/* * Implementation of the policy database. * * Author : Stephen Smalley, <sds@epoch.ncsc.mil> */ /* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com> * * Added conditional policy language extensions * * Copyright (C) 2003 - 2004 Tresys Technology, LLC * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, version 2. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/errno.h> #include "security.h" #include "policydb.h" #include "conditional.h" #include "mls.h" #define _DEBUG_HASHES #ifdef DEBUG_HASHES static char *symtab_name[SYM_NUM] = { "common prefixes", "classes", "roles", "types", "users", mls_symtab_names "bools" }; #endif static unsigned int symtab_sizes[SYM_NUM] = { 2, 32, 16, 512, 128, mls_symtab_sizes 16 }; struct policydb_compat_info { int version; int sym_num; int ocon_num; }; /* These need to be updated if SYM_NUM or OCON_NUM changes */ static struct policydb_compat_info policydb_compat[] = { { .version = POLICYDB_VERSION_BASE, .sym_num = SYM_NUM - 1, .ocon_num = OCON_NUM - 1, }, { .version = POLICYDB_VERSION_BOOL, .sym_num = SYM_NUM, .ocon_num = OCON_NUM - 1, }, { .version = POLICYDB_VERSION_IPV6, .sym_num = SYM_NUM, .ocon_num = OCON_NUM, }, }; static struct policydb_compat_info *policydb_lookup_compat(int version) { int i; struct policydb_compat_info *info = NULL; for (i = 0; i < sizeof(policydb_compat)/sizeof(*info); i++) { if (policydb_compat[i].version == version) { info = &policydb_compat[i]; break; } } return info; } /* * Initialize the role table. */ int roles_init(struct policydb *p) { char *key = 0; int rc; struct role_datum *role; role = kmalloc(sizeof(*role), GFP_KERNEL); if (!role) { rc = -ENOMEM; goto out; } memset(role, 0, sizeof(*role)); role->value = ++p->p_roles.nprim; if (role->value != OBJECT_R_VAL) { rc = -EINVAL; goto out_free_role; } key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL); if (!key) { rc = -ENOMEM; goto out_free_role; } strcpy(key, OBJECT_R); rc = hashtab_insert(p->p_roles.table, key, role); if (rc) goto out_free_key; out: return rc; out_free_key: kfree(key); out_free_role: kfree(role); goto out; } /* * Initialize a policy database structure. */ int policydb_init(struct policydb *p) { int i, rc; memset(p, 0, sizeof(*p)); for (i = 0; i < SYM_NUM; i++) { rc = symtab_init(&p->symtab[i], symtab_sizes[i]); if (rc) goto out_free_symtab; } rc = avtab_init(&p->te_avtab); if (rc) goto out_free_symtab; rc = roles_init(p); if (rc) goto out_free_avtab; rc = cond_policydb_init(p); if (rc) goto out_free_avtab; out: return rc; out_free_avtab: avtab_destroy(&p->te_avtab); out_free_symtab: for (i = 0; i < SYM_NUM; i++) hashtab_destroy(p->symtab[i].table); goto out; } /* * The following *_index functions are used to * define the val_to_name and val_to_struct arrays * in a policy database structure. The val_to_name * arrays are used when converting security context * structures into string representations. The * val_to_struct arrays are used when the attributes * of a class, role, or user are needed. */ static int common_index(void *key, void *datum, void *datap) { struct policydb *p; struct common_datum *comdatum; comdatum = datum; p = datap; if (!comdatum->value || comdatum->value > p->p_commons.nprim) return -EINVAL; p->p_common_val_to_name[comdatum->value - 1] = key; return 0; } static int class_index(void *key, void *datum, void *datap) { struct policydb *p; struct class_datum *cladatum; cladatum = datum; p = datap; if (!cladatum->value || cladatum->value > p->p_classes.nprim) return -EINVAL; p->p_class_val_to_name[cladatum->value - 1] = key; p->class_val_to_struct[cladatum->value - 1] = cladatum; return 0; } static int role_index(void *key, void *datum, void *datap) { struct policydb *p; struct role_datum *role; role = datum; p = datap; if (!role->value || role->value > p->p_roles.nprim) return -EINVAL; p->p_role_val_to_name[role->value - 1] = key; p->role_val_to_struct[role->value - 1] = role; return 0; } static int type_index(void *key, void *datum, void *datap) { struct policydb *p; struct type_datum *typdatum; typdatum = datum; p = datap; if (typdatum->primary) { if (!typdatum->value || typdatum->value > p->p_types.nprim) return -EINVAL; p->p_type_val_to_name[typdatum->value - 1] = key; } return 0; } static int user_index(void *key, void *datum, void *datap) { struct policydb *p; struct user_datum *usrdatum; usrdatum = datum; p = datap; if (!usrdatum->value || usrdatum->value > p->p_users.nprim) return -EINVAL; p->p_user_val_to_name[usrdatum->value - 1] = key; p->user_val_to_struct[usrdatum->value - 1] = usrdatum; return 0; } static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_index, class_index, role_index, type_index, user_index, mls_index_f cond_index_bool }; /* * Define the common val_to_name array and the class * val_to_name and val_to_struct arrays in a policy * database structure. * * Caller must clean up upon failure. */ int policydb_index_classes(struct policydb *p) { int rc; p->p_common_val_to_name = kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL); if (!p->p_common_val_to_name) { rc = -ENOMEM; goto out; } rc = hashtab_map(p->p_commons.table, common_index, p); if (rc) goto out; p->class_val_to_struct = kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL); if (!p->class_val_to_struct) { rc = -ENOMEM; goto out; } p->p_class_val_to_name = kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL); if (!p->p_class_val_to_name) { rc = -ENOMEM; goto out; } rc = hashtab_map(p->p_classes.table, class_index, p); out: return rc; } #ifdef DEBUG_HASHES static void symtab_hash_eval(struct symtab *s) { int i; for (i = 0; i < SYM_NUM; i++) { struct hashtab *h = s[i].table; struct hashtab_info info; hashtab_stat(h, &info); printk(KERN_INFO "%s: %d entries and %d/%d buckets used, " "longest chain length %d\n", symtab_name[i], h->nel, info.slots_used, h->size, info.max_chain_len); } } #endif /* * Define the other val_to_name and val_to_struct arrays * in a policy database structure. * * Caller must clean up on failure. */ int policydb_index_others(struct policydb *p) { int i, rc = 0; printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools", p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim); mls_policydb_index_others(p); printk("\n"); printk(KERN_INFO "security: %d classes, %d rules\n", p->p_classes.nprim, p->te_avtab.nel); #ifdef DEBUG_HASHES avtab_hash_eval(&p->te_avtab, "rules"); symtab_hash_eval(p->symtab); #endif p->role_val_to_struct = kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)), GFP_KERNEL); if (!p->role_val_to_struct) { rc = -ENOMEM; goto out; } p->user_val_to_struct = kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)), GFP_KERNEL); if (!p->user_val_to_struct) { rc = -ENOMEM; goto out; } if (cond_init_bool_indexes(p)) { rc = -ENOMEM; goto out; } for (i = SYM_ROLES; i < SYM_NUM; i++) { p->sym_val_to_name[i] = kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL); if (!p->sym_val_to_name[i]) { rc = -ENOMEM; goto out; } rc = hashtab_map(p->symtab[i].table, index_f[i], p); if (rc) goto out; } out: return rc; } /* * The following *_destroy functions are used to * free any memory allocated for each kind of * symbol data in the policy database. */ static int perm_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int common_destroy(void *key, void *datum, void *p) { struct common_datum *comdatum; kfree(key); comdatum = datum; hashtab_map(comdatum->permissions.table, perm_destroy, 0); hashtab_destroy(comdatum->permissions.table); kfree(datum); return 0; } static int class_destroy(void *key, void *datum, void *p) { struct class_datum *cladatum; struct constraint_node *constraint, *ctemp; struct constraint_expr *e, *etmp; kfree(key); cladatum = datum; hashtab_map(cladatum->permissions.table, perm_destroy, 0); hashtab_destroy(cladatum->permissions.table); constraint = cladatum->constraints; while (constraint) { e = constraint->expr; while (e) { ebitmap_destroy(&e->names); etmp = e; e = e->next; kfree(etmp); } ctemp = constraint; constraint = constraint->next; kfree(ctemp); } kfree(cladatum->comkey); kfree(datum); return 0; } static int role_destroy(void *key, void *datum, void *p) { struct role_datum *role; kfree(key); role = datum; ebitmap_destroy(&role->dominates); ebitmap_destroy(&role->types); kfree(datum); return 0; } static int type_destroy(void *key, void *datum, void *p) { kfree(key); kfree(datum); return 0; } static int user_destroy(void *key, void *datum, void *p) { struct user_datum *usrdatum; kfree(key); usrdatum = datum; ebitmap_destroy(&usrdatum->roles); mls_user_destroy(usrdatum); kfree(datum); return 0; } static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) = { common_destroy, class_destroy, role_destroy, type_destroy, user_destroy, mls_destroy_f cond_destroy_bool }; void ocontext_destroy(struct ocontext *c, int i) { context_destroy(&c->context[0]); context_destroy(&c->context[1]); if (i == OCON_ISID || i == OCON_FS || i == OCON_NETIF || i == OCON_FSUSE) kfree(c->u.name); kfree(c); } /* * Free any memory allocated by a policy database structure. */ void policydb_destroy(struct policydb *p) { struct ocontext *c, *ctmp; struct genfs *g, *gtmp; int i; for (i = 0; i < SYM_NUM; i++) { hashtab_map(p->symtab[i].table, destroy_f[i], 0); hashtab_destroy(p->symtab[i].table); } for (i = 0; i < SYM_NUM; i++) { if (p->sym_val_to_name[i]) kfree(p->sym_val_to_name[i]); } if (p->class_val_to_struct) kfree(p->class_val_to_struct); if (p->role_val_to_struct) kfree(p->role_val_to_struct); if (p->user_val_to_struct) kfree(p->user_val_to_struct); avtab_destroy(&p->te_avtab); for (i = 0; i < OCON_NUM; i++) { c = p->ocontexts[i]; while (c) { ctmp = c; c = c->next; ocontext_destroy(ctmp,i); } } g = p->genfs; while (g) { kfree(g->fstype); c = g->head; while (c) { ctmp = c; c = c->next; ocontext_destroy(ctmp,OCON_FSUSE); } gtmp = g; g = g->next; kfree(gtmp); } cond_policydb_destroy(p); return; } /* * Load the initial SIDs specified in a policy database * structure into a SID table. */ int policydb_load_isids(struct policydb *p, struct sidtab *s) { struct ocontext *head, *c; int rc; rc = sidtab_init(s); if (rc) { printk(KERN_ERR "security: out of memory on SID table init\n"); goto out; } head = p->ocontexts[OCON_ISID]; for (c = head; c; c = c->next) { if (!c->context[0].user) { printk(KERN_ERR "security: SID %s was never " "defined.\n", c->u.name); rc = -EINVAL; goto out; } if (sidtab_insert(s, c->sid[0], &c->context[0])) { printk(KERN_ERR "security: unable to load initial " "SID %s.\n", c->u.name); rc = -EINVAL; goto out; } } out: return rc; } /* * Return 1 if the fields in the security context * structure `c' are valid. Return 0 otherwise. */ int policydb_context_isvalid(struct policydb *p, struct context *c) { struct role_datum *role; struct user_datum *usrdatum; if (!c->role || c->role > p->p_roles.nprim) return 0; if (!c->user || c->user > p->p_users.nprim) return 0; if (!c->type || c->type > p->p_types.nprim) return 0; if (c->role != OBJECT_R_VAL) { /* * Role must be authorized for the type. */ role = p->role_val_to_struct[c->role - 1]; if (!ebitmap_get_bit(&role->types, c->type - 1)) /* role may not be associated with type */ return 0; /* * User must be authorized for the role. */ usrdatum = p->user_val_to_struct[c->user - 1]; if (!usrdatum) return 0; if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1)) /* user may not be associated with role */ return 0; } if (!mls_context_isvalid(p, c)) return 0; return 1; } /* * Read and validate a security context structure * from a policydb binary representation file. */ static int context_read_and_validate(struct context *c, struct policydb *p, void *fp) { u32 *buf; int rc = 0; buf = next_entry(fp, sizeof(u32)*3); if (!buf) { printk(KERN_ERR "security: context truncated\n"); rc = -EINVAL; goto out; } c->user = le32_to_cpu(buf[0]); c->role = le32_to_cpu(buf[1]); c->type = le32_to_cpu(buf[2]); if (mls_read_range(c, fp)) { printk(KERN_ERR "security: error reading MLS range of " "context\n"); rc = -EINVAL; goto out; } if (!policydb_context_isvalid(p, c)) { printk(KERN_ERR "security: invalid security context\n"); context_destroy(c); rc = -EINVAL; } out: return rc; } /* * The following *_read functions are used to * read the symbol data from a policy database * binary representation file. */ static int perm_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = 0; struct perm_datum *perdatum; int rc; u32 *buf, len; perdatum = kmalloc(sizeof(*perdatum), GFP_KERNEL); if (!perdatum) { rc = -ENOMEM; goto out; } memset(perdatum, 0, sizeof(*perdatum)); buf = next_entry(fp, sizeof(u32)*2); if (!buf) { rc = -EINVAL; goto bad; } len = le32_to_cpu(buf[0]); perdatum->value = le32_to_cpu(buf[1]); rc = mls_read_perm(perdatum, fp); if (rc) goto bad; buf = next_entry(fp, len); if (!buf) { rc = -EINVAL; goto bad; } key = kmalloc(len + 1,GFP_KERNEL); if (!key) { rc = -ENOMEM; goto bad; } memcpy(key, buf, len); key[len] = 0; rc = hashtab_insert(h, key, perdatum); if (rc) goto bad; out: return rc; bad: perm_destroy(key, perdatum, NULL); goto out; } static int common_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = 0; struct common_datum *comdatum; u32 *buf, len, nel; int i, rc; comdatum = kmalloc(sizeof(*comdatum), GFP_KERNEL); if (!comdatum) { rc = -ENOMEM; goto out; } memset(comdatum, 0, sizeof(*comdatum)); buf = next_entry(fp, sizeof(u32)*4); if (!buf) { rc = -EINVAL; goto bad; } len = le32_to_cpu(buf[0]); comdatum->value = le32_to_cpu(buf[1]); rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE); if (rc) goto bad; comdatum->permissions.nprim = le32_to_cpu(buf[2]); nel = le32_to_cpu(buf[3]); buf = next_entry(fp, len); if (!buf) { rc = -EINVAL; goto bad; } key = kmalloc(len + 1,GFP_KERNEL); if (!key) { rc = -ENOMEM; goto bad; } memcpy(key, buf, len); key[len] = 0; for (i = 0; i < nel; i++) { rc = perm_read(p, comdatum->permissions.table, fp); if (rc) goto bad; } rc = hashtab_insert(h, key, comdatum); if (rc) goto bad; out: return rc; bad: common_destroy(key, comdatum, NULL); goto out; } static int class_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = 0; struct class_datum *cladatum; struct constraint_node *c, *lc; struct constraint_expr *e, *le; u32 *buf, len, len2, ncons, nexpr, nel; int i, j, depth, rc; cladatum = kmalloc(sizeof(*cladatum), GFP_KERNEL); if (!cladatum) { rc = -ENOMEM; goto bad; } memset(cladatum, 0, sizeof(*cladatum)); buf = next_entry(fp, sizeof(u32)*6); if (!buf) { rc = -EINVAL; goto bad; } len = le32_to_cpu(buf[0]); len2 = le32_to_cpu(buf[1]); cladatum->value = le32_to_cpu(buf[2]); rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE); if (rc) goto bad; cladatum->permissions.nprim = le32_to_cpu(buf[3]); nel = le32_to_cpu(buf[4]); ncons = le32_to_cpu(buf[5]); buf = next_entry(fp, len); if (!buf) { rc = -EINVAL; goto bad; } key = kmalloc(len + 1,GFP_KERNEL); if (!key) { rc = -ENOMEM; goto bad; } memcpy(key, buf, len); key[len] = 0; if (len2) { cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL); if (!cladatum->comkey) { rc = -ENOMEM; goto bad; } buf = next_entry(fp, len2); if (!buf) { rc = -EINVAL; goto bad; } memcpy(cladatum->comkey, buf, len2); cladatum->comkey[len2] = 0; cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey); if (!cladatum->comdatum) { printk(KERN_ERR "security: unknown common %s\n", cladatum->comkey); rc = -EINVAL; goto bad; } } for (i = 0; i < nel; i++) { rc = perm_read(p, cladatum->permissions.table, fp); if (rc) goto bad; } lc = NULL; rc = -EINVAL; for (i = 0; i < ncons; i++) { c = kmalloc(sizeof(*c), GFP_KERNEL); if (!c) { rc = -ENOMEM; goto bad; } memset(c, 0, sizeof(*c)); if (lc) { lc->next = c; } else { cladatum->constraints = c; } buf = next_entry(fp, sizeof(u32)*2); if (!buf) goto bad; c->permissions = le32_to_cpu(buf[0]); nexpr = le32_to_cpu(buf[1]); le = NULL; depth = -1; for (j = 0; j < nexpr; j++) { e = kmalloc(sizeof(*e), GFP_KERNEL); if (!e) { rc = -ENOMEM; goto bad; } memset(e, 0, sizeof(*e)); if (le) { le->next = e; } else { c->expr = e; } buf = next_entry(fp, sizeof(u32)*3); if (!buf) goto bad; e->expr_type = le32_to_cpu(buf[0]); e->attr = le32_to_cpu(buf[1]); e->op = le32_to_cpu(buf[2]); switch (e->expr_type) { case CEXPR_NOT: if (depth < 0) goto bad; break; case CEXPR_AND: case CEXPR_OR: if (depth < 1) goto bad; depth--; break; case CEXPR_ATTR: if (depth == (CEXPR_MAXDEPTH-1)) goto bad; depth++; break; case CEXPR_NAMES: if (depth == (CEXPR_MAXDEPTH-1)) goto bad; depth++; if (ebitmap_read(&e->names, fp)) goto bad; break; default: goto bad; } le = e; } if (depth != 0) goto bad; lc = c; } rc = mls_read_class(cladatum, fp); if (rc) goto bad; rc = hashtab_insert(h, key, cladatum); if (rc) goto bad; out: return rc; bad: class_destroy(key, cladatum, NULL); goto out; } static int role_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = 0; struct role_datum *role; int rc; u32 *buf, len; role = kmalloc(sizeof(*role), GFP_KERNEL); if (!role) { rc = -ENOMEM; goto out; } memset(role, 0, sizeof(*role)); buf = next_entry(fp, sizeof(u32)*2); if (!buf) { rc = -EINVAL; goto bad; } len = le32_to_cpu(buf[0]); role->value = le32_to_cpu(buf[1]); buf = next_entry(fp, len); if (!buf) { rc = -EINVAL; goto bad; } key = kmalloc(len + 1,GFP_KERNEL); if (!key) { rc = -ENOMEM; goto bad; } memcpy(key, buf, len); key[len] = 0; rc = ebitmap_read(&role->dominates, fp); if (rc) goto bad; rc = ebitmap_read(&role->types, fp); if (rc) goto bad; if (strcmp(key, OBJECT_R) == 0) { if (role->value != OBJECT_R_VAL) { printk(KERN_ERR "Role %s has wrong value %d\n", OBJECT_R, role->value); rc = -EINVAL; goto bad; } rc = 0; goto bad; } rc = hashtab_insert(h, key, role); if (rc) goto bad; out: return rc; bad: role_destroy(key, role, NULL); goto out; } static int type_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = 0; struct type_datum *typdatum; int rc; u32 *buf, len; typdatum = kmalloc(sizeof(*typdatum),GFP_KERNEL); if (!typdatum) { rc = -ENOMEM; return rc; } memset(typdatum, 0, sizeof(*typdatum)); buf = next_entry(fp, sizeof(u32)*3); if (!buf) { rc = -EINVAL; goto bad; } len = le32_to_cpu(buf[0]); typdatum->value = le32_to_cpu(buf[1]); typdatum->primary = le32_to_cpu(buf[2]); buf = next_entry(fp, len); if (!buf) { rc = -EINVAL; goto bad; } key = kmalloc(len + 1,GFP_KERNEL); if (!key) { rc = -ENOMEM; goto bad; } memcpy(key, buf, len); key[len] = 0; rc = hashtab_insert(h, key, typdatum); if (rc) goto bad; out: return rc; bad: type_destroy(key, typdatum, NULL); goto out; } static int user_read(struct policydb *p, struct hashtab *h, void *fp) { char *key = 0; struct user_datum *usrdatum; int rc; u32 *buf, len; usrdatum = kmalloc(sizeof(*usrdatum), GFP_KERNEL); if (!usrdatum) { rc = -ENOMEM; goto out; } memset(usrdatum, 0, sizeof(*usrdatum)); buf = next_entry(fp, sizeof(u32)*2); if (!buf) { rc = -EINVAL; goto bad; } len = le32_to_cpu(buf[0]); usrdatum->value = le32_to_cpu(buf[1]); buf = next_entry(fp, len); if (!buf) { rc = -EINVAL; goto bad; } key = kmalloc(len + 1,GFP_KERNEL); if (!key) { rc = -ENOMEM; goto bad; } memcpy(key, buf, len); key[len] = 0; rc = ebitmap_read(&usrdatum->roles, fp); if (rc) goto bad; rc = mls_read_user(usrdatum, fp); if (rc) goto bad; rc = hashtab_insert(h, key, usrdatum); if (rc) goto bad; out: return rc; bad: user_destroy(key, usrdatum, NULL); goto out; } static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) = { common_read, class_read, role_read, type_read, user_read, mls_read_f cond_read_bool }; #define mls_config(x) \ ((x) & POLICYDB_CONFIG_MLS) ? "mls" : "no_mls" /* * Read the configuration data from a policy database binary * representation file into a policy database structure. */ int policydb_read(struct policydb *p, void *fp) { struct role_allow *ra, *lra; struct role_trans *tr, *ltr; struct ocontext *l, *c, *newc; struct genfs *genfs_p, *genfs, *newgenfs; int i, j, rc, r_policyvers; u32 *buf, len, len2, config, nprim, nel, nel2; char *policydb_str; struct policydb_compat_info *info; config = 0; mls_set_config(config); rc = policydb_init(p); if (rc) goto out; rc = -EINVAL; /* Read the magic number and string length. */ buf = next_entry(fp, sizeof(u32)* 2); if (!buf) goto bad; for (i = 0; i < 2; i++) buf[i] = le32_to_cpu(buf[i]); if (buf[0] != POLICYDB_MAGIC) { printk(KERN_ERR "security: policydb magic number 0x%x does " "not match expected magic number 0x%x\n", buf[0], POLICYDB_MAGIC); goto bad; } len = buf[1]; if (len != strlen(POLICYDB_STRING)) { printk(KERN_ERR "security: policydb string length %d does not " "match expected length %Zu\n", len, strlen(POLICYDB_STRING)); goto bad; } buf = next_entry(fp, len); if (!buf) { printk(KERN_ERR "security: truncated policydb string identifier\n"); goto bad; } policydb_str = kmalloc(len + 1,GFP_KERNEL); if (!policydb_str) { printk(KERN_ERR "security: unable to allocate memory for policydb " "string of length %d\n", len); rc = -ENOMEM; goto bad; } memcpy(policydb_str, buf, len); policydb_str[len] = 0; if (strcmp(policydb_str, POLICYDB_STRING)) { printk(KERN_ERR "security: policydb string %s does not match " "my string %s\n", policydb_str, POLICYDB_STRING); kfree(policydb_str); goto bad; } /* Done with policydb_str. */ kfree(policydb_str); policydb_str = NULL; /* Read the version, config, and table sizes. */ buf = next_entry(fp, sizeof(u32)*4); if (!buf) goto bad; for (i = 0; i < 4; i++) buf[i] = le32_to_cpu(buf[i]); r_policyvers = buf[0]; if (r_policyvers < POLICYDB_VERSION_MIN || r_policyvers > POLICYDB_VERSION_MAX) { printk(KERN_ERR "security: policydb version %d does not match " "my version range %d-%d\n", buf[0], POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX); goto bad; } if (buf[1] != config) { printk(KERN_ERR "security: policydb configuration (%s) does " "not match my configuration (%s)\n", mls_config(buf[1]), mls_config(config)); goto bad; } info = policydb_lookup_compat(r_policyvers); if (!info) { printk(KERN_ERR "security: unable to find policy compat info " "for version %d\n", r_policyvers); goto bad; } if (buf[2] != info->sym_num || buf[3] != info->ocon_num) { printk(KERN_ERR "security: policydb table sizes (%d,%d) do " "not match mine (%d,%d)\n", buf[2], buf[3], info->sym_num, info->ocon_num); goto bad; } rc = mls_read_nlevels(p, fp); if (rc) goto bad; for (i = 0; i < info->sym_num; i++) { buf = next_entry(fp, sizeof(u32)*2); if (!buf) { rc = -EINVAL; goto bad; } nprim = le32_to_cpu(buf[0]); nel = le32_to_cpu(buf[1]); for (j = 0; j < nel; j++) { rc = read_f[i](p, p->symtab[i].table, fp); if (rc) goto bad; } p->symtab[i].nprim = nprim; } rc = avtab_read(&p->te_avtab, fp, config); if (rc) goto bad; if (r_policyvers >= POLICYDB_VERSION_BOOL) { rc = cond_read_list(p, fp); if (rc) goto bad; } buf = next_entry(fp, sizeof(u32)); if (!buf) { rc = -EINVAL; goto bad; } nel = le32_to_cpu(buf[0]); ltr = NULL; for (i = 0; i < nel; i++) { tr = kmalloc(sizeof(*tr), GFP_KERNEL); if (!tr) { rc = -ENOMEM; goto bad; } memset(tr, 0, sizeof(*tr)); if (ltr) { ltr->next = tr; } else { p->role_tr = tr; } buf = next_entry(fp, sizeof(u32)*3); if (!buf) { rc = -EINVAL; goto bad; } tr->role = le32_to_cpu(buf[0]); tr->type = le32_to_cpu(buf[1]); tr->new_role = le32_to_cpu(buf[2]); ltr = tr; } buf = next_entry(fp, sizeof(u32)); if (!buf) { rc = -EINVAL; goto bad; } nel = le32_to_cpu(buf[0]); lra = NULL; for (i = 0; i < nel; i++) { ra = kmalloc(sizeof(*ra), GFP_KERNEL); if (!ra) { rc = -ENOMEM; goto bad; } memset(ra, 0, sizeof(*ra)); if (lra) { lra->next = ra; } else { p->role_allow = ra; } buf = next_entry(fp, sizeof(u32)*2); if (!buf) { rc = -EINVAL; goto bad; } ra->role = le32_to_cpu(buf[0]); ra->new_role = le32_to_cpu(buf[1]); lra = ra; } rc = policydb_index_classes(p); if (rc) goto bad; rc = policydb_index_others(p); if (rc) goto bad; for (i = 0; i < info->ocon_num; i++) { buf = next_entry(fp, sizeof(u32)); if (!buf) { rc = -EINVAL; goto bad; } nel = le32_to_cpu(buf[0]); l = NULL; for (j = 0; j < nel; j++) { c = kmalloc(sizeof(*c), GFP_KERNEL); if (!c) { rc = -ENOMEM; goto bad; } memset(c, 0, sizeof(*c)); if (l) { l->next = c; } else { p->ocontexts[i] = c; } l = c; rc = -EINVAL; switch (i) { case OCON_ISID: buf = next_entry(fp, sizeof(u32)); if (!buf) goto bad; c->sid[0] = le32_to_cpu(buf[0]); rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto bad; break; case OCON_FS: case OCON_NETIF: buf = next_entry(fp, sizeof(u32)); if (!buf) goto bad; len = le32_to_cpu(buf[0]); buf = next_entry(fp, len); if (!buf) goto bad; c->u.name = kmalloc(len + 1,GFP_KERNEL); if (!c->u.name) { rc = -ENOMEM; goto bad; } memcpy(c->u.name, buf, len); c->u.name[len] = 0; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto bad; rc = context_read_and_validate(&c->context[1], p, fp); if (rc) goto bad; break; case OCON_PORT: buf = next_entry(fp, sizeof(u32)*3); if (!buf) goto bad; c->u.port.protocol = le32_to_cpu(buf[0]); c->u.port.low_port = le32_to_cpu(buf[1]); c->u.port.high_port = le32_to_cpu(buf[2]); rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto bad; break; case OCON_NODE: buf = next_entry(fp, sizeof(u32)* 2); if (!buf) goto bad; c->u.node.addr = le32_to_cpu(buf[0]); c->u.node.mask = le32_to_cpu(buf[1]); rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto bad; break; case OCON_FSUSE: buf = next_entry(fp, sizeof(u32)*2); if (!buf) goto bad; c->v.behavior = le32_to_cpu(buf[0]); if (c->v.behavior > SECURITY_FS_USE_NONE) goto bad; len = le32_to_cpu(buf[1]); buf = next_entry(fp, len); if (!buf) goto bad; c->u.name = kmalloc(len + 1,GFP_KERNEL); if (!c->u.name) { rc = -ENOMEM; goto bad; } memcpy(c->u.name, buf, len); c->u.name[len] = 0; rc = context_read_and_validate(&c->context[0], p, fp); if (rc) goto bad; break; case OCON_NODE6: { int k; buf = next_entry(fp, sizeof(u32) * 8); if (!buf) goto bad; for (k = 0; k < 4; k++) c->u.node6.addr[k] = le32_to_cpu(buf[k]); for (k = 0; k < 4; k++) c->u.node6.mask[k] = le32_to_cpu(buf[k+4]); if (context_read_and_validate(&c->context[0], p, fp)) goto bad; break; } } } } buf = next_entry(fp, sizeof(u32)); if (!buf) { rc = -EINVAL; goto bad; } nel = le32_to_cpu(buf[0]); genfs_p = NULL; rc = -EINVAL; for (i = 0; i < nel; i++) { buf = next_entry(fp, sizeof(u32)); if (!buf) goto bad; len = le32_to_cpu(buf[0]); buf = next_entry(fp, len); if (!buf) goto bad; newgenfs = kmalloc(sizeof(*newgenfs), GFP_KERNEL); if (!newgenfs) { rc = -ENOMEM; goto bad; } memset(newgenfs, 0, sizeof(*newgenfs)); newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL); if (!newgenfs->fstype) { rc = -ENOMEM; kfree(newgenfs); goto bad; } memcpy(newgenfs->fstype, buf, len); newgenfs->fstype[len] = 0; for (genfs_p = NULL, genfs = p->genfs; genfs; genfs_p = genfs, genfs = genfs->next) { if (strcmp(newgenfs->fstype, genfs->fstype) == 0) { printk(KERN_ERR "security: dup genfs " "fstype %s\n", newgenfs->fstype); kfree(newgenfs->fstype); kfree(newgenfs); goto bad; } if (strcmp(newgenfs->fstype, genfs->fstype) < 0) break; } newgenfs->next = genfs; if (genfs_p) genfs_p->next = newgenfs; else p->genfs = newgenfs; buf = next_entry(fp, sizeof(u32)); if (!buf) goto bad; nel2 = le32_to_cpu(buf[0]); for (j = 0; j < nel2; j++) { buf = next_entry(fp, sizeof(u32)); if (!buf) goto bad; len = le32_to_cpu(buf[0]); buf = next_entry(fp, len); if (!buf) goto bad; newc = kmalloc(sizeof(*newc), GFP_KERNEL); if (!newc) { rc = -ENOMEM; goto bad; } memset(newc, 0, sizeof(*newc)); newc->u.name = kmalloc(len + 1,GFP_KERNEL); if (!newc->u.name) { rc = -ENOMEM; goto bad_newc; } memcpy(newc->u.name, buf, len); newc->u.name[len] = 0; buf = next_entry(fp, sizeof(u32)); if (!buf) goto bad_newc; newc->v.sclass = le32_to_cpu(buf[0]); if (context_read_and_validate(&newc->context[0], p, fp)) goto bad_newc; for (l = NULL, c = newgenfs->head; c; l = c, c = c->next) { if (!strcmp(newc->u.name, c->u.name) && (!c->v.sclass || !newc->v.sclass || newc->v.sclass == c->v.sclass)) { printk(KERN_ERR "security: dup genfs " "entry (%s,%s)\n", newgenfs->fstype, c->u.name); goto bad_newc; } len = strlen(newc->u.name); len2 = strlen(c->u.name); if (len > len2) break; } newc->next = c; if (l) l->next = newc; else newgenfs->head = newc; } } rc = mls_read_trusted(p, fp); if (rc) goto bad; out: return rc; bad_newc: ocontext_destroy(newc,OCON_FSUSE); bad: policydb_destroy(p); goto out; }