rq);
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
			errors++;
			blk_mq_end_request(rq, -EIO);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	} while (!list_empty(list));

	hctx->dispatched[queued_to_index(queued)]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(list)) {
		/*
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

		spin_lock(&hctx->lock);
		list_splice_init(list, &hctx->dispatch);
		spin_unlock(&hctx->lock);

		/*
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
		 *
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
		 *
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
		 *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
		 *   and dm-rq.
		 */
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
			blk_mq_run_hw_queue(hctx, true);
	}

	return (queued + errors) != 0;
}

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		blk_mq_sched_dispatch_requests(hctx);
		rcu_read_unlock();
	} else {
		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		blk_mq_sched_dispatch_requests(hctx);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return hctx->next_cpu;
}

static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
{
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
		return;

	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
			__blk_mq_run_hw_queue(hctx);
			put_cpu();
			return;
		}

		put_cpu();
	}

	if (msecs == 0)
		kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work);
	else
		kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
						 &hctx->delayed_run_work,
						 msecs_to_jiffies(msecs));
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
}
EXPORT_SYMBOL(blk_mq_run_hw_queue);

void blk_mq_run_hw_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!blk_mq_hctx_has_pending(hctx) ||
		    blk_mq_hctx_stopped(hctx))
			continue;

		blk_mq_run_hw_queue(hctx, async);
	}
}
EXPORT_SYMBOL(blk_mq_run_hw_queues);

/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	cancel_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);

	blk_mq_run_hw_queue(hctx, false);
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

static void blk_mq_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);

	__blk_mq_run_hw_queue(hctx);
}

static void blk_mq_delayed_run_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);

	__blk_mq_run_hw_queue(hctx);
}

static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;

	blk_mq_stop_hw_queue(hctx);
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_queue);

static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	trace_block_rq_insert(hctx->queue, rq);

	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
}

void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	__blk_mq_insert_req_list(hctx, rq, at_head);
	blk_mq_hctx_mark_pending(hctx, ctx);
}

void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		BUG_ON(rq->mq_ctx != ctx);
		list_del_init(&rq->queuelist);
		__blk_mq_insert_req_list(hctx, rq, false);
	}
	blk_mq_hctx_mark_pending(hctx, ctx);
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	blk_init_request_from_bio(rq, bio);

	blk_account_io_start(rq, true);
}

static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
{
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
		struct request_queue *q = hctx->queue;

		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}

		spin_unlock(&ctx->lock);
		__blk_mq_finish_request(hctx, ctx, rq);
		return true;
	}
}

static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
}

static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
				      bool may_sleep)
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.last = true,
	};
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;

	if (q->elevator)
		goto insert;

	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
		return;
	}

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		blk_mq_end_request(rq, -EIO);
		return;
	}

	__blk_mq_requeue_request(rq);
insert:
	blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
}

static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
		__blk_mq_try_issue_directly(rq, cookie, false);
		rcu_read_unlock();
	} else {
		unsigned int srcu_idx;

		might_sleep();

		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
		__blk_mq_try_issue_directly(rq, cookie, true);
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = op_is_sync(bio->bi_opf);
	const int is_flush_fua = op_is_flush(bio->bi_opf);
	struct blk_mq_alloc_data data = { .flags = 0 };
	struct request *rq;
	unsigned int request_count = 0;
	struct blk_plug *plug;
	struct request *same_queue_rq = NULL;
	blk_qc_t cookie;
	unsigned int wb_acct;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_io_error(bio);
		return BLK_QC_T_NONE;
	}

	blk_queue_split(q, &bio, q->bio_split);

	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;

	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
		return BLK_QC_T_NONE;
	}

	wbt_track(&rq->issue_stat, wb_acct);

	cookie = request_to_qc_t(data.hctx, rq);

	plug = current->plug;
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
		} else {
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
		}
	} else if (plug && q->nr_hw_queues == 1) {
		struct request *last = NULL;

		blk_mq_bio_to_request(rq, bio);

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

		if (!request_count)
			trace_block_plug(q);
		else
			last = list_entry_rq(plug->mq_list.prev);

		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
		}

		list_add_tail(&rq->queuelist, &plug->mq_list);
	} else if (plug && !blk_queue_nomerges(q)) {
		blk_mq_bio_to_request(rq, bio);

		/*
		 * We do limited plugging. If the bio can be merged, do that.
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
		 */
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

		blk_mq_put_ctx(data.ctx);

		if (same_queue_rq)
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);

		return cookie;
	} else if (q->nr_hw_queues > 1 && is_sync) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
		return cookie;
	} else if (q->elevator) {
		blk_mq_bio_to_request(rq, bio);
		blk_mq_sched_insert_request(rq, false, true, true, true);
	} else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
		blk_mq_run_hw_queue(data.hctx, true);

	blk_mq_put_ctx(data.ctx);
	return cookie;
}

void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
{
	struct page *page;

	if (tags->rqs && set->ops->exit_request) {
		int i;

		for (i = 0; i < tags->nr_tags; i++) {
			struct request *rq = tags->static_rqs[i];

			if (!rq)
				continue;
			set->ops->exit_request(set->driver_data, rq,
						hctx_idx, i);
			tags->static_rqs[i] = NULL;
		}
	}

	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
		list_del_init(&page->lru);
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
		__free_pages(page, page->private);
	}
}

void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
	kfree(tags->rqs);
	tags->rqs = NULL;
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;

	blk_mq_free_tags(tags);
}

struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
{
	struct blk_mq_tags *tags;
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
	if (!tags)
		return NULL;

	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 node);
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}

	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 node);
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	INIT_LIST_HEAD(&tags->page_list);

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
				cache_line_size());
	left = rq_size * depth;

	for (i = 0; i < depth; ) {
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (this_order && left < order_to_size(this_order - 1))
			this_order--;

		do {
			page = alloc_pages_node(node,
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
				this_order);
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
			goto fail;

		page->private = this_order;
		list_add_tail(&page->lru, &tags->page_list);

		p = page_address(page);
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
		entries_per_page = order_to_size(this_order) / rq_size;
		to_do = min(entries_per_page, depth - i);
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
			struct request *rq = p;

			tags->static_rqs[i] = rq;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						rq, hctx_idx, i,
						node)) {
					tags->static_rqs[i] = NULL;
					goto fail;
				}
			}

			p += rq_size;
			i++;
		}
	}
	return 0;

fail:
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
}

/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return 0;

	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	return 0;
}

static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
{
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
}

/* hctx->ctxs will be freed in queue's release handler */
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
	unsigned flush_start_tag = set->queue_depth;

	blk_mq_tag_idle(hctx);

	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

	blk_mq_remove_cpuhp(hctx);
	blk_free_flush_queue(hctx->fq);
	sbitmap_free(&hctx->ctx_map);
}

static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
		blk_mq_exit_hctx(q, set, hctx, i);
	}
}

static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
{
	int node;
	unsigned flush_start_tag = set->queue_depth;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;

	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);

	hctx->tags = set->tags[hctx_idx];

	/*
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
	 */
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;

	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
		goto free_ctxs;

	hctx->nr_ctx = 0;

	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;

	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto sched_exit_hctx;

	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;

	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

	return 0;

 free_fq:
	kfree(hctx->fq);
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
 free_bitmap:
	sbitmap_free(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_remove_cpuhp(hctx);
	return -1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

		hctx = blk_mq_map_queue(q, i);

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = local_memory_node(cpu_to_node(i));
	}
}

static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
}

static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
{
	unsigned int i, hctx_idx;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct blk_mq_tag_set *set = q->tag_set;

	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

	queue_for_each_hw_ctx(q, hctx, i) {
		cpumask_clear(hctx->cpumask);
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	for_each_possible_cpu(i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpumask_test_cpu(i, online_mask))
			continue;

		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
			q->mq_map[i] = 0;
		}

		ctx = per_cpu_ptr(q->queue_ctx, i);
		hctx = blk_mq_map_queue(q, i);

		cpumask_set_cpu(i, hctx->cpumask);
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}

	mutex_unlock(&q->sysfs_lock);

	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
		 */
		if (!hctx->nr_ctx) {
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

			hctx->tags = NULL;
			continue;
		}

		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);

		/*
		 * Initialize batch roundrobin counts
		 */
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
}

static void queue_set_hctx_shared(struct request_queue *q, bool shared)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;

	lockdep_assert_held(&set->tag_list_lock);

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
		queue_set_hctx_shared(q, shared);
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
	mutex_unlock(&set->tag_list_lock);

	synchronize_rcu();
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);

	mutex_unlock(&set->tag_list_lock);
}

/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kobject_put(&hctx->kobj);
	}

	q->mq_map = NULL;

	kfree(q->queue_hw_ctx);

	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

	free_percpu(q->queue_ctx);
}

struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
{
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;

	blk_mq_sysfs_unregister(q);
	for (i = 0; i < set->nr_hw_queues; i++) {
		int node;

		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
		if (!hctxs[i])
			break;

		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}

		atomic_set(&hctxs[i]->nr_active, 0);
		hctxs[i]->numa_node = node;
		hctxs[i]->queue_num = i;

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
	}
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
	if (!q->poll_cb)
		goto err_exit;

	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
		goto err_exit;

	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

	q->mq_map = set->mq_map;

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;

	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);

	q->nr_queues = nr_cpu_ids;

	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;

	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

	q->sg_reserved_size = INT_MAX;

	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

	blk_queue_make_request(q, blk_mq_make_request);

	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);

	blk_mq_init_cpu_queues(q, set->nr_hw_queues);

	get_online_cpus();
	mutex_lock(&all_q_mutex);

	list_add_tail(&q->all_q_node, &all_q_list);
	blk_mq_add_queue_tag_set(set, q);
	blk_mq_map_swqueue(q, cpu_online_mask);

	mutex_unlock(&all_q_mutex);
	put_online_cpus();

	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

	return q;

err_hctxs:
	kfree(q->queue_hw_ctx);
err_percpu:
	free_percpu(q->queue_ctx);
err_exit:
	q->mq_ops = NULL;
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_allocated_queue);

void blk_mq_free_queue(struct request_queue *q)
{
	struct blk_mq_tag_set	*set = q->tag_set;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

	blk_mq_del_queue_tag_set(q);

	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
}

/* Basically redo blk_mq_init_queue with queue frozen */
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
{
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));

	blk_mq_sysfs_unregister(q);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q, online_mask);

	blk_mq_sysfs_register(q);
}

/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_freeze_queue_start(q);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_wait(q);

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q, &cpuhp_online_new);

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

	mutex_unlock(&all_q_mutex);
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
}

static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set->tags[i]);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	int ret;

	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

	if (!set->nr_hw_queues)
		return -EINVAL;
	if (!set->queue_depth)
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

	if (!set->ops->queue_rq)
		return -EINVAL;

	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}

	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;

	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
		return -ENOMEM;

	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
	if (!set->mq_map)
		goto out_free_tags;

	ret = blk_mq_update_queue_map(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
		goto out_free_mq_map;

	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

	return 0;

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
	kfree(set->tags);
	set->tags = NULL;
	return ret;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);

	kfree(set->mq_map);
	set->mq_map = NULL;

	kfree(set->tags);
	set->tags = NULL;
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set)
		return -EINVAL;

	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx->tags)
			continue;
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

	return ret;
}

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	lockdep_assert_held(&set->tag_list_lock);

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	blk_mq_update_queue_map(set);
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
	int bucket;

	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
}

static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
	int bucket;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_poll_stats_enable(q))
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
	 */
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;

	return ret;
}

static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
				     struct blk_mq_hw_ctx *hctx,
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
	unsigned int nsecs;
	ktime_t kt;

	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
	kt = nsecs;

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
		return true;

	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

static int __init blk_mq_init(void)
{
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);

	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
	return 0;
}
subsys_initcall(blk_mq_init);