// SPDX-License-Identifier: GPL-2.0 /* * f2fs compress support * * Copyright (c) 2019 Chao Yu <chao@kernel.org> */ #include <linux/fs.h> #include <linux/f2fs_fs.h> #include <linux/writeback.h> #include <linux/backing-dev.h> #include <linux/lzo.h> #include <linux/lz4.h> #include <linux/zstd.h> #include "f2fs.h" #include "node.h" #include <trace/events/f2fs.h> static struct kmem_cache *cic_entry_slab; static struct kmem_cache *dic_entry_slab; static void *page_array_alloc(struct inode *inode, int nr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int size = sizeof(struct page *) * nr; if (likely(size <= sbi->page_array_slab_size)) return kmem_cache_zalloc(sbi->page_array_slab, GFP_NOFS); return f2fs_kzalloc(sbi, size, GFP_NOFS); } static void page_array_free(struct inode *inode, void *pages, int nr) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int size = sizeof(struct page *) * nr; if (!pages) return; if (likely(size <= sbi->page_array_slab_size)) kmem_cache_free(sbi->page_array_slab, pages); else kfree(pages); } struct f2fs_compress_ops { int (*init_compress_ctx)(struct compress_ctx *cc); void (*destroy_compress_ctx)(struct compress_ctx *cc); int (*compress_pages)(struct compress_ctx *cc); int (*init_decompress_ctx)(struct decompress_io_ctx *dic); void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic); int (*decompress_pages)(struct decompress_io_ctx *dic); }; static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index) { return index & (cc->cluster_size - 1); } static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index) { return index >> cc->log_cluster_size; } static pgoff_t start_idx_of_cluster(struct compress_ctx *cc) { return cc->cluster_idx << cc->log_cluster_size; } bool f2fs_is_compressed_page(struct page *page) { if (!PagePrivate(page)) return false; if (!page_private(page)) return false; if (IS_ATOMIC_WRITTEN_PAGE(page) || IS_DUMMY_WRITTEN_PAGE(page)) return false; f2fs_bug_on(F2FS_M_SB(page->mapping), *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC); return true; } static void f2fs_set_compressed_page(struct page *page, struct inode *inode, pgoff_t index, void *data) { SetPagePrivate(page); set_page_private(page, (unsigned long)data); /* i_crypto_info and iv index */ page->index = index; page->mapping = inode->i_mapping; } static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock) { int i; for (i = 0; i < len; i++) { if (!cc->rpages[i]) continue; if (unlock) unlock_page(cc->rpages[i]); else put_page(cc->rpages[i]); } } static void f2fs_put_rpages(struct compress_ctx *cc) { f2fs_drop_rpages(cc, cc->cluster_size, false); } static void f2fs_unlock_rpages(struct compress_ctx *cc, int len) { f2fs_drop_rpages(cc, len, true); } static void f2fs_put_rpages_wbc(struct compress_ctx *cc, struct writeback_control *wbc, bool redirty, int unlock) { unsigned int i; for (i = 0; i < cc->cluster_size; i++) { if (!cc->rpages[i]) continue; if (redirty) redirty_page_for_writepage(wbc, cc->rpages[i]); f2fs_put_page(cc->rpages[i], unlock); } } struct page *f2fs_compress_control_page(struct page *page) { return ((struct compress_io_ctx *)page_private(page))->rpages[0]; } int f2fs_init_compress_ctx(struct compress_ctx *cc) { if (cc->rpages) return 0; cc->rpages = page_array_alloc(cc->inode, cc->cluster_size); return cc->rpages ? 0 : -ENOMEM; } void f2fs_destroy_compress_ctx(struct compress_ctx *cc) { page_array_free(cc->inode, cc->rpages, cc->cluster_size); cc->rpages = NULL; cc->nr_rpages = 0; cc->nr_cpages = 0; cc->cluster_idx = NULL_CLUSTER; } void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page) { unsigned int cluster_ofs; if (!f2fs_cluster_can_merge_page(cc, page->index)) f2fs_bug_on(F2FS_I_SB(cc->inode), 1); cluster_ofs = offset_in_cluster(cc, page->index); cc->rpages[cluster_ofs] = page; cc->nr_rpages++; cc->cluster_idx = cluster_idx(cc, page->index); } #ifdef CONFIG_F2FS_FS_LZO static int lzo_init_compress_ctx(struct compress_ctx *cc) { cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), LZO1X_MEM_COMPRESS, GFP_NOFS); if (!cc->private) return -ENOMEM; cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size); return 0; } static void lzo_destroy_compress_ctx(struct compress_ctx *cc) { kvfree(cc->private); cc->private = NULL; } static int lzo_compress_pages(struct compress_ctx *cc) { int ret; ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, &cc->clen, cc->private); if (ret != LZO_E_OK) { printk_ratelimited("%sF2FS-fs (%s): lzo compress failed, ret:%d\n", KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); return -EIO; } return 0; } static int lzo_decompress_pages(struct decompress_io_ctx *dic) { int ret; ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen, dic->rbuf, &dic->rlen); if (ret != LZO_E_OK) { printk_ratelimited("%sF2FS-fs (%s): lzo decompress failed, ret:%d\n", KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); return -EIO; } if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) { printk_ratelimited("%sF2FS-fs (%s): lzo invalid rlen:%zu, " "expected:%lu\n", KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, dic->rlen, PAGE_SIZE << dic->log_cluster_size); return -EIO; } return 0; } static const struct f2fs_compress_ops f2fs_lzo_ops = { .init_compress_ctx = lzo_init_compress_ctx, .destroy_compress_ctx = lzo_destroy_compress_ctx, .compress_pages = lzo_compress_pages, .decompress_pages = lzo_decompress_pages, }; #endif #ifdef CONFIG_F2FS_FS_LZ4 static int lz4_init_compress_ctx(struct compress_ctx *cc) { unsigned int size = LZ4_MEM_COMPRESS; #ifdef CONFIG_F2FS_FS_LZ4HC if (F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET) size = LZ4HC_MEM_COMPRESS; #endif cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS); if (!cc->private) return -ENOMEM; /* * we do not change cc->clen to LZ4_compressBound(inputsize) to * adapt worst compress case, because lz4 compressor can handle * output budget properly. */ cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; return 0; } static void lz4_destroy_compress_ctx(struct compress_ctx *cc) { kvfree(cc->private); cc->private = NULL; } #ifdef CONFIG_F2FS_FS_LZ4HC static int lz4hc_compress_pages(struct compress_ctx *cc) { unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET; int len; if (level) len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen, cc->clen, level, cc->private); else len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, cc->clen, cc->private); if (!len) return -EAGAIN; cc->clen = len; return 0; } #endif static int lz4_compress_pages(struct compress_ctx *cc) { int len; #ifdef CONFIG_F2FS_FS_LZ4HC return lz4hc_compress_pages(cc); #endif len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen, cc->clen, cc->private); if (!len) return -EAGAIN; cc->clen = len; return 0; } static int lz4_decompress_pages(struct decompress_io_ctx *dic) { int ret; ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf, dic->clen, dic->rlen); if (ret < 0) { printk_ratelimited("%sF2FS-fs (%s): lz4 decompress failed, ret:%d\n", KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, ret); return -EIO; } if (ret != PAGE_SIZE << dic->log_cluster_size) { printk_ratelimited("%sF2FS-fs (%s): lz4 invalid rlen:%zu, " "expected:%lu\n", KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, dic->rlen, PAGE_SIZE << dic->log_cluster_size); return -EIO; } return 0; } static const struct f2fs_compress_ops f2fs_lz4_ops = { .init_compress_ctx = lz4_init_compress_ctx, .destroy_compress_ctx = lz4_destroy_compress_ctx, .compress_pages = lz4_compress_pages, .decompress_pages = lz4_decompress_pages, }; #endif #ifdef CONFIG_F2FS_FS_ZSTD #define F2FS_ZSTD_DEFAULT_CLEVEL 1 static int zstd_init_compress_ctx(struct compress_ctx *cc) { ZSTD_parameters params; ZSTD_CStream *stream; void *workspace; unsigned int workspace_size; unsigned char level = F2FS_I(cc->inode)->i_compress_flag >> COMPRESS_LEVEL_OFFSET; if (!level) level = F2FS_ZSTD_DEFAULT_CLEVEL; params = ZSTD_getParams(level, cc->rlen, 0); workspace_size = ZSTD_CStreamWorkspaceBound(params.cParams); workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode), workspace_size, GFP_NOFS); if (!workspace) return -ENOMEM; stream = ZSTD_initCStream(params, 0, workspace, workspace_size); if (!stream) { printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initCStream failed\n", KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, __func__); kvfree(workspace); return -EIO; } cc->private = workspace; cc->private2 = stream; cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE; return 0; } static void zstd_destroy_compress_ctx(struct compress_ctx *cc) { kvfree(cc->private); cc->private = NULL; cc->private2 = NULL; } static int zstd_compress_pages(struct compress_ctx *cc) { ZSTD_CStream *stream = cc->private2; ZSTD_inBuffer inbuf; ZSTD_outBuffer outbuf; int src_size = cc->rlen; int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE; int ret; inbuf.pos = 0; inbuf.src = cc->rbuf; inbuf.size = src_size; outbuf.pos = 0; outbuf.dst = cc->cbuf->cdata; outbuf.size = dst_size; ret = ZSTD_compressStream(stream, &outbuf, &inbuf); if (ZSTD_isError(ret)) { printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, __func__, ZSTD_getErrorCode(ret)); return -EIO; } ret = ZSTD_endStream(stream, &outbuf); if (ZSTD_isError(ret)) { printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_endStream returned %d\n", KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, __func__, ZSTD_getErrorCode(ret)); return -EIO; } /* * there is compressed data remained in intermediate buffer due to * no more space in cbuf.cdata */ if (ret) return -EAGAIN; cc->clen = outbuf.pos; return 0; } static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic) { ZSTD_DStream *stream; void *workspace; unsigned int workspace_size; unsigned int max_window_size = MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size); workspace_size = ZSTD_DStreamWorkspaceBound(max_window_size); workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode), workspace_size, GFP_NOFS); if (!workspace) return -ENOMEM; stream = ZSTD_initDStream(max_window_size, workspace, workspace_size); if (!stream) { printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_initDStream failed\n", KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, __func__); kvfree(workspace); return -EIO; } dic->private = workspace; dic->private2 = stream; return 0; } static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic) { kvfree(dic->private); dic->private = NULL; dic->private2 = NULL; } static int zstd_decompress_pages(struct decompress_io_ctx *dic) { ZSTD_DStream *stream = dic->private2; ZSTD_inBuffer inbuf; ZSTD_outBuffer outbuf; int ret; inbuf.pos = 0; inbuf.src = dic->cbuf->cdata; inbuf.size = dic->clen; outbuf.pos = 0; outbuf.dst = dic->rbuf; outbuf.size = dic->rlen; ret = ZSTD_decompressStream(stream, &outbuf, &inbuf); if (ZSTD_isError(ret)) { printk_ratelimited("%sF2FS-fs (%s): %s ZSTD_compressStream failed, ret: %d\n", KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, __func__, ZSTD_getErrorCode(ret)); return -EIO; } if (dic->rlen != outbuf.pos) { printk_ratelimited("%sF2FS-fs (%s): %s ZSTD invalid rlen:%zu, " "expected:%lu\n", KERN_ERR, F2FS_I_SB(dic->inode)->sb->s_id, __func__, dic->rlen, PAGE_SIZE << dic->log_cluster_size); return -EIO; } return 0; } static const struct f2fs_compress_ops f2fs_zstd_ops = { .init_compress_ctx = zstd_init_compress_ctx, .destroy_compress_ctx = zstd_destroy_compress_ctx, .compress_pages = zstd_compress_pages, .init_decompress_ctx = zstd_init_decompress_ctx, .destroy_decompress_ctx = zstd_destroy_decompress_ctx, .decompress_pages = zstd_decompress_pages, }; #endif #ifdef CONFIG_F2FS_FS_LZO #ifdef CONFIG_F2FS_FS_LZORLE static int lzorle_compress_pages(struct compress_ctx *cc) { int ret; ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata, &cc->clen, cc->private); if (ret != LZO_E_OK) { printk_ratelimited("%sF2FS-fs (%s): lzo-rle compress failed, ret:%d\n", KERN_ERR, F2FS_I_SB(cc->inode)->sb->s_id, ret); return -EIO; } return 0; } static const struct f2fs_compress_ops f2fs_lzorle_ops = { .init_compress_ctx = lzo_init_compress_ctx, .destroy_compress_ctx = lzo_destroy_compress_ctx, .compress_pages = lzorle_compress_pages, .decompress_pages = lzo_decompress_pages, }; #endif #endif static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = { #ifdef CONFIG_F2FS_FS_LZO &f2fs_lzo_ops, #else NULL, #endif #ifdef CONFIG_F2FS_FS_LZ4 &f2fs_lz4_ops, #else NULL, #endif #ifdef CONFIG_F2FS_FS_ZSTD &f2fs_zstd_ops, #else NULL, #endif #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE) &f2fs_lzorle_ops, #else NULL, #endif }; bool f2fs_is_compress_backend_ready(struct inode *inode) { if (!f2fs_compressed_file(inode)) return true; return f2fs_cops[F2FS_I(inode)->i_compress_algorithm]; } static mempool_t *compress_page_pool; static int num_compress_pages = 512; module_param(num_compress_pages, uint, 0444); MODULE_PARM_DESC(num_compress_pages, "Number of intermediate compress pages to preallocate"); int f2fs_init_compress_mempool(void) { compress_page_pool = mempool_create_page_pool(num_compress_pages, 0); if (!compress_page_pool) return -ENOMEM; return 0; } void f2fs_destroy_compress_mempool(void) { mempool_destroy(compress_page_pool); } static struct page *f2fs_compress_alloc_page(void) { struct page *page; page = mempool_alloc(compress_page_pool, GFP_NOFS); lock_page(page); return page; } static void f2fs_compress_free_page(struct page *page) { if (!page) return; set_page_private(page, (unsigned long)NULL); ClearPagePrivate(page); page->mapping = NULL; unlock_page(page); mempool_free(page, compress_page_pool); } #define MAX_VMAP_RETRIES 3 static void *f2fs_vmap(struct page **pages, unsigned int count) { int i; void *buf = NULL; for (i = 0; i < MAX_VMAP_RETRIES; i++) { buf = vm_map_ram(pages, count, -1); if (buf) break; vm_unmap_aliases(); } return buf; } static int f2fs_compress_pages(struct compress_ctx *cc) { struct f2fs_inode_info *fi = F2FS_I(cc->inode); const struct f2fs_compress_ops *cops = f2fs_cops[fi->i_compress_algorithm]; unsigned int max_len, new_nr_cpages; struct page **new_cpages; u32 chksum = 0; int i, ret; trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx, cc->cluster_size, fi->i_compress_algorithm); if (cops->init_compress_ctx) { ret = cops->init_compress_ctx(cc); if (ret) goto out; } max_len = COMPRESS_HEADER_SIZE + cc->clen; cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE); cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages); if (!cc->cpages) { ret = -ENOMEM; goto destroy_compress_ctx; } for (i = 0; i < cc->nr_cpages; i++) { cc->cpages[i] = f2fs_compress_alloc_page(); if (!cc->cpages[i]) { ret = -ENOMEM; goto out_free_cpages; } } cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size); if (!cc->rbuf) { ret = -ENOMEM; goto out_free_cpages; } cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages); if (!cc->cbuf) { ret = -ENOMEM; goto out_vunmap_rbuf; } ret = cops->compress_pages(cc); if (ret) goto out_vunmap_cbuf; max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE; if (cc->clen > max_len) { ret = -EAGAIN; goto out_vunmap_cbuf; } cc->cbuf->clen = cpu_to_le32(cc->clen); if (fi->i_compress_flag & 1 << COMPRESS_CHKSUM) chksum = f2fs_crc32(F2FS_I_SB(cc->inode), cc->cbuf->cdata, cc->clen); cc->cbuf->chksum = cpu_to_le32(chksum); for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++) cc->cbuf->reserved[i] = cpu_to_le32(0); new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE); /* Now we're going to cut unnecessary tail pages */ new_cpages = page_array_alloc(cc->inode, new_nr_cpages); if (!new_cpages) { ret = -ENOMEM; goto out_vunmap_cbuf; } /* zero out any unused part of the last page */ memset(&cc->cbuf->cdata[cc->clen], 0, (new_nr_cpages * PAGE_SIZE) - (cc->clen + COMPRESS_HEADER_SIZE)); vm_unmap_ram(cc->cbuf, cc->nr_cpages); vm_unmap_ram(cc->rbuf, cc->cluster_size); for (i = 0; i < cc->nr_cpages; i++) { if (i < new_nr_cpages) { new_cpages[i] = cc->cpages[i]; continue; } f2fs_compress_free_page(cc->cpages[i]); cc->cpages[i] = NULL; } if (cops->destroy_compress_ctx) cops->destroy_compress_ctx(cc); page_array_free(cc->inode, cc->cpages, cc->nr_cpages); cc->cpages = new_cpages; cc->nr_cpages = new_nr_cpages; trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, cc->clen, ret); return 0; out_vunmap_cbuf: vm_unmap_ram(cc->cbuf, cc->nr_cpages); out_vunmap_rbuf: vm_unmap_ram(cc->rbuf, cc->cluster_size); out_free_cpages: for (i = 0; i < cc->nr_cpages; i++) { if (cc->cpages[i]) f2fs_compress_free_page(cc->cpages[i]); } page_array_free(cc->inode, cc->cpages, cc->nr_cpages); cc->cpages = NULL; destroy_compress_ctx: if (cops->destroy_compress_ctx) cops->destroy_compress_ctx(cc); out: trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx, cc->clen, ret); return ret; } static void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); struct f2fs_inode_info *fi = F2FS_I(dic->inode); const struct f2fs_compress_ops *cops = f2fs_cops[fi->i_compress_algorithm]; int ret; int i; trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx, dic->cluster_size, fi->i_compress_algorithm); if (dic->failed) { ret = -EIO; goto out_end_io; } dic->tpages = page_array_alloc(dic->inode, dic->cluster_size); if (!dic->tpages) { ret = -ENOMEM; goto out_end_io; } for (i = 0; i < dic->cluster_size; i++) { if (dic->rpages[i]) { dic->tpages[i] = dic->rpages[i]; continue; } dic->tpages[i] = f2fs_compress_alloc_page(); if (!dic->tpages[i]) { ret = -ENOMEM; goto out_end_io; } } if (cops->init_decompress_ctx) { ret = cops->init_decompress_ctx(dic); if (ret) goto out_end_io; } dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size); if (!dic->rbuf) { ret = -ENOMEM; goto out_destroy_decompress_ctx; } dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages); if (!dic->cbuf) { ret = -ENOMEM; goto out_vunmap_rbuf; } dic->clen = le32_to_cpu(dic->cbuf->clen); dic->rlen = PAGE_SIZE << dic->log_cluster_size; if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) { ret = -EFSCORRUPTED; goto out_vunmap_cbuf; } ret = cops->decompress_pages(dic); if (!ret && (fi->i_compress_flag & 1 << COMPRESS_CHKSUM)) { u32 provided = le32_to_cpu(dic->cbuf->chksum); u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen); if (provided != calculated) { if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) { set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT); printk_ratelimited( "%sF2FS-fs (%s): checksum invalid, nid = %lu, %x vs %x", KERN_INFO, sbi->sb->s_id, dic->inode->i_ino, provided, calculated); } set_sbi_flag(sbi, SBI_NEED_FSCK); } } out_vunmap_cbuf: vm_unmap_ram(dic->cbuf, dic->nr_cpages); out_vunmap_rbuf: vm_unmap_ram(dic->rbuf, dic->cluster_size); out_destroy_decompress_ctx: if (cops->destroy_decompress_ctx) cops->destroy_decompress_ctx(dic); out_end_io: trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx, dic->clen, ret); f2fs_decompress_end_io(dic, ret); } /* * This is called when a page of a compressed cluster has been read from disk * (or failed to be read from disk). It checks whether this page was the last * page being waited on in the cluster, and if so, it decompresses the cluster * (or in the case of a failure, cleans up without actually decompressing). */ void f2fs_end_read_compressed_page(struct page *page, bool failed) { struct decompress_io_ctx *dic = (struct decompress_io_ctx *)page_private(page); struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode); dec_page_count(sbi, F2FS_RD_DATA); if (failed) WRITE_ONCE(dic->failed, true); if (atomic_dec_and_test(&dic->remaining_pages)) f2fs_decompress_cluster(dic); } static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index) { if (cc->cluster_idx == NULL_CLUSTER) return true; return cc->cluster_idx == cluster_idx(cc, index); } bool f2fs_cluster_is_empty(struct compress_ctx *cc) { return cc->nr_rpages == 0; } static bool f2fs_cluster_is_full(struct compress_ctx *cc) { return cc->cluster_size == cc->nr_rpages; } bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index) { if (f2fs_cluster_is_empty(cc)) return true; return is_page_in_cluster(cc, index); } static bool __cluster_may_compress(struct compress_ctx *cc) { loff_t i_size = i_size_read(cc->inode); unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE); int i; for (i = 0; i < cc->cluster_size; i++) { struct page *page = cc->rpages[i]; f2fs_bug_on(F2FS_I_SB(cc->inode), !page); /* beyond EOF */ if (page->index >= nr_pages) return false; } return true; } static int __f2fs_cluster_blocks(struct compress_ctx *cc, bool compr) { struct dnode_of_data dn; int ret; set_new_dnode(&dn, cc->inode, NULL, NULL, 0); ret = f2fs_get_dnode_of_data(&dn, start_idx_of_cluster(cc), LOOKUP_NODE); if (ret) { if (ret == -ENOENT) ret = 0; goto fail; } if (dn.data_blkaddr == COMPRESS_ADDR) { int i; ret = 1; for (i = 1; i < cc->cluster_size; i++) { block_t blkaddr; blkaddr = data_blkaddr(dn.inode, dn.node_page, dn.ofs_in_node + i); if (compr) { if (__is_valid_data_blkaddr(blkaddr)) ret++; } else { if (blkaddr != NULL_ADDR) ret++; } } } fail: f2fs_put_dnode(&dn); return ret; } /* return # of compressed blocks in compressed cluster */ static int f2fs_compressed_blocks(struct compress_ctx *cc) { return __f2fs_cluster_blocks(cc, true); } /* return # of valid blocks in compressed cluster */ static int f2fs_cluster_blocks(struct compress_ctx *cc) { return __f2fs_cluster_blocks(cc, false); } int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index) { struct compress_ctx cc = { .inode = inode, .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, .cluster_size = F2FS_I(inode)->i_cluster_size, .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, }; return f2fs_cluster_blocks(&cc); } static bool cluster_may_compress(struct compress_ctx *cc) { if (!f2fs_need_compress_data(cc->inode)) return false; if (f2fs_is_atomic_file(cc->inode)) return false; if (f2fs_is_mmap_file(cc->inode)) return false; if (!f2fs_cluster_is_full(cc)) return false; if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode)))) return false; return __cluster_may_compress(cc); } static void set_cluster_writeback(struct compress_ctx *cc) { int i; for (i = 0; i < cc->cluster_size; i++) { if (cc->rpages[i]) set_page_writeback(cc->rpages[i]); } } static void set_cluster_dirty(struct compress_ctx *cc) { int i; for (i = 0; i < cc->cluster_size; i++) if (cc->rpages[i]) set_page_dirty(cc->rpages[i]); } static int prepare_compress_overwrite(struct compress_ctx *cc, struct page **pagep, pgoff_t index, void **fsdata) { struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode); struct address_space *mapping = cc->inode->i_mapping; struct page *page; struct dnode_of_data dn; sector_t last_block_in_bio; unsigned fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT; pgoff_t start_idx = start_idx_of_cluster(cc); int i, ret; bool prealloc; retry: ret = f2fs_cluster_blocks(cc); if (ret <= 0) return ret; /* compressed case */ prealloc = (ret < cc->cluster_size); ret = f2fs_init_compress_ctx(cc); if (ret) return ret; /* keep page reference to avoid page reclaim */ for (i = 0; i < cc->cluster_size; i++) { page = f2fs_pagecache_get_page(mapping, start_idx + i, fgp_flag, GFP_NOFS); if (!page) { ret = -ENOMEM; goto unlock_pages; } if (PageUptodate(page)) f2fs_put_page(page, 1); else f2fs_compress_ctx_add_page(cc, page); } if (!f2fs_cluster_is_empty(cc)) { struct bio *bio = NULL; ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size, &last_block_in_bio, false, true); f2fs_put_rpages(cc); f2fs_destroy_compress_ctx(cc); if (ret) goto out; if (bio) f2fs_submit_bio(sbi, bio, DATA); ret = f2fs_init_compress_ctx(cc); if (ret) goto out; } for (i = 0; i < cc->cluster_size; i++) { f2fs_bug_on(sbi, cc->rpages[i]); page = find_lock_page(mapping, start_idx + i); if (!page) { /* page can be truncated */ goto release_and_retry; } f2fs_wait_on_page_writeback(page, DATA, true, true); f2fs_compress_ctx_add_page(cc, page); if (!PageUptodate(page)) { release_and_retry: f2fs_put_rpages(cc); f2fs_unlock_rpages(cc, i + 1); f2fs_destroy_compress_ctx(cc); goto retry; } } if (prealloc) { f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); set_new_dnode(&dn, cc->inode, NULL, NULL, 0); for (i = cc->cluster_size - 1; i > 0; i--) { ret = f2fs_get_block(&dn, start_idx + i); if (ret) { i = cc->cluster_size; break; } if (dn.data_blkaddr != NEW_ADDR) break; } f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); } if (likely(!ret)) { *fsdata = cc->rpages; *pagep = cc->rpages[offset_in_cluster(cc, index)]; return cc->cluster_size; } unlock_pages: f2fs_put_rpages(cc); f2fs_unlock_rpages(cc, i); f2fs_destroy_compress_ctx(cc); out: return ret; } int f2fs_prepare_compress_overwrite(struct inode *inode, struct page **pagep, pgoff_t index, void **fsdata) { struct compress_ctx cc = { .inode = inode, .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, .cluster_size = F2FS_I(inode)->i_cluster_size, .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size, .rpages = NULL, .nr_rpages = 0, }; return prepare_compress_overwrite(&cc, pagep, index, fsdata); } bool f2fs_compress_write_end(struct inode *inode, void *fsdata, pgoff_t index, unsigned copied) { struct compress_ctx cc = { .inode = inode, .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, .cluster_size = F2FS_I(inode)->i_cluster_size, .rpages = fsdata, }; bool first_index = (index == cc.rpages[0]->index); if (copied) set_cluster_dirty(&cc); f2fs_put_rpages_wbc(&cc, NULL, false, 1); f2fs_destroy_compress_ctx(&cc); return first_index; } int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock) { void *fsdata = NULL; struct page *pagep; int log_cluster_size = F2FS_I(inode)->i_log_cluster_size; pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) << log_cluster_size; int err; err = f2fs_is_compressed_cluster(inode, start_idx); if (err < 0) return err; /* truncate normal cluster */ if (!err) return f2fs_do_truncate_blocks(inode, from, lock); /* truncate compressed cluster */ err = f2fs_prepare_compress_overwrite(inode, &pagep, start_idx, &fsdata); /* should not be a normal cluster */ f2fs_bug_on(F2FS_I_SB(inode), err == 0); if (err <= 0) return err; if (err > 0) { struct page **rpages = fsdata; int cluster_size = F2FS_I(inode)->i_cluster_size; int i; for (i = cluster_size - 1; i >= 0; i--) { loff_t start = rpages[i]->index << PAGE_SHIFT; if (from <= start) { zero_user_segment(rpages[i], 0, PAGE_SIZE); } else { zero_user_segment(rpages[i], from - start, PAGE_SIZE); break; } } f2fs_compress_write_end(inode, fsdata, start_idx, true); } return 0; } static int f2fs_write_compressed_pages(struct compress_ctx *cc, int *submitted, struct writeback_control *wbc, enum iostat_type io_type) { struct inode *inode = cc->inode; struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_io_info fio = { .sbi = sbi, .ino = cc->inode->i_ino, .type = DATA, .op = REQ_OP_WRITE, .op_flags = wbc_to_write_flags(wbc), .old_blkaddr = NEW_ADDR, .page = NULL, .encrypted_page = NULL, .compressed_page = NULL, .submitted = false, .io_type = io_type, .io_wbc = wbc, .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode), }; struct dnode_of_data dn; struct node_info ni; struct compress_io_ctx *cic; pgoff_t start_idx = start_idx_of_cluster(cc); unsigned int last_index = cc->cluster_size - 1; loff_t psize; int i, err; if (IS_NOQUOTA(inode)) { /* * We need to wait for node_write to avoid block allocation during * checkpoint. This can only happen to quota writes which can cause * the below discard race condition. */ down_read(&sbi->node_write); } else if (!f2fs_trylock_op(sbi)) { goto out_free; } set_new_dnode(&dn, cc->inode, NULL, NULL, 0); err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); if (err) goto out_unlock_op; for (i = 0; i < cc->cluster_size; i++) { if (data_blkaddr(dn.inode, dn.node_page, dn.ofs_in_node + i) == NULL_ADDR) goto out_put_dnode; } psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT; err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); if (err) goto out_put_dnode; fio.version = ni.version; cic = kmem_cache_zalloc(cic_entry_slab, GFP_NOFS); if (!cic) goto out_put_dnode; cic->magic = F2FS_COMPRESSED_PAGE_MAGIC; cic->inode = inode; atomic_set(&cic->pending_pages, cc->nr_cpages); cic->rpages = page_array_alloc(cc->inode, cc->cluster_size); if (!cic->rpages) goto out_put_cic; cic->nr_rpages = cc->cluster_size; for (i = 0; i < cc->nr_cpages; i++) { f2fs_set_compressed_page(cc->cpages[i], inode, cc->rpages[i + 1]->index, cic); fio.compressed_page = cc->cpages[i]; fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page, dn.ofs_in_node + i + 1); /* wait for GCed page writeback via META_MAPPING */ f2fs_wait_on_block_writeback(inode, fio.old_blkaddr); if (fio.encrypted) { fio.page = cc->rpages[i + 1]; err = f2fs_encrypt_one_page(&fio); if (err) goto out_destroy_crypt; cc->cpages[i] = fio.encrypted_page; } } set_cluster_writeback(cc); for (i = 0; i < cc->cluster_size; i++) cic->rpages[i] = cc->rpages[i]; for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) { block_t blkaddr; blkaddr = f2fs_data_blkaddr(&dn); fio.page = cc->rpages[i]; fio.old_blkaddr = blkaddr; /* cluster header */ if (i == 0) { if (blkaddr == COMPRESS_ADDR) fio.compr_blocks++; if (__is_valid_data_blkaddr(blkaddr)) f2fs_invalidate_blocks(sbi, blkaddr); f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR); goto unlock_continue; } if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr)) fio.compr_blocks++; if (i > cc->nr_cpages) { if (__is_valid_data_blkaddr(blkaddr)) { f2fs_invalidate_blocks(sbi, blkaddr); f2fs_update_data_blkaddr(&dn, NEW_ADDR); } goto unlock_continue; } f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR); if (fio.encrypted) fio.encrypted_page = cc->cpages[i - 1]; else fio.compressed_page = cc->cpages[i - 1]; cc->cpages[i - 1] = NULL; f2fs_outplace_write_data(&dn, &fio); (*submitted)++; unlock_continue: inode_dec_dirty_pages(cc->inode); unlock_page(fio.page); } if (fio.compr_blocks) f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false); f2fs_i_compr_blocks_update(inode, cc->nr_cpages, true); add_compr_block_stat(inode, cc->nr_cpages); set_inode_flag(cc->inode, FI_APPEND_WRITE); if (cc->cluster_idx == 0) set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); f2fs_put_dnode(&dn); if (IS_NOQUOTA(inode)) up_read(&sbi->node_write); else f2fs_unlock_op(sbi); spin_lock(&fi->i_size_lock); if (fi->last_disk_size < psize) fi->last_disk_size = psize; spin_unlock(&fi->i_size_lock); f2fs_put_rpages(cc); page_array_free(cc->inode, cc->cpages, cc->nr_cpages); cc->cpages = NULL; f2fs_destroy_compress_ctx(cc); return 0; out_destroy_crypt: page_array_free(cc->inode, cic->rpages, cc->cluster_size); for (--i; i >= 0; i--) fscrypt_finalize_bounce_page(&cc->cpages[i]); for (i = 0; i < cc->nr_cpages; i++) { if (!cc->cpages[i]) continue; f2fs_compress_free_page(cc->cpages[i]); cc->cpages[i] = NULL; } out_put_cic: kmem_cache_free(cic_entry_slab, cic); out_put_dnode: f2fs_put_dnode(&dn); out_unlock_op: if (IS_NOQUOTA(inode)) up_read(&sbi->node_write); else f2fs_unlock_op(sbi); out_free: page_array_free(cc->inode, cc->cpages, cc->nr_cpages); cc->cpages = NULL; return -EAGAIN; } void f2fs_compress_write_end_io(struct bio *bio, struct page *page) { struct f2fs_sb_info *sbi = bio->bi_private; struct compress_io_ctx *cic = (struct compress_io_ctx *)page_private(page); int i; if (unlikely(bio->bi_status)) mapping_set_error(cic->inode->i_mapping, -EIO); f2fs_compress_free_page(page); dec_page_count(sbi, F2FS_WB_DATA); if (atomic_dec_return(&cic->pending_pages)) return; for (i = 0; i < cic->nr_rpages; i++) { WARN_ON(!cic->rpages[i]); clear_cold_data(cic->rpages[i]); end_page_writeback(cic->rpages[i]); } page_array_free(cic->inode, cic->rpages, cic->nr_rpages); kmem_cache_free(cic_entry_slab, cic); } static int f2fs_write_raw_pages(struct compress_ctx *cc, int *submitted, struct writeback_control *wbc, enum iostat_type io_type) { struct address_space *mapping = cc->inode->i_mapping; int _submitted, compr_blocks, ret; int i = -1, err = 0; compr_blocks = f2fs_compressed_blocks(cc); if (compr_blocks < 0) { err = compr_blocks; goto out_err; } for (i = 0; i < cc->cluster_size; i++) { if (!cc->rpages[i]) continue; retry_write: if (cc->rpages[i]->mapping != mapping) { unlock_page(cc->rpages[i]); continue; } BUG_ON(!PageLocked(cc->rpages[i])); ret = f2fs_write_single_data_page(cc->rpages[i], &_submitted, NULL, NULL, wbc, io_type, compr_blocks, false); if (ret) { if (ret == AOP_WRITEPAGE_ACTIVATE) { unlock_page(cc->rpages[i]); ret = 0; } else if (ret == -EAGAIN) { /* * for quota file, just redirty left pages to * avoid deadlock caused by cluster update race * from foreground operation. */ if (IS_NOQUOTA(cc->inode)) { err = 0; goto out_err; } ret = 0; cond_resched(); congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); lock_page(cc->rpages[i]); if (!PageDirty(cc->rpages[i])) { unlock_page(cc->rpages[i]); continue; } clear_page_dirty_for_io(cc->rpages[i]); goto retry_write; } err = ret; goto out_err; } *submitted += _submitted; } f2fs_balance_fs(F2FS_M_SB(mapping), true); return 0; out_err: for (++i; i < cc->cluster_size; i++) { if (!cc->rpages[i]) continue; redirty_page_for_writepage(wbc, cc->rpages[i]); unlock_page(cc->rpages[i]); } return err; } int f2fs_write_multi_pages(struct compress_ctx *cc, int *submitted, struct writeback_control *wbc, enum iostat_type io_type) { int err; *submitted = 0; if (cluster_may_compress(cc)) { err = f2fs_compress_pages(cc); if (err == -EAGAIN) { goto write; } else if (err) { f2fs_put_rpages_wbc(cc, wbc, true, 1); goto destroy_out; } err = f2fs_write_compressed_pages(cc, submitted, wbc, io_type); if (!err) return 0; f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN); } write: f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted); err = f2fs_write_raw_pages(cc, submitted, wbc, io_type); f2fs_put_rpages_wbc(cc, wbc, false, 0); destroy_out: f2fs_destroy_compress_ctx(cc); return err; } static void f2fs_free_dic(struct decompress_io_ctx *dic); struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc) { struct decompress_io_ctx *dic; pgoff_t start_idx = start_idx_of_cluster(cc); int i; dic = kmem_cache_zalloc(dic_entry_slab, GFP_NOFS); if (!dic) return ERR_PTR(-ENOMEM); dic->rpages = page_array_alloc(cc->inode, cc->cluster_size); if (!dic->rpages) { kmem_cache_free(dic_entry_slab, dic); return ERR_PTR(-ENOMEM); } dic->magic = F2FS_COMPRESSED_PAGE_MAGIC; dic->inode = cc->inode; atomic_set(&dic->remaining_pages, cc->nr_cpages); dic->cluster_idx = cc->cluster_idx; dic->cluster_size = cc->cluster_size; dic->log_cluster_size = cc->log_cluster_size; dic->nr_cpages = cc->nr_cpages; refcount_set(&dic->refcnt, 1); dic->failed = false; dic->need_verity = f2fs_need_verity(cc->inode, start_idx); for (i = 0; i < dic->cluster_size; i++) dic->rpages[i] = cc->rpages[i]; dic->nr_rpages = cc->cluster_size; dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages); if (!dic->cpages) goto out_free; for (i = 0; i < dic->nr_cpages; i++) { struct page *page; page = f2fs_compress_alloc_page(); if (!page) goto out_free; f2fs_set_compressed_page(page, cc->inode, start_idx + i + 1, dic); dic->cpages[i] = page; } return dic; out_free: f2fs_free_dic(dic); return ERR_PTR(-ENOMEM); } static void f2fs_free_dic(struct decompress_io_ctx *dic) { int i; if (dic->tpages) { for (i = 0; i < dic->cluster_size; i++) { if (dic->rpages[i]) continue; if (!dic->tpages[i]) continue; f2fs_compress_free_page(dic->tpages[i]); } page_array_free(dic->inode, dic->tpages, dic->cluster_size); } if (dic->cpages) { for (i = 0; i < dic->nr_cpages; i++) { if (!dic->cpages[i]) continue; f2fs_compress_free_page(dic->cpages[i]); } page_array_free(dic->inode, dic->cpages, dic->nr_cpages); } page_array_free(dic->inode, dic->rpages, dic->nr_rpages); kmem_cache_free(dic_entry_slab, dic); } static void f2fs_put_dic(struct decompress_io_ctx *dic) { if (refcount_dec_and_test(&dic->refcnt)) f2fs_free_dic(dic); } /* * Update and unlock the cluster's pagecache pages, and release the reference to * the decompress_io_ctx that was being held for I/O completion. */ static void __f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) { int i; for (i = 0; i < dic->cluster_size; i++) { struct page *rpage = dic->rpages[i]; if (!rpage) continue; /* PG_error was set if verity failed. */ if (failed || PageError(rpage)) { ClearPageUptodate(rpage); /* will re-read again later */ ClearPageError(rpage); } else { SetPageUptodate(rpage); } unlock_page(rpage); } f2fs_put_dic(dic); } static void f2fs_verify_cluster(struct work_struct *work) { struct decompress_io_ctx *dic = container_of(work, struct decompress_io_ctx, verity_work); int i; /* Verify the cluster's decompressed pages with fs-verity. */ for (i = 0; i < dic->cluster_size; i++) { struct page *rpage = dic->rpages[i]; if (rpage && !fsverity_verify_page(rpage)) SetPageError(rpage); } __f2fs_decompress_end_io(dic, false); } /* * This is called when a compressed cluster has been decompressed * (or failed to be read and/or decompressed). */ void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed) { if (!failed && dic->need_verity) { /* * Note that to avoid deadlocks, the verity work can't be done * on the decompression workqueue. This is because verifying * the data pages can involve reading metadata pages from the * file, and these metadata pages may be compressed. */ INIT_WORK(&dic->verity_work, f2fs_verify_cluster); fsverity_enqueue_verify_work(&dic->verity_work); } else { __f2fs_decompress_end_io(dic, failed); } } /* * Put a reference to a compressed page's decompress_io_ctx. * * This is called when the page is no longer needed and can be freed. */ void f2fs_put_page_dic(struct page *page) { struct decompress_io_ctx *dic = (struct decompress_io_ctx *)page_private(page); f2fs_put_dic(dic); } int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { dev_t dev = sbi->sb->s_bdev->bd_dev; char slab_name[32]; sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev)); sbi->page_array_slab_size = sizeof(struct page *) << F2FS_OPTION(sbi).compress_log_size; sbi->page_array_slab = f2fs_kmem_cache_create(slab_name, sbi->page_array_slab_size); if (!sbi->page_array_slab) return -ENOMEM; return 0; } void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { kmem_cache_destroy(sbi->page_array_slab); } static int __init f2fs_init_cic_cache(void) { cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry", sizeof(struct compress_io_ctx)); if (!cic_entry_slab) return -ENOMEM; return 0; } static void f2fs_destroy_cic_cache(void) { kmem_cache_destroy(cic_entry_slab); } static int __init f2fs_init_dic_cache(void) { dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry", sizeof(struct decompress_io_ctx)); if (!dic_entry_slab) return -ENOMEM; return 0; } static void f2fs_destroy_dic_cache(void) { kmem_cache_destroy(dic_entry_slab); } int __init f2fs_init_compress_cache(void) { int err; err = f2fs_init_cic_cache(); if (err) goto out; err = f2fs_init_dic_cache(); if (err) goto free_cic; return 0; free_cic: f2fs_destroy_cic_cache(); out: return -ENOMEM; } void f2fs_destroy_compress_cache(void) { f2fs_destroy_dic_cache(); f2fs_destroy_cic_cache(); }