/* * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ */ #include "xfs.h" #include "xfs_macros.h" #include "xfs_types.h" #include "xfs_inum.h" #include "xfs_log.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_alloc_btree.h" #include "xfs_bmap_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_btree.h" #include "xfs_imap.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_attr_sf.h" #include "xfs_dir_sf.h" #include "xfs_dir2_sf.h" #include "xfs_dinode.h" #include "xfs_inode_item.h" #include "xfs_inode.h" #include "xfs_bmap.h" #include "xfs_buf_item.h" #include "xfs_rw.h" #include "xfs_error.h" #include "xfs_bit.h" #include "xfs_utils.h" #include "xfs_dir2_trace.h" #include "xfs_quota.h" #include "xfs_mac.h" #include "xfs_acl.h" kmem_zone_t *xfs_ifork_zone; kmem_zone_t *xfs_inode_zone; kmem_zone_t *xfs_chashlist_zone; /* * Used in xfs_itruncate(). This is the maximum number of extents * freed from a file in a single transaction. */ #define XFS_ITRUNC_MAX_EXTENTS 2 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *); STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int); STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int); STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int); #ifdef DEBUG /* * Make sure that the extents in the given memory buffer * are valid. */ STATIC void xfs_validate_extents( xfs_bmbt_rec_t *ep, int nrecs, int disk, xfs_exntfmt_t fmt) { xfs_bmbt_irec_t irec; xfs_bmbt_rec_t rec; int i; for (i = 0; i < nrecs; i++) { rec.l0 = get_unaligned((__uint64_t*)&ep->l0); rec.l1 = get_unaligned((__uint64_t*)&ep->l1); if (disk) xfs_bmbt_disk_get_all(&rec, &irec); else xfs_bmbt_get_all(&rec, &irec); if (fmt == XFS_EXTFMT_NOSTATE) ASSERT(irec.br_state == XFS_EXT_NORM); ep++; } } #else /* DEBUG */ #define xfs_validate_extents(ep, nrecs, disk, fmt) #endif /* DEBUG */ /* * Check that none of the inode's in the buffer have a next * unlinked field of 0. */ #if defined(DEBUG) void xfs_inobp_check( xfs_mount_t *mp, xfs_buf_t *bp) { int i; int j; xfs_dinode_t *dip; j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; for (i = 0; i < j; i++) { dip = (xfs_dinode_t *)xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize); if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)) { xfs_fs_cmn_err(CE_ALERT, mp, "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.", bp); ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)); } } } #endif /* * called from bwrite on xfs inode buffers */ void xfs_inobp_bwcheck(xfs_buf_t *bp) { xfs_mount_t *mp; int i; int j; xfs_dinode_t *dip; ASSERT(XFS_BUF_FSPRIVATE3(bp, void *) != NULL); mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *); j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; for (i = 0; i < j; i++) { dip = (xfs_dinode_t *) xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize); if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { cmn_err(CE_WARN, "Bad magic # 0x%x in XFS inode buffer 0x%Lx, starting blockno %Ld, offset 0x%x", INT_GET(dip->di_core.di_magic, ARCH_CONVERT), (__uint64_t)(__psunsigned_t) bp, (__int64_t) XFS_BUF_ADDR(bp), xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); xfs_fs_cmn_err(CE_WARN, mp, "corrupt, unmount and run xfs_repair"); } if (INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)) { cmn_err(CE_WARN, "Bad next_unlinked field (0) in XFS inode buffer 0x%p, starting blockno %Ld, offset 0x%x", (__uint64_t)(__psunsigned_t) bp, (__int64_t) XFS_BUF_ADDR(bp), xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); xfs_fs_cmn_err(CE_WARN, mp, "corrupt, unmount and run xfs_repair"); } } return; } /* * This routine is called to map an inode number within a file * system to the buffer containing the on-disk version of the * inode. It returns a pointer to the buffer containing the * on-disk inode in the bpp parameter, and in the dip parameter * it returns a pointer to the on-disk inode within that buffer. * * If a non-zero error is returned, then the contents of bpp and * dipp are undefined. * * Use xfs_imap() to determine the size and location of the * buffer to read from disk. */ int xfs_inotobp( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, xfs_dinode_t **dipp, xfs_buf_t **bpp, int *offset) { int di_ok; xfs_imap_t imap; xfs_buf_t *bp; int error; xfs_dinode_t *dip; /* * Call the space managment code to find the location of the * inode on disk. */ imap.im_blkno = 0; error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP); if (error != 0) { cmn_err(CE_WARN, "xfs_inotobp: xfs_imap() returned an " "error %d on %s. Returning error.", error, mp->m_fsname); return error; } /* * If the inode number maps to a block outside the bounds of the * file system then return NULL rather than calling read_buf * and panicing when we get an error from the driver. */ if ((imap.im_blkno + imap.im_len) > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { cmn_err(CE_WARN, "xfs_inotobp: inode number (%d + %d) maps to a block outside the bounds " "of the file system %s. Returning EINVAL.", imap.im_blkno, imap.im_len,mp->m_fsname); return XFS_ERROR(EINVAL); } /* * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will * default to just a read_buf() call. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, (int)imap.im_len, XFS_BUF_LOCK, &bp); if (error) { cmn_err(CE_WARN, "xfs_inotobp: xfs_trans_read_buf() returned an " "error %d on %s. Returning error.", error, mp->m_fsname); return error; } dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0); di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, XFS_RANDOM_ITOBP_INOTOBP))) { XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip); xfs_trans_brelse(tp, bp); cmn_err(CE_WARN, "xfs_inotobp: XFS_TEST_ERROR() returned an " "error on %s. Returning EFSCORRUPTED.", mp->m_fsname); return XFS_ERROR(EFSCORRUPTED); } xfs_inobp_check(mp, bp); /* * Set *dipp to point to the on-disk inode in the buffer. */ *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); *bpp = bp; *offset = imap.im_boffset; return 0; } /* * This routine is called to map an inode to the buffer containing * the on-disk version of the inode. It returns a pointer to the * buffer containing the on-disk inode in the bpp parameter, and in * the dip parameter it returns a pointer to the on-disk inode within * that buffer. * * If a non-zero error is returned, then the contents of bpp and * dipp are undefined. * * If the inode is new and has not yet been initialized, use xfs_imap() * to determine the size and location of the buffer to read from disk. * If the inode has already been mapped to its buffer and read in once, * then use the mapping information stored in the inode rather than * calling xfs_imap(). This allows us to avoid the overhead of looking * at the inode btree for small block file systems (see xfs_dilocate()). * We can tell whether the inode has been mapped in before by comparing * its disk block address to 0. Only uninitialized inodes will have * 0 for the disk block address. */ int xfs_itobp( xfs_mount_t *mp, xfs_trans_t *tp, xfs_inode_t *ip, xfs_dinode_t **dipp, xfs_buf_t **bpp, xfs_daddr_t bno) { xfs_buf_t *bp; int error; xfs_imap_t imap; #ifdef __KERNEL__ int i; int ni; #endif if (ip->i_blkno == (xfs_daddr_t)0) { /* * Call the space management code to find the location of the * inode on disk. */ imap.im_blkno = bno; error = xfs_imap(mp, tp, ip->i_ino, &imap, XFS_IMAP_LOOKUP); if (error != 0) { return error; } /* * If the inode number maps to a block outside the bounds * of the file system then return NULL rather than calling * read_buf and panicing when we get an error from the * driver. */ if ((imap.im_blkno + imap.im_len) > XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " "(imap.im_blkno (0x%llx) " "+ imap.im_len (0x%llx)) > " " XFS_FSB_TO_BB(mp, " "mp->m_sb.sb_dblocks) (0x%llx)", (unsigned long long) imap.im_blkno, (unsigned long long) imap.im_len, XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); #endif /* DEBUG */ return XFS_ERROR(EINVAL); } /* * Fill in the fields in the inode that will be used to * map the inode to its buffer from now on. */ ip->i_blkno = imap.im_blkno; ip->i_len = imap.im_len; ip->i_boffset = imap.im_boffset; } else { /* * We've already mapped the inode once, so just use the * mapping that we saved the first time. */ imap.im_blkno = ip->i_blkno; imap.im_len = ip->i_len; imap.im_boffset = ip->i_boffset; } ASSERT(bno == 0 || bno == imap.im_blkno); /* * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will * default to just a read_buf() call. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno, (int)imap.im_len, XFS_BUF_LOCK, &bp); if (error) { #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: " "xfs_trans_read_buf() returned error %d, " "imap.im_blkno 0x%llx, imap.im_len 0x%llx", error, (unsigned long long) imap.im_blkno, (unsigned long long) imap.im_len); #endif /* DEBUG */ return error; } #ifdef __KERNEL__ /* * Validate the magic number and version of every inode in the buffer * (if DEBUG kernel) or the first inode in the buffer, otherwise. */ #ifdef DEBUG ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog; #else ni = 1; #endif for (i = 0; i < ni; i++) { int di_ok; xfs_dinode_t *dip; dip = (xfs_dinode_t *)xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog)); di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC && XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT)); if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP, XFS_RANDOM_ITOBP_INOTOBP))) { #ifdef DEBUG prdev("bad inode magic/vsn daddr 0x%llx #%d (magic=%x)", mp->m_dev, (unsigned long long)imap.im_blkno, i, INT_GET(dip->di_core.di_magic, ARCH_CONVERT)); #endif XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH, mp, dip); xfs_trans_brelse(tp, bp); return XFS_ERROR(EFSCORRUPTED); } } #endif /* __KERNEL__ */ xfs_inobp_check(mp, bp); /* * Mark the buffer as an inode buffer now that it looks good */ XFS_BUF_SET_VTYPE(bp, B_FS_INO); /* * Set *dipp to point to the on-disk inode in the buffer. */ *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); *bpp = bp; return 0; } /* * Move inode type and inode format specific information from the * on-disk inode to the in-core inode. For fifos, devs, and sockets * this means set if_rdev to the proper value. For files, directories, * and symlinks this means to bring in the in-line data or extent * pointers. For a file in B-tree format, only the root is immediately * brought in-core. The rest will be in-lined in if_extents when it * is first referenced (see xfs_iread_extents()). */ STATIC int xfs_iformat( xfs_inode_t *ip, xfs_dinode_t *dip) { xfs_attr_shortform_t *atp; int size; int error; xfs_fsize_t di_size; ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); error = 0; if (unlikely( INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) > INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) { xfs_fs_cmn_err(CE_WARN, ip->i_mount, "corrupt dinode %Lu, extent total = %d, nblocks = %Lu." " Unmount and run xfs_repair.", (unsigned long long)ip->i_ino, (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)), (unsigned long long) INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT)); XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) { xfs_fs_cmn_err(CE_WARN, ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x." " Unmount and run xfs_repair.", (unsigned long long)ip->i_ino, (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT))); XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } switch (ip->i_d.di_mode & IFMT) { case IFIFO: case IFCHR: case IFBLK: case IFSOCK: if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) { XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } ip->i_d.di_size = 0; ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT); break; case IFREG: case IFLNK: case IFDIR: switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) { case XFS_DINODE_FMT_LOCAL: /* * no local regular files yet */ if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & IFMT) == IFREG)) { xfs_fs_cmn_err(CE_WARN, ip->i_mount, "corrupt inode (local format for regular file) %Lu. Unmount and run xfs_repair.", (unsigned long long) ip->i_ino); XFS_CORRUPTION_ERROR("xfs_iformat(4)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT); if (unlikely(di_size > XFS_DFORK_DSIZE_ARCH(dip, ip->i_mount, ARCH_CONVERT))) { xfs_fs_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu (bad size %Ld for local inode). Unmount and run xfs_repair.", (unsigned long long) ip->i_ino, (long long) di_size); XFS_CORRUPTION_ERROR("xfs_iformat(5)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } size = (int)di_size; error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size); break; case XFS_DINODE_FMT_EXTENTS: error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK); break; case XFS_DINODE_FMT_BTREE: error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK); break; default: XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } break; default: XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } if (error) { return error; } if (!XFS_DFORK_Q_ARCH(dip, ARCH_CONVERT)) return 0; ASSERT(ip->i_afp == NULL); ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP); ip->i_afp->if_ext_max = XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) { case XFS_DINODE_FMT_LOCAL: atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR_ARCH(dip, ARCH_CONVERT); size = (int)INT_GET(atp->hdr.totsize, ARCH_CONVERT); error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size); break; case XFS_DINODE_FMT_EXTENTS: error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); break; case XFS_DINODE_FMT_BTREE: error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); break; default: error = XFS_ERROR(EFSCORRUPTED); break; } if (error) { kmem_zone_free(xfs_ifork_zone, ip->i_afp); ip->i_afp = NULL; xfs_idestroy_fork(ip, XFS_DATA_FORK); } return error; } /* * The file is in-lined in the on-disk inode. * If it fits into if_inline_data, then copy * it there, otherwise allocate a buffer for it * and copy the data there. Either way, set * if_data to point at the data. * If we allocate a buffer for the data, make * sure that its size is a multiple of 4 and * record the real size in i_real_bytes. */ STATIC int xfs_iformat_local( xfs_inode_t *ip, xfs_dinode_t *dip, int whichfork, int size) { xfs_ifork_t *ifp; int real_size; /* * If the size is unreasonable, then something * is wrong and we just bail out rather than crash in * kmem_alloc() or memcpy() below. */ if (unlikely(size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) { xfs_fs_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu (bad size %d for local fork, size = %d). Unmount and run xfs_repair.", (unsigned long long) ip->i_ino, size, XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT)); XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } ifp = XFS_IFORK_PTR(ip, whichfork); real_size = 0; if (size == 0) ifp->if_u1.if_data = NULL; else if (size <= sizeof(ifp->if_u2.if_inline_data)) ifp->if_u1.if_data = ifp->if_u2.if_inline_data; else { real_size = roundup(size, 4); ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); } ifp->if_bytes = size; ifp->if_real_bytes = real_size; if (size) memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT), size); ifp->if_flags &= ~XFS_IFEXTENTS; ifp->if_flags |= XFS_IFINLINE; return 0; } /* * The file consists of a set of extents all * of which fit into the on-disk inode. * If there are few enough extents to fit into * the if_inline_ext, then copy them there. * Otherwise allocate a buffer for them and copy * them into it. Either way, set if_extents * to point at the extents. */ STATIC int xfs_iformat_extents( xfs_inode_t *ip, xfs_dinode_t *dip, int whichfork) { xfs_bmbt_rec_t *ep, *dp; xfs_ifork_t *ifp; int nex; int real_size; int size; int i; ifp = XFS_IFORK_PTR(ip, whichfork); nex = XFS_DFORK_NEXTENTS_ARCH(dip, whichfork, ARCH_CONVERT); size = nex * (uint)sizeof(xfs_bmbt_rec_t); /* * If the number of extents is unreasonable, then something * is wrong and we just bail out rather than crash in * kmem_alloc() or memcpy() below. */ if (unlikely(size < 0 || size > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT))) { xfs_fs_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu ((a)extents = %d). Unmount and run xfs_repair.", (unsigned long long) ip->i_ino, nex); XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW, ip->i_mount, dip); return XFS_ERROR(EFSCORRUPTED); } real_size = 0; if (nex == 0) ifp->if_u1.if_extents = NULL; else if (nex <= XFS_INLINE_EXTS) ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; else { ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); ASSERT(ifp->if_u1.if_extents != NULL); real_size = size; } ifp->if_bytes = size; ifp->if_real_bytes = real_size; if (size) { dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT); xfs_validate_extents(dp, nex, 1, XFS_EXTFMT_INODE(ip)); ep = ifp->if_u1.if_extents; for (i = 0; i < nex; i++, ep++, dp++) { ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0), ARCH_CONVERT); ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1), ARCH_CONVERT); } xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex, whichfork); if (whichfork != XFS_DATA_FORK || XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE) if (unlikely(xfs_check_nostate_extents( ifp->if_u1.if_extents, nex))) { XFS_ERROR_REPORT("xfs_iformat_extents(2)", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } } ifp->if_flags |= XFS_IFEXTENTS; return 0; } /* * The file has too many extents to fit into * the inode, so they are in B-tree format. * Allocate a buffer for the root of the B-tree * and copy the root into it. The i_extents * field will remain NULL until all of the * extents are read in (when they are needed). */ STATIC int xfs_iformat_btree( xfs_inode_t *ip, xfs_dinode_t *dip, int whichfork) { xfs_bmdr_block_t *dfp; xfs_ifork_t *ifp; /* REFERENCED */ int nrecs; int size; ifp = XFS_IFORK_PTR(ip, whichfork); dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT); size = XFS_BMAP_BROOT_SPACE(dfp); nrecs = XFS_BMAP_BROOT_NUMRECS(dfp); /* * blow out if -- fork has less extents than can fit in * fork (fork shouldn't be a btree format), root btree * block has more records than can fit into the fork, * or the number of extents is greater than the number of * blocks. */ if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max || XFS_BMDR_SPACE_CALC(nrecs) > XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT) || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) { xfs_fs_cmn_err(CE_WARN, ip->i_mount, "corrupt inode %Lu (btree). Unmount and run xfs_repair.", (unsigned long long) ip->i_ino); XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } ifp->if_broot_bytes = size; ifp->if_broot = kmem_alloc(size, KM_SLEEP); ASSERT(ifp->if_broot != NULL); /* * Copy and convert from the on-disk structure * to the in-memory structure. */ xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE_ARCH(dip, ip->i_mount, whichfork, ARCH_CONVERT), ifp->if_broot, size); ifp->if_flags &= ~XFS_IFEXTENTS; ifp->if_flags |= XFS_IFBROOT; return 0; } /* * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk * and native format * * buf = on-disk representation * dip = native representation * dir = direction - +ve -> disk to native * -ve -> native to disk * arch = on-disk architecture */ void xfs_xlate_dinode_core( xfs_caddr_t buf, xfs_dinode_core_t *dip, int dir, xfs_arch_t arch) { xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf; xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip; ASSERT(dir); if (arch == ARCH_NOCONVERT) { if (dir > 0) { memcpy((xfs_caddr_t)mem_core, (xfs_caddr_t)buf_core, sizeof(xfs_dinode_core_t)); } else { memcpy((xfs_caddr_t)buf_core, (xfs_caddr_t)mem_core, sizeof(xfs_dinode_core_t)); } return; } INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch); INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch); INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch); INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch); INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch); INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch); INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch); INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch); INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch); if (dir > 0) { memcpy(mem_core->di_pad, buf_core->di_pad, sizeof(buf_core->di_pad)); } else { memcpy(buf_core->di_pad, mem_core->di_pad, sizeof(buf_core->di_pad)); } INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch); INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec, dir, arch); INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec, dir, arch); INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec, dir, arch); INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec, dir, arch); INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec, dir, arch); INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec, dir, arch); INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch); INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch); INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch); INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch); INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch); INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch); INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch); INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch); INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch); INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch); INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch); } /* * Given a mount structure and an inode number, return a pointer * to a newly allocated in-core inode coresponding to the given * inode number. * * Initialize the inode's attributes and extent pointers if it * already has them (it will not if the inode has no links). */ int xfs_iread( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, xfs_inode_t **ipp, xfs_daddr_t bno) { xfs_buf_t *bp; xfs_dinode_t *dip; xfs_inode_t *ip; int error; ASSERT(xfs_inode_zone != NULL); ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP); ip->i_ino = ino; ip->i_mount = mp; /* * Get pointer's to the on-disk inode and the buffer containing it. * If the inode number refers to a block outside the file system * then xfs_itobp() will return NULL. In this case we should * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will * know that this is a new incore inode. */ error = xfs_itobp(mp, tp, ip, &dip, &bp, bno); if (error != 0) { kmem_zone_free(xfs_inode_zone, ip); return error; } /* * Initialize inode's trace buffers. * Do this before xfs_iformat in case it adds entries. */ #ifdef XFS_BMAP_TRACE ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_BMBT_TRACE ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_RW_TRACE ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_STRAT_TRACE ip->i_strat_trace = ktrace_alloc(XFS_STRAT_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_ILOCK_TRACE ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_DIR2_TRACE ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP); #endif /* * If we got something that isn't an inode it means someone * (nfs or dmi) has a stale handle. */ if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) { kmem_zone_free(xfs_inode_zone, ip); xfs_trans_brelse(tp, bp); #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " "dip->di_core.di_magic (0x%x) != " "XFS_DINODE_MAGIC (0x%x)", INT_GET(dip->di_core.di_magic, ARCH_CONVERT), XFS_DINODE_MAGIC); #endif /* DEBUG */ return XFS_ERROR(EINVAL); } /* * If the on-disk inode is already linked to a directory * entry, copy all of the inode into the in-core inode. * xfs_iformat() handles copying in the inode format * specific information. * Otherwise, just get the truly permanent information. */ if (!INT_ISZERO(dip->di_core.di_mode, ARCH_CONVERT)) { xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, &(ip->i_d), 1, ARCH_CONVERT); error = xfs_iformat(ip, dip); if (error) { kmem_zone_free(xfs_inode_zone, ip); xfs_trans_brelse(tp, bp); #ifdef DEBUG xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: " "xfs_iformat() returned error %d", error); #endif /* DEBUG */ return error; } } else { ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT); ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT); ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT); ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT); /* * Make sure to pull in the mode here as well in * case the inode is released without being used. * This ensures that xfs_inactive() will see that * the inode is already free and not try to mess * with the uninitialized part of it. */ ip->i_d.di_mode = 0; /* * Initialize the per-fork minima and maxima for a new * inode here. xfs_iformat will do it for old inodes. */ ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); } INIT_LIST_HEAD(&ip->i_reclaim); /* * The inode format changed when we moved the link count and * made it 32 bits long. If this is an old format inode, * convert it in memory to look like a new one. If it gets * flushed to disk we will convert back before flushing or * logging it. We zero out the new projid field and the old link * count field. We'll handle clearing the pad field (the remains * of the old uuid field) when we actually convert the inode to * the new format. We don't change the version number so that we * can distinguish this from a real new format inode. */ if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { ip->i_d.di_nlink = ip->i_d.di_onlink; ip->i_d.di_onlink = 0; ip->i_d.di_projid = 0; } ip->i_delayed_blks = 0; /* * Mark the buffer containing the inode as something to keep * around for a while. This helps to keep recently accessed * meta-data in-core longer. */ XFS_BUF_SET_REF(bp, XFS_INO_REF); /* * Use xfs_trans_brelse() to release the buffer containing the * on-disk inode, because it was acquired with xfs_trans_read_buf() * in xfs_itobp() above. If tp is NULL, this is just a normal * brelse(). If we're within a transaction, then xfs_trans_brelse() * will only release the buffer if it is not dirty within the * transaction. It will be OK to release the buffer in this case, * because inodes on disk are never destroyed and we will be * locking the new in-core inode before putting it in the hash * table where other processes can find it. Thus we don't have * to worry about the inode being changed just because we released * the buffer. */ xfs_trans_brelse(tp, bp); *ipp = ip; return 0; } /* * Read in extents from a btree-format inode. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c. */ int xfs_iread_extents( xfs_trans_t *tp, xfs_inode_t *ip, int whichfork) { int error; xfs_ifork_t *ifp; size_t size; if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) { XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW, ip->i_mount); return XFS_ERROR(EFSCORRUPTED); } size = XFS_IFORK_NEXTENTS(ip, whichfork) * (uint)sizeof(xfs_bmbt_rec_t); ifp = XFS_IFORK_PTR(ip, whichfork); /* * We know that the size is valid (it's checked in iformat_btree) */ ifp->if_u1.if_extents = kmem_alloc(size, KM_SLEEP); ASSERT(ifp->if_u1.if_extents != NULL); ifp->if_lastex = NULLEXTNUM; ifp->if_bytes = ifp->if_real_bytes = (int)size; ifp->if_flags |= XFS_IFEXTENTS; error = xfs_bmap_read_extents(tp, ip, whichfork); if (error) { kmem_free(ifp->if_u1.if_extents, size); ifp->if_u1.if_extents = NULL; ifp->if_bytes = ifp->if_real_bytes = 0; ifp->if_flags &= ~XFS_IFEXTENTS; return error; } xfs_validate_extents((xfs_bmbt_rec_t *)ifp->if_u1.if_extents, XFS_IFORK_NEXTENTS(ip, whichfork), 0, XFS_EXTFMT_INODE(ip)); return 0; } /* * Allocate an inode on disk and return a copy of its in-core version. * The in-core inode is locked exclusively. Set mode, nlink, and rdev * appropriately within the inode. The uid and gid for the inode are * set according to the contents of the given cred structure. * * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() * has a free inode available, call xfs_iget() * to obtain the in-core version of the allocated inode. Finally, * fill in the inode and log its initial contents. In this case, * ialloc_context would be set to NULL and call_again set to false. * * If xfs_dialloc() does not have an available inode, * it will replenish its supply by doing an allocation. Since we can * only do one allocation within a transaction without deadlocks, we * must commit the current transaction before returning the inode itself. * In this case, therefore, we will set call_again to true and return. * The caller should then commit the current transaction, start a new * transaction, and call xfs_ialloc() again to actually get the inode. * * To ensure that some other process does not grab the inode that * was allocated during the first call to xfs_ialloc(), this routine * also returns the [locked] bp pointing to the head of the freelist * as ialloc_context. The caller should hold this buffer across * the commit and pass it back into this routine on the second call. */ int xfs_ialloc( xfs_trans_t *tp, xfs_inode_t *pip, mode_t mode, nlink_t nlink, xfs_dev_t rdev, cred_t *cr, xfs_prid_t prid, int okalloc, xfs_buf_t **ialloc_context, boolean_t *call_again, xfs_inode_t **ipp) { xfs_ino_t ino; xfs_inode_t *ip; vnode_t *vp; uint flags; int error; /* * Call the space management code to pick * the on-disk inode to be allocated. */ ASSERT(pip != NULL); error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc, ialloc_context, call_again, &ino); if (error != 0) { return error; } if (*call_again || ino == NULLFSINO) { *ipp = NULL; return 0; } ASSERT(*ialloc_context == NULL); /* * Get the in-core inode with the lock held exclusively. * This is because we're setting fields here we need * to prevent others from looking at until we're done. */ error = xfs_trans_iget(tp->t_mountp, tp, ino, XFS_ILOCK_EXCL, &ip); if (error != 0) { return error; } ASSERT(ip != NULL); vp = XFS_ITOV(ip); vp->v_type = IFTOVT(mode); ip->i_d.di_mode = (__uint16_t)mode; ip->i_d.di_onlink = 0; ip->i_d.di_nlink = nlink; ASSERT(ip->i_d.di_nlink == nlink); ip->i_d.di_uid = current->fsuid; ip->i_d.di_gid = current->fsgid; ip->i_d.di_projid = prid; memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); /* * If the superblock version is up to where we support new format * inodes and this is currently an old format inode, then change * the inode version number now. This way we only do the conversion * here rather than here and in the flush/logging code. */ if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) && ip->i_d.di_version == XFS_DINODE_VERSION_1) { ip->i_d.di_version = XFS_DINODE_VERSION_2; /* * We've already zeroed the old link count, the projid field, * and the pad field. */ } /* * Project ids won't be stored on disk if we are using a version 1 inode. */ if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1)) xfs_bump_ino_vers2(tp, ip); if (XFS_INHERIT_GID(pip, vp->v_vfsp)) { ip->i_d.di_gid = pip->i_d.di_gid; if ((pip->i_d.di_mode & ISGID) && (mode & IFMT) == IFDIR) { ip->i_d.di_mode |= ISGID; } } /* * If the group ID of the new file does not match the effective group * ID or one of the supplementary group IDs, the ISGID bit is cleared * (and only if the irix_sgid_inherit compatibility variable is set). */ if ((irix_sgid_inherit) && (ip->i_d.di_mode & ISGID) && (!in_group_p((gid_t)ip->i_d.di_gid))) { ip->i_d.di_mode &= ~ISGID; } ip->i_d.di_size = 0; ip->i_d.di_nextents = 0; ASSERT(ip->i_d.di_nblocks == 0); xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD); /* * di_gen will have been taken care of in xfs_iread. */ ip->i_d.di_extsize = 0; ip->i_d.di_dmevmask = 0; ip->i_d.di_dmstate = 0; ip->i_d.di_flags = 0; if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && xfs_inherit_nodump) ip->i_d.di_flags |= XFS_DIFLAG_NODUMP; flags = XFS_ILOG_CORE; switch (mode & IFMT) { case IFIFO: case IFCHR: case IFBLK: case IFSOCK: ip->i_d.di_format = XFS_DINODE_FMT_DEV; ip->i_df.if_u2.if_rdev = rdev; ip->i_df.if_flags = 0; flags |= XFS_ILOG_DEV; break; case IFREG: case IFDIR: if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && xfs_inherit_sync) ip->i_d.di_flags |= XFS_DIFLAG_SYNC; case IFLNK: ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; ip->i_df.if_flags = XFS_IFEXTENTS; ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0; ip->i_df.if_u1.if_extents = NULL; break; default: ASSERT(0); } /* * Attribute fork settings for new inode. */ ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; ip->i_d.di_anextents = 0; /* * Log the new values stuffed into the inode. */ xfs_trans_log_inode(tp, ip, flags); /* now that we have a v_type we can set Linux inode ops (& unlock) */ VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1); *ipp = ip; return 0; } /* * Check to make sure that there are no blocks allocated to the * file beyond the size of the file. We don't check this for * files with fixed size extents or real time extents, but we * at least do it for regular files. */ #ifdef DEBUG void xfs_isize_check( xfs_mount_t *mp, xfs_inode_t *ip, xfs_fsize_t isize) { xfs_fileoff_t map_first; int nimaps; xfs_bmbt_irec_t imaps[2]; if ((ip->i_d.di_mode & IFMT) != IFREG) return; if ( ip->i_d.di_flags & XFS_DIFLAG_REALTIME ) return; nimaps = 2; map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize); /* * The filesystem could be shutting down, so bmapi may return * an error. */ if (xfs_bmapi(NULL, ip, map_first, (XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - map_first), XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps, NULL)) return; ASSERT(nimaps == 1); ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK); } #endif /* DEBUG */ /* * Calculate the last possible buffered byte in a file. This must * include data that was buffered beyond the EOF by the write code. * This also needs to deal with overflowing the xfs_fsize_t type * which can happen for sizes near the limit. * * We also need to take into account any blocks beyond the EOF. It * may be the case that they were buffered by a write which failed. * In that case the pages will still be in memory, but the inode size * will never have been updated. */ xfs_fsize_t xfs_file_last_byte( xfs_inode_t *ip) { xfs_mount_t *mp; xfs_fsize_t last_byte; xfs_fileoff_t last_block; xfs_fileoff_t size_last_block; int error; ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS)); mp = ip->i_mount; /* * Only check for blocks beyond the EOF if the extents have * been read in. This eliminates the need for the inode lock, * and it also saves us from looking when it really isn't * necessary. */ if (ip->i_df.if_flags & XFS_IFEXTENTS) { error = xfs_bmap_last_offset(NULL, ip, &last_block, XFS_DATA_FORK); if (error) { last_block = 0; } } else { last_block = 0; } size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size); last_block = XFS_FILEOFF_MAX(last_block, size_last_block); last_byte = XFS_FSB_TO_B(mp, last_block); if (last_byte < 0) { return XFS_MAXIOFFSET(mp); } last_byte += (1 << mp->m_writeio_log); if (last_byte < 0) { return XFS_MAXIOFFSET(mp); } return last_byte; } #if defined(XFS_RW_TRACE) STATIC void xfs_itrunc_trace( int tag, xfs_inode_t *ip, int flag, xfs_fsize_t new_size, xfs_off_t toss_start, xfs_off_t toss_finish) { if (ip->i_rwtrace == NULL) { return; } ktrace_enter(ip->i_rwtrace, (void*)((long)tag), (void*)ip, (void*)((ip->i_d.di_size >> 32) & 0xffffffff), (void*)(ip->i_d.di_size & 0xffffffff), (void*)((long)flag), (void*)((new_size >> 32) & 0xffffffff), (void*)(new_size & 0xffffffff), (void*)((toss_start >> 32) & 0xffffffff), (void*)(toss_start & 0xffffffff), (void*)((toss_finish >> 32) & 0xffffffff), (void*)(toss_finish & 0xffffffff), (void*)((long)private.p_cpuid), (void*)0, (void*)0, (void*)0, (void*)0); } #else #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish) #endif /* * Start the truncation of the file to new_size. The new size * must be smaller than the current size. This routine will * clear the buffer and page caches of file data in the removed * range, and xfs_itruncate_finish() will remove the underlying * disk blocks. * * The inode must have its I/O lock locked EXCLUSIVELY, and it * must NOT have the inode lock held at all. This is because we're * calling into the buffer/page cache code and we can't hold the * inode lock when we do so. * * The flags parameter can have either the value XFS_ITRUNC_DEFINITE * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used * in the case that the caller is locking things out of order and * may not be able to call xfs_itruncate_finish() with the inode lock * held without dropping the I/O lock. If the caller must drop the * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start() * must be called again with all the same restrictions as the initial * call. */ void xfs_itruncate_start( xfs_inode_t *ip, uint flags, xfs_fsize_t new_size) { xfs_fsize_t last_byte; xfs_off_t toss_start; xfs_mount_t *mp; vnode_t *vp; ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); ASSERT((flags == XFS_ITRUNC_DEFINITE) || (flags == XFS_ITRUNC_MAYBE)); mp = ip->i_mount; vp = XFS_ITOV(ip); /* * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers * overlapping the region being removed. We have to use * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the * caller may not be able to finish the truncate without * dropping the inode's I/O lock. Make sure * to catch any pages brought in by buffers overlapping * the EOF by searching out beyond the isize by our * block size. We round new_size up to a block boundary * so that we don't toss things on the same block as * new_size but before it. * * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to * call remapf() over the same region if the file is mapped. * This frees up mapped file references to the pages in the * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures * that we get the latest mapped changes flushed out. */ toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); toss_start = XFS_FSB_TO_B(mp, toss_start); if (toss_start < 0) { /* * The place to start tossing is beyond our maximum * file size, so there is no way that the data extended * out there. */ return; } last_byte = xfs_file_last_byte(ip); xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start, last_byte); if (last_byte > toss_start) { if (flags & XFS_ITRUNC_DEFINITE) { VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); } else { VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED); } } #ifdef DEBUG if (new_size == 0) { ASSERT(VN_CACHED(vp) == 0); } #endif } /* * Shrink the file to the given new_size. The new * size must be smaller than the current size. * This will free up the underlying blocks * in the removed range after a call to xfs_itruncate_start() * or xfs_atruncate_start(). * * The transaction passed to this routine must have made * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES. * This routine may commit the given transaction and * start new ones, so make sure everything involved in * the transaction is tidy before calling here. * Some transaction will be returned to the caller to be * committed. The incoming transaction must already include * the inode, and both inode locks must be held exclusively. * The inode must also be "held" within the transaction. On * return the inode will be "held" within the returned transaction. * This routine does NOT require any disk space to be reserved * for it within the transaction. * * The fork parameter must be either xfs_attr_fork or xfs_data_fork, * and it indicates the fork which is to be truncated. For the * attribute fork we only support truncation to size 0. * * We use the sync parameter to indicate whether or not the first * transaction we perform might have to be synchronous. For the attr fork, * it needs to be so if the unlink of the inode is not yet known to be * permanent in the log. This keeps us from freeing and reusing the * blocks of the attribute fork before the unlink of the inode becomes * permanent. * * For the data fork, we normally have to run synchronously if we're * being called out of the inactive path or we're being called * out of the create path where we're truncating an existing file. * Either way, the truncate needs to be sync so blocks don't reappear * in the file with altered data in case of a crash. wsync filesystems * can run the first case async because anything that shrinks the inode * has to run sync so by the time we're called here from inactive, the * inode size is permanently set to 0. * * Calls from the truncate path always need to be sync unless we're * in a wsync filesystem and the file has already been unlinked. * * The caller is responsible for correctly setting the sync parameter. * It gets too hard for us to guess here which path we're being called * out of just based on inode state. */ int xfs_itruncate_finish( xfs_trans_t **tp, xfs_inode_t *ip, xfs_fsize_t new_size, int fork, int sync) { xfs_fsblock_t first_block; xfs_fileoff_t first_unmap_block; xfs_fileoff_t last_block; xfs_filblks_t unmap_len=0; xfs_mount_t *mp; xfs_trans_t *ntp; int done; int committed; xfs_bmap_free_t free_list; int error; ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0); ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size)); ASSERT(*tp != NULL); ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); ASSERT(ip->i_transp == *tp); ASSERT(ip->i_itemp != NULL); ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD); ntp = *tp; mp = (ntp)->t_mountp; ASSERT(! XFS_NOT_DQATTACHED(mp, ip)); /* * We only support truncating the entire attribute fork. */ if (fork == XFS_ATTR_FORK) { new_size = 0LL; } first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0); /* * The first thing we do is set the size to new_size permanently * on disk. This way we don't have to worry about anyone ever * being able to look at the data being freed even in the face * of a crash. What we're getting around here is the case where * we free a block, it is allocated to another file, it is written * to, and then we crash. If the new data gets written to the * file but the log buffers containing the free and reallocation * don't, then we'd end up with garbage in the blocks being freed. * As long as we make the new_size permanent before actually * freeing any blocks it doesn't matter if they get writtten to. * * The callers must signal into us whether or not the size * setting here must be synchronous. There are a few cases * where it doesn't have to be synchronous. Those cases * occur if the file is unlinked and we know the unlink is * permanent or if the blocks being truncated are guaranteed * to be beyond the inode eof (regardless of the link count) * and the eof value is permanent. Both of these cases occur * only on wsync-mounted filesystems. In those cases, we're * guaranteed that no user will ever see the data in the blocks * that are being truncated so the truncate can run async. * In the free beyond eof case, the file may wind up with * more blocks allocated to it than it needs if we crash * and that won't get fixed until the next time the file * is re-opened and closed but that's ok as that shouldn't * be too many blocks. * * However, we can't just make all wsync xactions run async * because there's one call out of the create path that needs * to run sync where it's truncating an existing file to size * 0 whose size is > 0. * * It's probably possible to come up with a test in this * routine that would correctly distinguish all the above * cases from the values of the function parameters and the * inode state but for sanity's sake, I've decided to let the * layers above just tell us. It's simpler to correctly figure * out in the layer above exactly under what conditions we * can run async and I think it's easier for others read and * follow the logic in case something has to be changed. * cscope is your friend -- rcc. * * The attribute fork is much simpler. * * For the attribute fork we allow the caller to tell us whether * the unlink of the inode that led to this call is yet permanent * in the on disk log. If it is not and we will be freeing extents * in this inode then we make the first transaction synchronous * to make sure that the unlink is permanent by the time we free * the blocks. */ if (fork == XFS_DATA_FORK) { if (ip->i_d.di_nextents > 0) { ip->i_d.di_size = new_size; xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); } } else if (sync) { ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC)); if (ip->i_d.di_anextents > 0) xfs_trans_set_sync(ntp); } ASSERT(fork == XFS_DATA_FORK || (fork == XFS_ATTR_FORK && ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) || (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC))))); /* * Since it is possible for space to become allocated beyond * the end of the file (in a crash where the space is allocated * but the inode size is not yet updated), simply remove any * blocks which show up between the new EOF and the maximum * possible file size. If the first block to be removed is * beyond the maximum file size (ie it is the same as last_block), * then there is nothing to do. */ last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp)); ASSERT(first_unmap_block <= last_block); done = 0; if (last_block == first_unmap_block) { done = 1; } else { unmap_len = last_block - first_unmap_block + 1; } while (!done) { /* * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi() * will tell us whether it freed the entire range or * not. If this is a synchronous mount (wsync), * then we can tell bunmapi to keep all the * transactions asynchronous since the unlink * transaction that made this inode inactive has * already hit the disk. There's no danger of * the freed blocks being reused, there being a * crash, and the reused blocks suddenly reappearing * in this file with garbage in them once recovery * runs. */ XFS_BMAP_INIT(&free_list, &first_block); error = xfs_bunmapi(ntp, ip, first_unmap_block, unmap_len, XFS_BMAPI_AFLAG(fork) | (sync ? 0 : XFS_BMAPI_ASYNC), XFS_ITRUNC_MAX_EXTENTS, &first_block, &free_list, &done); if (error) { /* * If the bunmapi call encounters an error, * return to the caller where the transaction * can be properly aborted. We just need to * make sure we're not holding any resources * that we were not when we came in. */ xfs_bmap_cancel(&free_list); return error; } /* * Duplicate the transaction that has the permanent * reservation and commit the old transaction. */ error = xfs_bmap_finish(tp, &free_list, first_block, &committed); ntp = *tp; if (error) { /* * If the bmap finish call encounters an error, * return to the caller where the transaction * can be properly aborted. We just need to * make sure we're not holding any resources * that we were not when we came in. * * Aborting from this point might lose some * blocks in the file system, but oh well. */ xfs_bmap_cancel(&free_list); if (committed) { /* * If the passed in transaction committed * in xfs_bmap_finish(), then we want to * add the inode to this one before returning. * This keeps things simple for the higher * level code, because it always knows that * the inode is locked and held in the * transaction that returns to it whether * errors occur or not. We don't mark the * inode dirty so that this transaction can * be easily aborted if possible. */ xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_trans_ihold(ntp, ip); } return error; } if (committed) { /* * The first xact was committed, * so add the inode to the new one. * Mark it dirty so it will be logged * and moved forward in the log as * part of every commit. */ xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_trans_ihold(ntp, ip); xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); } ntp = xfs_trans_dup(ntp); (void) xfs_trans_commit(*tp, 0, NULL); *tp = ntp; error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, XFS_TRANS_PERM_LOG_RES, XFS_ITRUNCATE_LOG_COUNT); /* * Add the inode being truncated to the next chained * transaction. */ xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); xfs_trans_ihold(ntp, ip); if (error) return (error); } /* * Only update the size in the case of the data fork, but * always re-log the inode so that our permanent transaction * can keep on rolling it forward in the log. */ if (fork == XFS_DATA_FORK) { xfs_isize_check(mp, ip, new_size); ip->i_d.di_size = new_size; } xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE); ASSERT((new_size != 0) || (fork == XFS_ATTR_FORK) || (ip->i_delayed_blks == 0)); ASSERT((new_size != 0) || (fork == XFS_ATTR_FORK) || (ip->i_d.di_nextents == 0)); xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0); return 0; } /* * xfs_igrow_start * * Do the first part of growing a file: zero any data in the last * block that is beyond the old EOF. We need to do this before * the inode is joined to the transaction to modify the i_size. * That way we can drop the inode lock and call into the buffer * cache to get the buffer mapping the EOF. */ int xfs_igrow_start( xfs_inode_t *ip, xfs_fsize_t new_size, cred_t *credp) { xfs_fsize_t isize; int error; ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); ASSERT(new_size > ip->i_d.di_size); error = 0; isize = ip->i_d.di_size; /* * Zero any pages that may have been created by * xfs_write_file() beyond the end of the file * and any blocks between the old and new file sizes. */ error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size, isize, new_size); return error; } /* * xfs_igrow_finish * * This routine is called to extend the size of a file. * The inode must have both the iolock and the ilock locked * for update and it must be a part of the current transaction. * The xfs_igrow_start() function must have been called previously. * If the change_flag is not zero, the inode change timestamp will * be updated. */ void xfs_igrow_finish( xfs_trans_t *tp, xfs_inode_t *ip, xfs_fsize_t new_size, int change_flag) { ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0); ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0); ASSERT(ip->i_transp == tp); ASSERT(new_size > ip->i_d.di_size); /* * Update the file size. Update the inode change timestamp * if change_flag set. */ ip->i_d.di_size = new_size; if (change_flag) xfs_ichgtime(ip, XFS_ICHGTIME_CHG); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); } /* * This is called when the inode's link count goes to 0. * We place the on-disk inode on a list in the AGI. It * will be pulled from this list when the inode is freed. */ int xfs_iunlink( xfs_trans_t *tp, xfs_inode_t *ip) { xfs_mount_t *mp; xfs_agi_t *agi; xfs_dinode_t *dip; xfs_buf_t *agibp; xfs_buf_t *ibp; xfs_agnumber_t agno; xfs_daddr_t agdaddr; xfs_agino_t agino; short bucket_index; int offset; int error; int agi_ok; ASSERT(ip->i_d.di_nlink == 0); ASSERT(ip->i_d.di_mode != 0); ASSERT(ip->i_transp == tp); mp = tp->t_mountp; agno = XFS_INO_TO_AGNO(mp, ip->i_ino); agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); /* * Get the agi buffer first. It ensures lock ordering * on the list. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, XFS_FSS_TO_BB(mp, 1), 0, &agibp); if (error) { return error; } /* * Validate the magic number of the agi block. */ agi = XFS_BUF_TO_AGI(agibp); agi_ok = INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK, XFS_RANDOM_IUNLINK))) { XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi); xfs_trans_brelse(tp, agibp); return XFS_ERROR(EFSCORRUPTED); } /* * Get the index into the agi hash table for the * list this inode will go on. */ agino = XFS_INO_TO_AGINO(mp, ip->i_ino); ASSERT(agino != 0); bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT)); ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != agino); if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO) { /* * There is already another inode in the bucket we need * to add ourselves to. Add us at the front of the list. * Here we put the head pointer into our next pointer, * and then we fall through to point the head at us. */ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); if (error) { return error; } ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO); ASSERT(!INT_ISZERO(dip->di_next_unlinked, ARCH_CONVERT)); /* both on-disk, don't endian flip twice */ dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; offset = ip->i_boffset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, ibp); xfs_trans_log_buf(tp, ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, ibp); } /* * Point the bucket head pointer at the inode being inserted. */ ASSERT(agino != 0); INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, agino); offset = offsetof(xfs_agi_t, agi_unlinked) + (sizeof(xfs_agino_t) * bucket_index); xfs_trans_log_buf(tp, agibp, offset, (offset + sizeof(xfs_agino_t) - 1)); return 0; } /* * Pull the on-disk inode from the AGI unlinked list. */ STATIC int xfs_iunlink_remove( xfs_trans_t *tp, xfs_inode_t *ip) { xfs_ino_t next_ino; xfs_mount_t *mp; xfs_agi_t *agi; xfs_dinode_t *dip; xfs_buf_t *agibp; xfs_buf_t *ibp; xfs_agnumber_t agno; xfs_daddr_t agdaddr; xfs_agino_t agino; xfs_agino_t next_agino; xfs_buf_t *last_ibp; xfs_dinode_t *last_dip; short bucket_index; int offset, last_offset; int error; int agi_ok; /* * First pull the on-disk inode from the AGI unlinked list. */ mp = tp->t_mountp; agno = XFS_INO_TO_AGNO(mp, ip->i_ino); agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); /* * Get the agi buffer first. It ensures lock ordering * on the list. */ error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr, XFS_FSS_TO_BB(mp, 1), 0, &agibp); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } /* * Validate the magic number of the agi block. */ agi = XFS_BUF_TO_AGI(agibp); agi_ok = INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC && XFS_AGI_GOOD_VERSION(INT_GET(agi->agi_versionnum, ARCH_CONVERT)); if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE, XFS_RANDOM_IUNLINK_REMOVE))) { XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW, mp, agi); xfs_trans_brelse(tp, agibp); cmn_err(CE_WARN, "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.", mp->m_fsname); return XFS_ERROR(EFSCORRUPTED); } /* * Get the index into the agi hash table for the * list this inode will go on. */ agino = XFS_INO_TO_AGINO(mp, ip->i_ino); ASSERT(agino != 0); bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; ASSERT(INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) != NULLAGINO); ASSERT(!INT_ISZERO(agi->agi_unlinked[bucket_index], ARCH_CONVERT)); if (INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT) == agino) { /* * We're at the head of the list. Get the inode's * on-disk buffer to see if there is anyone after us * on the list. Only modify our next pointer if it * is not already NULLAGINO. This saves us the overhead * of dealing with the buffer when there is no need to * change it. */ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); ASSERT(next_agino != 0); if (next_agino != NULLAGINO) { INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); offset = ip->i_boffset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, ibp); xfs_trans_log_buf(tp, ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, ibp); } else { xfs_trans_brelse(tp, ibp); } /* * Point the bucket head pointer at the next inode. */ ASSERT(next_agino != 0); ASSERT(next_agino != agino); INT_SET(agi->agi_unlinked[bucket_index], ARCH_CONVERT, next_agino); offset = offsetof(xfs_agi_t, agi_unlinked) + (sizeof(xfs_agino_t) * bucket_index); xfs_trans_log_buf(tp, agibp, offset, (offset + sizeof(xfs_agino_t) - 1)); } else { /* * We need to search the list for the inode being freed. */ next_agino = INT_GET(agi->agi_unlinked[bucket_index], ARCH_CONVERT); last_ibp = NULL; while (next_agino != agino) { /* * If the last inode wasn't the one pointing to * us, then release its buffer since we're not * going to do anything with it. */ if (last_ibp != NULL) { xfs_trans_brelse(tp, last_ibp); } next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); error = xfs_inotobp(mp, tp, next_ino, &last_dip, &last_ibp, &last_offset); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT); ASSERT(next_agino != NULLAGINO); ASSERT(next_agino != 0); } /* * Now last_ibp points to the buffer previous to us on * the unlinked list. Pull us from the list. */ error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0); if (error) { cmn_err(CE_WARN, "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.", error, mp->m_fsname); return error; } next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT); ASSERT(next_agino != 0); ASSERT(next_agino != agino); if (next_agino != NULLAGINO) { INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO); offset = ip->i_boffset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, ibp); xfs_trans_log_buf(tp, ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, ibp); } else { xfs_trans_brelse(tp, ibp); } /* * Point the previous inode on the list to the next inode. */ INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino); ASSERT(next_agino != 0); offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); xfs_trans_inode_buf(tp, last_ibp); xfs_trans_log_buf(tp, last_ibp, offset, (offset + sizeof(xfs_agino_t) - 1)); xfs_inobp_check(mp, last_ibp); } return 0; } /* * This is called to return an inode to the inode free list. * The inode should already be truncated to 0 length and have * no pages associated with it. This routine also assumes that * the inode is already a part of the transaction. * * The on-disk copy of the inode will have been added to the list * of unlinked inodes in the AGI. We need to remove the inode from * that list atomically with respect to freeing it here. */ int xfs_ifree( xfs_trans_t *tp, xfs_inode_t *ip) { int error; ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); ASSERT(ip->i_transp == tp); ASSERT(ip->i_d.di_nlink == 0); ASSERT(ip->i_d.di_nextents == 0); ASSERT(ip->i_d.di_anextents == 0); ASSERT((ip->i_d.di_size == 0) || ((ip->i_d.di_mode & IFMT) != IFREG)); ASSERT(ip->i_d.di_nblocks == 0); /* * Pull the on-disk inode from the AGI unlinked list. */ error = xfs_iunlink_remove(tp, ip); if (error != 0) { return error; } error = xfs_difree(tp, ip->i_ino); if (error != 0) { return error; } ip->i_d.di_mode = 0; /* mark incore inode as free */ ip->i_d.di_flags = 0; ip->i_d.di_dmevmask = 0; ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t); ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; /* * Bump the generation count so no one will be confused * by reincarnations of this inode. */ ip->i_d.di_gen++; xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); return 0; } /* * Reallocate the space for if_broot based on the number of records * being added or deleted as indicated in rec_diff. Move the records * and pointers in if_broot to fit the new size. When shrinking this * will eliminate holes between the records and pointers created by * the caller. When growing this will create holes to be filled in * by the caller. * * The caller must not request to add more records than would fit in * the on-disk inode root. If the if_broot is currently NULL, then * if we adding records one will be allocated. The caller must also * not request that the number of records go below zero, although * it can go to zero. * * ip -- the inode whose if_broot area is changing * ext_diff -- the change in the number of records, positive or negative, * requested for the if_broot array. */ void xfs_iroot_realloc( xfs_inode_t *ip, int rec_diff, int whichfork) { int cur_max; xfs_ifork_t *ifp; xfs_bmbt_block_t *new_broot; int new_max; size_t new_size; char *np; char *op; /* * Handle the degenerate case quietly. */ if (rec_diff == 0) { return; } ifp = XFS_IFORK_PTR(ip, whichfork); if (rec_diff > 0) { /* * If there wasn't any memory allocated before, just * allocate it now and get out. */ if (ifp->if_broot_bytes == 0) { new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff); ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size, KM_SLEEP); ifp->if_broot_bytes = (int)new_size; return; } /* * If there is already an existing if_broot, then we need * to realloc() it and shift the pointers to their new * location. The records don't change location because * they are kept butted up against the btree block header. */ cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); new_max = cur_max + rec_diff; new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); ifp->if_broot = (xfs_bmbt_block_t *) kmem_realloc(ifp->if_broot, new_size, (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */ KM_SLEEP); op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, (int)new_size); ifp->if_broot_bytes = (int)new_size; ASSERT(ifp->if_broot_bytes <= XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t)); return; } /* * rec_diff is less than 0. In this case, we are shrinking the * if_broot buffer. It must already exist. If we go to zero * records, just get rid of the root and clear the status bit. */ ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes); new_max = cur_max + rec_diff; ASSERT(new_max >= 0); if (new_max > 0) new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max); else new_size = 0; if (new_size > 0) { new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP); /* * First copy over the btree block header. */ memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t)); } else { new_broot = NULL; ifp->if_flags &= ~XFS_IFBROOT; } /* * Only copy the records and pointers if there are any. */ if (new_max > 0) { /* * First copy the records. */ op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1, (int)new_size); memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); /* * Then copy the pointers. */ op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1, ifp->if_broot_bytes); np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1, (int)new_size); memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t)); } kmem_free(ifp->if_broot, ifp->if_broot_bytes); ifp->if_broot = new_broot; ifp->if_broot_bytes = (int)new_size; ASSERT(ifp->if_broot_bytes <= XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ); return; } /* * This is called when the amount of space needed for if_extents * is increased or decreased. The change in size is indicated by * the number of extents that need to be added or deleted in the * ext_diff parameter. * * If the amount of space needed has decreased below the size of the * inline buffer, then switch to using the inline buffer. Otherwise, * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer * to what is needed. * * ip -- the inode whose if_extents area is changing * ext_diff -- the change in the number of extents, positive or negative, * requested for the if_extents array. */ void xfs_iext_realloc( xfs_inode_t *ip, int ext_diff, int whichfork) { int byte_diff; xfs_ifork_t *ifp; int new_size; uint rnew_size; if (ext_diff == 0) { return; } ifp = XFS_IFORK_PTR(ip, whichfork); byte_diff = ext_diff * (uint)sizeof(xfs_bmbt_rec_t); new_size = (int)ifp->if_bytes + byte_diff; ASSERT(new_size >= 0); if (new_size == 0) { if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { ASSERT(ifp->if_real_bytes != 0); kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); } ifp->if_u1.if_extents = NULL; rnew_size = 0; } else if (new_size <= sizeof(ifp->if_u2.if_inline_ext)) { /* * If the valid extents can fit in if_inline_ext, * copy them from the malloc'd vector and free it. */ if (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext) { /* * For now, empty files are format EXTENTS, * so the if_extents pointer is null. */ if (ifp->if_u1.if_extents) { memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents, new_size); kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); } ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; } rnew_size = 0; } else { rnew_size = new_size; if ((rnew_size & (rnew_size - 1)) != 0) rnew_size = xfs_iroundup(rnew_size); /* * Stuck with malloc/realloc. */ if (ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext) { ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) kmem_alloc(rnew_size, KM_SLEEP); memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext, sizeof(ifp->if_u2.if_inline_ext)); } else if (rnew_size != ifp->if_real_bytes) { ifp->if_u1.if_extents = (xfs_bmbt_rec_t *) kmem_realloc(ifp->if_u1.if_extents, rnew_size, ifp->if_real_bytes, KM_NOFS); } } ifp->if_real_bytes = rnew_size; ifp->if_bytes = new_size; } /* * This is called when the amount of space needed for if_data * is increased or decreased. The change in size is indicated by * the number of bytes that need to be added or deleted in the * byte_diff parameter. * * If the amount of space needed has decreased below the size of the * inline buffer, then switch to using the inline buffer. Otherwise, * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer * to what is needed. * * ip -- the inode whose if_data area is changing * byte_diff -- the change in the number of bytes, positive or negative, * requested for the if_data array. */ void xfs_idata_realloc( xfs_inode_t *ip, int byte_diff, int whichfork) { xfs_ifork_t *ifp; int new_size; int real_size; if (byte_diff == 0) { return; } ifp = XFS_IFORK_PTR(ip, whichfork); new_size = (int)ifp->if_bytes + byte_diff; ASSERT(new_size >= 0); if (new_size == 0) { if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); } ifp->if_u1.if_data = NULL; real_size = 0; } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) { /* * If the valid extents/data can fit in if_inline_ext/data, * copy them from the malloc'd vector and free it. */ if (ifp->if_u1.if_data == NULL) { ifp->if_u1.if_data = ifp->if_u2.if_inline_data; } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { ASSERT(ifp->if_real_bytes != 0); memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data, new_size); kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); ifp->if_u1.if_data = ifp->if_u2.if_inline_data; } real_size = 0; } else { /* * Stuck with malloc/realloc. * For inline data, the underlying buffer must be * a multiple of 4 bytes in size so that it can be * logged and stay on word boundaries. We enforce * that here. */ real_size = roundup(new_size, 4); if (ifp->if_u1.if_data == NULL) { ASSERT(ifp->if_real_bytes == 0); ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) { /* * Only do the realloc if the underlying size * is really changing. */ if (ifp->if_real_bytes != real_size) { ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data, real_size, ifp->if_real_bytes, KM_SLEEP); } } else { ASSERT(ifp->if_real_bytes == 0); ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP); memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data, ifp->if_bytes); } } ifp->if_real_bytes = real_size; ifp->if_bytes = new_size; ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); } /* * Map inode to disk block and offset. * * mp -- the mount point structure for the current file system * tp -- the current transaction * ino -- the inode number of the inode to be located * imap -- this structure is filled in with the information necessary * to retrieve the given inode from disk * flags -- flags to pass to xfs_dilocate indicating whether or not * lookups in the inode btree were OK or not */ int xfs_imap( xfs_mount_t *mp, xfs_trans_t *tp, xfs_ino_t ino, xfs_imap_t *imap, uint flags) { xfs_fsblock_t fsbno; int len; int off; int error; fsbno = imap->im_blkno ? XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK; error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags); if (error != 0) { return error; } imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno); imap->im_len = XFS_FSB_TO_BB(mp, len); imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno); imap->im_ioffset = (ushort)off; imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog); return 0; } void xfs_idestroy_fork( xfs_inode_t *ip, int whichfork) { xfs_ifork_t *ifp; ifp = XFS_IFORK_PTR(ip, whichfork); if (ifp->if_broot != NULL) { kmem_free(ifp->if_broot, ifp->if_broot_bytes); ifp->if_broot = NULL; } /* * If the format is local, then we can't have an extents * array so just look for an inline data array. If we're * not local then we may or may not have an extents list, * so check and free it up if we do. */ if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) { if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) && (ifp->if_u1.if_data != NULL)) { ASSERT(ifp->if_real_bytes != 0); kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes); ifp->if_u1.if_data = NULL; ifp->if_real_bytes = 0; } } else if ((ifp->if_flags & XFS_IFEXTENTS) && (ifp->if_u1.if_extents != NULL) && (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)) { ASSERT(ifp->if_real_bytes != 0); kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes); ifp->if_u1.if_extents = NULL; ifp->if_real_bytes = 0; } ASSERT(ifp->if_u1.if_extents == NULL || ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext); ASSERT(ifp->if_real_bytes == 0); if (whichfork == XFS_ATTR_FORK) { kmem_zone_free(xfs_ifork_zone, ip->i_afp); ip->i_afp = NULL; } } /* * This is called free all the memory associated with an inode. * It must free the inode itself and any buffers allocated for * if_extents/if_data and if_broot. It must also free the lock * associated with the inode. */ void xfs_idestroy( xfs_inode_t *ip) { switch (ip->i_d.di_mode & IFMT) { case IFREG: case IFDIR: case IFLNK: xfs_idestroy_fork(ip, XFS_DATA_FORK); break; } if (ip->i_afp) xfs_idestroy_fork(ip, XFS_ATTR_FORK); #ifdef NOTYET if (ip->i_range_lock.r_sleep != NULL) { freesema(ip->i_range_lock.r_sleep); kmem_free(ip->i_range_lock.r_sleep, sizeof(sema_t)); } #endif /* NOTYET */ mrfree(&ip->i_lock); mrfree(&ip->i_iolock); #ifdef NOTYET mutex_destroy(&ip->i_range_lock.r_spinlock); #endif /* NOTYET */ freesema(&ip->i_flock); #ifdef XFS_BMAP_TRACE ktrace_free(ip->i_xtrace); #endif #ifdef XFS_BMBT_TRACE ktrace_free(ip->i_btrace); #endif #ifdef XFS_RW_TRACE ktrace_free(ip->i_rwtrace); #endif #ifdef XFS_STRAT_TRACE ktrace_free(ip->i_strat_trace); #endif #ifdef XFS_ILOCK_TRACE ktrace_free(ip->i_lock_trace); #endif #ifdef XFS_DIR2_TRACE ktrace_free(ip->i_dir_trace); #endif if (ip->i_itemp) { /* XXXdpd should be able to assert this but shutdown * is leaving the AIL behind. */ ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) || XFS_FORCED_SHUTDOWN(ip->i_mount)); xfs_inode_item_destroy(ip); } kmem_zone_free(xfs_inode_zone, ip); } /* * Increment the pin count of the given buffer. * This value is protected by ipinlock spinlock in the mount structure. */ void xfs_ipin( xfs_inode_t *ip) { ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE)); atomic_inc(&ip->i_pincount); } /* * Decrement the pin count of the given inode, and wake up * anyone in xfs_iwait_unpin() if the count goes to 0. The * inode must have been previoulsy pinned with a call to xfs_ipin(). */ void xfs_iunpin( xfs_inode_t *ip) { ASSERT(atomic_read(&ip->i_pincount) > 0); if (atomic_dec_and_test(&ip->i_pincount)) { vnode_t *vp = XFS_ITOV_NULL(ip); /* make sync come back and flush this inode */ if (vp) { struct inode *inode = LINVFS_GET_IP(vp); if (!(inode->i_state & I_NEW)) mark_inode_dirty_sync(inode); } wake_up(&ip->i_ipin_wait); } } /* * This is called to wait for the given inode to be unpinned. * It will sleep until this happens. The caller must have the * inode locked in at least shared mode so that the buffer cannot * be subsequently pinned once someone is waiting for it to be * unpinned. */ void xfs_iunpin_wait( xfs_inode_t *ip) { xfs_inode_log_item_t *iip; xfs_lsn_t lsn; ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS)); if (atomic_read(&ip->i_pincount) == 0) { return; } iip = ip->i_itemp; if (iip && iip->ili_last_lsn) { lsn = iip->ili_last_lsn; } else { lsn = (xfs_lsn_t)0; } /* * Give the log a push so we don't wait here too long. */ xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE); wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0)); } /* * xfs_iextents_copy() * * This is called to copy the REAL extents (as opposed to the delayed * allocation extents) from the inode into the given buffer. It * returns the number of bytes copied into the buffer. * * If there are no delayed allocation extents, then we can just * memcpy() the extents into the buffer. Otherwise, we need to * examine each extent in turn and skip those which are delayed. */ int xfs_iextents_copy( xfs_inode_t *ip, xfs_bmbt_rec_t *buffer, int whichfork) { int copied; xfs_bmbt_rec_t *dest_ep; xfs_bmbt_rec_t *ep; #ifdef XFS_BMAP_TRACE static char fname[] = "xfs_iextents_copy"; #endif int i; xfs_ifork_t *ifp; int nrecs; xfs_fsblock_t start_block; ifp = XFS_IFORK_PTR(ip, whichfork); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); ASSERT(ifp->if_bytes > 0); nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t); xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork); ASSERT(nrecs > 0); /* * There are some delayed allocation extents in the * inode, so copy the extents one at a time and skip * the delayed ones. There must be at least one * non-delayed extent. */ ep = ifp->if_u1.if_extents; dest_ep = buffer; copied = 0; for (i = 0; i < nrecs; i++) { start_block = xfs_bmbt_get_startblock(ep); if (ISNULLSTARTBLOCK(start_block)) { /* * It's a delayed allocation extent, so skip it. */ ep++; continue; } /* Translate to on disk format */ put_unaligned(INT_GET(ep->l0, ARCH_CONVERT), (__uint64_t*)&dest_ep->l0); put_unaligned(INT_GET(ep->l1, ARCH_CONVERT), (__uint64_t*)&dest_ep->l1); dest_ep++; ep++; copied++; } ASSERT(copied != 0); xfs_validate_extents(buffer, copied, 1, XFS_EXTFMT_INODE(ip)); return (copied * (uint)sizeof(xfs_bmbt_rec_t)); } /* * Each of the following cases stores data into the same region * of the on-disk inode, so only one of them can be valid at * any given time. While it is possible to have conflicting formats * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is * in EXTENTS format, this can only happen when the fork has * changed formats after being modified but before being flushed. * In these cases, the format always takes precedence, because the * format indicates the current state of the fork. */ /*ARGSUSED*/ STATIC int xfs_iflush_fork( xfs_inode_t *ip, xfs_dinode_t *dip, xfs_inode_log_item_t *iip, int whichfork, xfs_buf_t *bp) { char *cp; xfs_ifork_t *ifp; xfs_mount_t *mp; #ifdef XFS_TRANS_DEBUG int first; #endif static const short brootflag[2] = { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; static const short dataflag[2] = { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; static const short extflag[2] = { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; if (iip == NULL) return 0; ifp = XFS_IFORK_PTR(ip, whichfork); /* * This can happen if we gave up in iformat in an error path, * for the attribute fork. */ if (ifp == NULL) { ASSERT(whichfork == XFS_ATTR_FORK); return 0; } cp = XFS_DFORK_PTR_ARCH(dip, whichfork, ARCH_CONVERT); mp = ip->i_mount; switch (XFS_IFORK_FORMAT(ip, whichfork)) { case XFS_DINODE_FMT_LOCAL: if ((iip->ili_format.ilf_fields & dataflag[whichfork]) && (ifp->if_bytes > 0)) { ASSERT(ifp->if_u1.if_data != NULL); ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork)); memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes); } if (whichfork == XFS_DATA_FORK) { if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) { XFS_ERROR_REPORT("xfs_iflush_fork", XFS_ERRLEVEL_LOW, mp); return XFS_ERROR(EFSCORRUPTED); } } break; case XFS_DINODE_FMT_EXTENTS: ASSERT((ifp->if_flags & XFS_IFEXTENTS) || !(iip->ili_format.ilf_fields & extflag[whichfork])); ASSERT((ifp->if_u1.if_extents != NULL) || (ifp->if_bytes == 0)); ASSERT((ifp->if_u1.if_extents == NULL) || (ifp->if_bytes > 0)); if ((iip->ili_format.ilf_fields & extflag[whichfork]) && (ifp->if_bytes > 0)) { ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0); (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, whichfork); } break; case XFS_DINODE_FMT_BTREE: if ((iip->ili_format.ilf_fields & brootflag[whichfork]) && (ifp->if_broot_bytes > 0)) { ASSERT(ifp->if_broot != NULL); ASSERT(ifp->if_broot_bytes <= (XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ)); xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes, (xfs_bmdr_block_t *)cp, XFS_DFORK_SIZE_ARCH(dip, mp, whichfork, ARCH_CONVERT)); } break; case XFS_DINODE_FMT_DEV: if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { ASSERT(whichfork == XFS_DATA_FORK); INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev); } break; case XFS_DINODE_FMT_UUID: if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { ASSERT(whichfork == XFS_DATA_FORK); memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid, sizeof(uuid_t)); } break; default: ASSERT(0); break; } return 0; } /* * xfs_iflush() will write a modified inode's changes out to the * inode's on disk home. The caller must have the inode lock held * in at least shared mode and the inode flush semaphore must be * held as well. The inode lock will still be held upon return from * the call and the caller is free to unlock it. * The inode flush lock will be unlocked when the inode reaches the disk. * The flags indicate how the inode's buffer should be written out. */ int xfs_iflush( xfs_inode_t *ip, uint flags) { xfs_inode_log_item_t *iip; xfs_buf_t *bp; xfs_dinode_t *dip; xfs_mount_t *mp; int error; /* REFERENCED */ xfs_chash_t *ch; xfs_inode_t *iq; int clcount; /* count of inodes clustered */ int bufwasdelwri; enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) }; SPLDECL(s); XFS_STATS_INC(xs_iflush_count); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); ASSERT(valusema(&ip->i_flock) <= 0); ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || ip->i_d.di_nextents > ip->i_df.if_ext_max); iip = ip->i_itemp; mp = ip->i_mount; /* * If the inode isn't dirty, then just release the inode * flush lock and do nothing. */ if ((ip->i_update_core == 0) && ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { ASSERT((iip != NULL) ? !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1); xfs_ifunlock(ip); return 0; } /* * We can't flush the inode until it is unpinned, so * wait for it. We know noone new can pin it, because * we are holding the inode lock shared and you need * to hold it exclusively to pin the inode. */ xfs_iunpin_wait(ip); /* * This may have been unpinned because the filesystem is shutting * down forcibly. If that's the case we must not write this inode * to disk, because the log record didn't make it to disk! */ if (XFS_FORCED_SHUTDOWN(mp)) { ip->i_update_core = 0; if (iip) iip->ili_format.ilf_fields = 0; xfs_ifunlock(ip); return XFS_ERROR(EIO); } /* * Get the buffer containing the on-disk inode. */ error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0); if (error != 0) { xfs_ifunlock(ip); return error; } /* * Decide how buffer will be flushed out. This is done before * the call to xfs_iflush_int because this field is zeroed by it. */ if (iip != NULL && iip->ili_format.ilf_fields != 0) { /* * Flush out the inode buffer according to the directions * of the caller. In the cases where the caller has given * us a choice choose the non-delwri case. This is because * the inode is in the AIL and we need to get it out soon. */ switch (flags) { case XFS_IFLUSH_SYNC: case XFS_IFLUSH_DELWRI_ELSE_SYNC: flags = 0; break; case XFS_IFLUSH_ASYNC: case XFS_IFLUSH_DELWRI_ELSE_ASYNC: flags = INT_ASYNC; break; case XFS_IFLUSH_DELWRI: flags = INT_DELWRI; break; default: ASSERT(0); flags = 0; break; } } else { switch (flags) { case XFS_IFLUSH_DELWRI_ELSE_SYNC: case XFS_IFLUSH_DELWRI_ELSE_ASYNC: case XFS_IFLUSH_DELWRI: flags = INT_DELWRI; break; case XFS_IFLUSH_ASYNC: flags = INT_ASYNC; break; case XFS_IFLUSH_SYNC: flags = 0; break; default: ASSERT(0); flags = 0; break; } } /* * First flush out the inode that xfs_iflush was called with. */ error = xfs_iflush_int(ip, bp); if (error) { goto corrupt_out; } /* * inode clustering: * see if other inodes can be gathered into this write */ ip->i_chash->chl_buf = bp; ch = XFS_CHASH(mp, ip->i_blkno); s = mutex_spinlock(&ch->ch_lock); clcount = 0; for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) { /* * Do an un-protected check to see if the inode is dirty and * is a candidate for flushing. These checks will be repeated * later after the appropriate locks are acquired. */ iip = iq->i_itemp; if ((iq->i_update_core == 0) && ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) && xfs_ipincount(iq) == 0) { continue; } /* * Try to get locks. If any are unavailable, * then this inode cannot be flushed and is skipped. */ /* get inode locks (just i_lock) */ if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) { /* get inode flush lock */ if (xfs_iflock_nowait(iq)) { /* check if pinned */ if (xfs_ipincount(iq) == 0) { /* arriving here means that * this inode can be flushed. * first re-check that it's * dirty */ iip = iq->i_itemp; if ((iq->i_update_core != 0)|| ((iip != NULL) && (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { clcount++; error = xfs_iflush_int(iq, bp); if (error) { xfs_iunlock(iq, XFS_ILOCK_SHARED); goto cluster_corrupt_out; } } else { xfs_ifunlock(iq); } } else { xfs_ifunlock(iq); } } xfs_iunlock(iq, XFS_ILOCK_SHARED); } } mutex_spinunlock(&ch->ch_lock, s); if (clcount) { XFS_STATS_INC(xs_icluster_flushcnt); XFS_STATS_ADD(xs_icluster_flushinode, clcount); } /* * If the buffer is pinned then push on the log so we won't * get stuck waiting in the write for too long. */ if (XFS_BUF_ISPINNED(bp)){ xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); } if (flags & INT_DELWRI) { xfs_bdwrite(mp, bp); } else if (flags & INT_ASYNC) { xfs_bawrite(mp, bp); } else { error = xfs_bwrite(mp, bp); } return error; corrupt_out: xfs_buf_relse(bp); xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); xfs_iflush_abort(ip); /* * Unlocks the flush lock */ return XFS_ERROR(EFSCORRUPTED); cluster_corrupt_out: /* Corruption detected in the clustering loop. Invalidate the * inode buffer and shut down the filesystem. */ mutex_spinunlock(&ch->ch_lock, s); /* * Clean up the buffer. If it was B_DELWRI, just release it -- * brelse can handle it with no problems. If not, shut down the * filesystem before releasing the buffer. */ if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) { xfs_buf_relse(bp); } xfs_force_shutdown(mp, XFS_CORRUPT_INCORE); if(!bufwasdelwri) { /* * Just like incore_relse: if we have b_iodone functions, * mark the buffer as an error and call them. Otherwise * mark it as stale and brelse. */ if (XFS_BUF_IODONE_FUNC(bp)) { XFS_BUF_CLR_BDSTRAT_FUNC(bp); XFS_BUF_UNDONE(bp); XFS_BUF_STALE(bp); XFS_BUF_SHUT(bp); XFS_BUF_ERROR(bp,EIO); xfs_biodone(bp); } else { XFS_BUF_STALE(bp); xfs_buf_relse(bp); } } xfs_iflush_abort(iq); /* * Unlocks the flush lock */ return XFS_ERROR(EFSCORRUPTED); } STATIC int xfs_iflush_int( xfs_inode_t *ip, xfs_buf_t *bp) { xfs_inode_log_item_t *iip; xfs_dinode_t *dip; xfs_mount_t *mp; #ifdef XFS_TRANS_DEBUG int first; #endif SPLDECL(s); ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS)); ASSERT(valusema(&ip->i_flock) <= 0); ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || ip->i_d.di_nextents > ip->i_df.if_ext_max); iip = ip->i_itemp; mp = ip->i_mount; /* * If the inode isn't dirty, then just release the inode * flush lock and do nothing. */ if ((ip->i_update_core == 0) && ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) { xfs_ifunlock(ip); return 0; } /* set *dip = inode's place in the buffer */ dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset); /* * Clear i_update_core before copying out the data. * This is for coordination with our timestamp updates * that don't hold the inode lock. They will always * update the timestamps BEFORE setting i_update_core, * so if we clear i_update_core after they set it we * are guaranteed to see their updates to the timestamps. * I believe that this depends on strongly ordered memory * semantics, but we have that. We use the SYNCHRONIZE * macro to make sure that the compiler does not reorder * the i_update_core access below the data copy below. */ ip->i_update_core = 0; SYNCHRONIZE(); if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC, mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p", ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip); goto corrupt_out; } if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC, mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x", ip->i_ino, ip, ip->i_d.di_magic); goto corrupt_out; } if ((ip->i_d.di_mode & IFMT) == IFREG) { if (XFS_TEST_ERROR( (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad regular inode %Lu, ptr 0x%p", ip->i_ino, ip); goto corrupt_out; } } else if ((ip->i_d.di_mode & IFMT) == IFDIR) { if (XFS_TEST_ERROR( (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: Bad directory inode %Lu, ptr 0x%p", ip->i_ino, ip); goto corrupt_out; } } if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5, XFS_RANDOM_IFLUSH_5)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p", ip->i_ino, ip->i_d.di_nextents + ip->i_d.di_anextents, ip->i_d.di_nblocks, ip); goto corrupt_out; } if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) { xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp, "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p", ip->i_ino, ip->i_d.di_forkoff, ip); goto corrupt_out; } /* * bump the flush iteration count, used to detect flushes which * postdate a log record during recovery. */ ip->i_d.di_flushiter++; /* * Copy the dirty parts of the inode into the on-disk * inode. We always copy out the core of the inode, * because if the inode is dirty at all the core must * be. */ xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1, ARCH_CONVERT); /* Wrap, we never let the log put out DI_MAX_FLUSH */ if (ip->i_d.di_flushiter == DI_MAX_FLUSH) ip->i_d.di_flushiter = 0; /* * If this is really an old format inode and the superblock version * has not been updated to support only new format inodes, then * convert back to the old inode format. If the superblock version * has been updated, then make the conversion permanent. */ ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || XFS_SB_VERSION_HASNLINK(&mp->m_sb)); if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { /* * Convert it back. */ ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink); } else { /* * The superblock version has already been bumped, * so just make the conversion to the new inode * format permanent. */ ip->i_d.di_version = XFS_DINODE_VERSION_2; INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2); ip->i_d.di_onlink = 0; INT_ZERO(dip->di_core.di_onlink, ARCH_CONVERT); memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); memset(&(dip->di_core.di_pad[0]), 0, sizeof(dip->di_core.di_pad)); ASSERT(ip->i_d.di_projid == 0); } } if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) { goto corrupt_out; } if (XFS_IFORK_Q(ip)) { /* * The only error from xfs_iflush_fork is on the data fork. */ (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp); } xfs_inobp_check(mp, bp); /* * We've recorded everything logged in the inode, so we'd * like to clear the ilf_fields bits so we don't log and * flush things unnecessarily. However, we can't stop * logging all this information until the data we've copied * into the disk buffer is written to disk. If we did we might * overwrite the copy of the inode in the log with all the * data after re-logging only part of it, and in the face of * a crash we wouldn't have all the data we need to recover. * * What we do is move the bits to the ili_last_fields field. * When logging the inode, these bits are moved back to the * ilf_fields field. In the xfs_iflush_done() routine we * clear ili_last_fields, since we know that the information * those bits represent is permanently on disk. As long as * the flush completes before the inode is logged again, then * both ilf_fields and ili_last_fields will be cleared. * * We can play with the ilf_fields bits here, because the inode * lock must be held exclusively in order to set bits there * and the flush lock protects the ili_last_fields bits. * Set ili_logged so the flush done * routine can tell whether or not to look in the AIL. * Also, store the current LSN of the inode so that we can tell * whether the item has moved in the AIL from xfs_iflush_done(). * In order to read the lsn we need the AIL lock, because * it is a 64 bit value that cannot be read atomically. */ if (iip != NULL && iip->ili_format.ilf_fields != 0) { iip->ili_last_fields = iip->ili_format.ilf_fields; iip->ili_format.ilf_fields = 0; iip->ili_logged = 1; ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */ AIL_LOCK(mp,s); iip->ili_flush_lsn = iip->ili_item.li_lsn; AIL_UNLOCK(mp, s); /* * Attach the function xfs_iflush_done to the inode's * buffer. This will remove the inode from the AIL * and unlock the inode's flush lock when the inode is * completely written to disk. */ xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_iflush_done, (xfs_log_item_t *)iip); ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL); } else { /* * We're flushing an inode which is not in the AIL and has * not been logged but has i_update_core set. For this * case we can use a B_DELWRI flush and immediately drop * the inode flush lock because we can avoid the whole * AIL state thing. It's OK to drop the flush lock now, * because we've already locked the buffer and to do anything * you really need both. */ if (iip != NULL) { ASSERT(iip->ili_logged == 0); ASSERT(iip->ili_last_fields == 0); ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0); } xfs_ifunlock(ip); } return 0; corrupt_out: return XFS_ERROR(EFSCORRUPTED); } /* * Flush all inactive inodes in mp. Return true if no user references * were found, false otherwise. */ int xfs_iflush_all( xfs_mount_t *mp, int flag) { int busy; int done; int purged; xfs_inode_t *ip; vmap_t vmap; vnode_t *vp; busy = done = 0; while (!done) { purged = 0; XFS_MOUNT_ILOCK(mp); ip = mp->m_inodes; if (ip == NULL) { break; } do { /* Make sure we skip markers inserted by sync */ if (ip->i_mount == NULL) { ip = ip->i_mnext; continue; } /* * It's up to our caller to purge the root * and quota vnodes later. */ vp = XFS_ITOV_NULL(ip); if (!vp) { XFS_MOUNT_IUNLOCK(mp); xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC); purged = 1; break; } if (vn_count(vp) != 0) { if (vn_count(vp) == 1 && (ip == mp->m_rootip || (mp->m_quotainfo && (ip->i_ino == mp->m_sb.sb_uquotino || ip->i_ino == mp->m_sb.sb_gquotino)))) { ip = ip->i_mnext; continue; } if (!(flag & XFS_FLUSH_ALL)) { ASSERT(0); busy = 1; done = 1; break; } /* * Ignore busy inodes but continue flushing * others. */ ip = ip->i_mnext; continue; } /* * Sample vp mapping while holding mp locked on MP * systems, so we don't purge a reclaimed or * nonexistent vnode. We break from the loop * since we know that we modify * it by pulling ourselves from it in xfs_reclaim() * called via vn_purge() below. Set ip to the next * entry in the list anyway so we'll know below * whether we reached the end or not. */ VMAP(vp, vmap); XFS_MOUNT_IUNLOCK(mp); vn_purge(vp, &vmap); purged = 1; break; } while (ip != mp->m_inodes); /* * We need to distinguish between when we exit the loop * after a purge and when we simply hit the end of the * list. We can't use the (ip == mp->m_inodes) test, * because when we purge an inode at the start of the list * the next inode on the list becomes mp->m_inodes. That * would cause such a test to bail out early. The purged * variable tells us how we got out of the loop. */ if (!purged) { done = 1; } } XFS_MOUNT_IUNLOCK(mp); return !busy; } /* * xfs_iaccess: check accessibility of inode for mode. */ int xfs_iaccess( xfs_inode_t *ip, mode_t mode, cred_t *cr) { int error; mode_t orgmode = mode; struct inode *inode = LINVFS_GET_IP(XFS_ITOV(ip)); /* * Verify that the MAC policy allows the requested access. */ if ((error = _MAC_XFS_IACCESS(ip, mode, cr))) return XFS_ERROR(error); if (mode & IWRITE) { umode_t imode = inode->i_mode; if (IS_RDONLY(inode) && (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode))) return XFS_ERROR(EROFS); if (IS_IMMUTABLE(inode)) return XFS_ERROR(EACCES); } /* * If there's an Access Control List it's used instead of * the mode bits. */ if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1) return error ? XFS_ERROR(error) : 0; if (current->fsuid != ip->i_d.di_uid) { mode >>= 3; if (!in_group_p((gid_t)ip->i_d.di_gid)) mode >>= 3; } /* * If the DACs are ok we don't need any capability check. */ if ((ip->i_d.di_mode & mode) == mode) return 0; /* * Read/write DACs are always overridable. * Executable DACs are overridable if at least one exec bit is set. */ if ((orgmode & (IREAD|IWRITE)) || (inode->i_mode & S_IXUGO)) if (capable_cred(cr, CAP_DAC_OVERRIDE)) return 0; if ((orgmode == IREAD) || (((ip->i_d.di_mode & IFMT) == IFDIR) && (!(orgmode & ~(IWRITE|IEXEC))))) { if (capable_cred(cr, CAP_DAC_READ_SEARCH)) return 0; #ifdef NOISE cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode); #endif /* NOISE */ return XFS_ERROR(EACCES); } return XFS_ERROR(EACCES); } /* * Return whether or not it is OK to swap to the given file in the * given range. Return 0 for OK and otherwise return the error. * * It is only OK to swap to a file if it has no holes, and all * extents have been initialized. * * We use the vnode behavior chain prevent and allow primitives * to ensure that the vnode chain stays coherent while we do this. * This allows us to walk the chain down to the bottom where XFS * lives without worrying about it changing out from under us. */ int xfs_swappable( bhv_desc_t *bdp) { xfs_inode_t *ip; ip = XFS_BHVTOI(bdp); /* * Verify that the file does not have any * holes or unwritten exents. */ return xfs_bmap_check_swappable(ip); } /* * xfs_iroundup: round up argument to next power of two */ uint xfs_iroundup( uint v) { int i; uint m; if ((v & (v - 1)) == 0) return v; ASSERT((v & 0x80000000) == 0); if ((v & (v + 1)) == 0) return v + 1; for (i = 0, m = 1; i < 31; i++, m <<= 1) { if (v & m) continue; v |= m; if ((v & (v + 1)) == 0) return v + 1; } ASSERT(0); return( 0 ); } /* * Change the requested timestamp in the given inode. * We don't lock across timestamp updates, and we don't log them but * we do record the fact that there is dirty information in core. * * NOTE -- callers MUST combine XFS_ICHGTIME_MOD or XFS_ICHGTIME_CHG * with XFS_ICHGTIME_ACC to be sure that access time * update will take. Calling first with XFS_ICHGTIME_ACC * and then XFS_ICHGTIME_MOD may fail to modify the access * timestamp if the filesystem is mounted noacctm. */ void xfs_ichgtime(xfs_inode_t *ip, int flags) { timespec_t tv; vnode_t *vp = XFS_ITOV(ip); struct inode *inode = LINVFS_GET_IP(vp); /* * We're not supposed to change timestamps in readonly-mounted * filesystems. Throw it away if anyone asks us. */ if (vp->v_vfsp->vfs_flag & VFS_RDONLY) return; /* * Don't update access timestamps on reads if mounted "noatime" * Throw it away if anyone asks us. */ if ((ip->i_mount->m_flags & XFS_MOUNT_NOATIME || IS_NOATIME(inode)) && ((flags & (XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD|XFS_ICHGTIME_CHG)) == XFS_ICHGTIME_ACC)) return; nanotime(&tv); if (flags & XFS_ICHGTIME_MOD) { inode->i_mtime = tv; ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec; ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec; } if (flags & XFS_ICHGTIME_ACC) { inode->i_atime = tv; ip->i_d.di_atime.t_sec = (__int32_t)tv.tv_sec; ip->i_d.di_atime.t_nsec = (__int32_t)tv.tv_nsec; } if (flags & XFS_ICHGTIME_CHG) { inode->i_ctime = tv; ip->i_d.di_ctime.t_sec = (__int32_t)tv.tv_sec; ip->i_d.di_ctime.t_nsec = (__int32_t)tv.tv_nsec; } /* * We update the i_update_core field _after_ changing * the timestamps in order to coordinate properly with * xfs_iflush() so that we don't lose timestamp updates. * This keeps us from having to hold the inode lock * while doing this. We use the SYNCHRONIZE macro to * ensure that the compiler does not reorder the update * of i_update_core above the timestamp updates above. */ SYNCHRONIZE(); ip->i_update_core = 1; if (!(inode->i_state & I_LOCK)) mark_inode_dirty(inode); } #ifdef XFS_ILOCK_TRACE void xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra) { ktrace_enter(ip->i_lock_trace, (void *)ip, (void *)(__psint_t)lock, /* 1 = LOCK, 3=UNLOCK, etc */ (void *)(__psint_t)lockflags, /* XFS_ILOCK_EXCL etc */ (void *)ra, /* caller of ilock */ (void *)(__psint_t)cpuid(), (void *)(__psint_t)current_pid(), 0,0,0,0,0,0,0,0,0,0); } #endif /* ILOCK_TRACE */