/*
 *  arch/s390/kernel/smp.c
 *
 *  S390 version
 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
 *
 *  based on other smp stuff by 
 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
 *    (c) 1998 Ingo Molnar
 *
 * We work with logical cpu numbering everywhere we can. The only
 * functions using the real cpu address (got from STAP) are the sigp
 * functions. For all other functions we use the identity mapping.
 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
 * used e.g. to find the idle task belonging to a logical cpu. Every array
 * in the kernel is sorted by the logical cpu number and not by the physical
 * one which is causing all the confusion with __cpu_logical_map and
 * cpu_number_map in other architectures.
 */

#include <linux/module.h>
#include <linux/init.h>

#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/kernel_stat.h>
#include <linux/smp_lock.h>

#include <linux/delay.h>
#include <linux/cache.h>

#include <asm/sigp.h>
#include <asm/pgalloc.h>
#include <asm/irq.h>
#include <asm/s390_ext.h>
#include <asm/cpcmd.h>
#include <asm/tlbflush.h>

/* prototypes */
extern int cpu_idle(void * unused);

extern __u16 boot_cpu_addr;
extern volatile int __cpu_logical_map[];

/*
 * An array with a pointer the lowcore of every CPU.
 */
static int       max_cpus = NR_CPUS;	  /* Setup configured maximum number of CPUs to activate	*/
int              smp_num_cpus;
struct _lowcore *lowcore_ptr[NR_CPUS];
cycles_t         cacheflush_time=0;
int              smp_threads_ready=0;      /* Set when the idlers are all forked. */
static atomic_t  smp_commenced = ATOMIC_INIT(0);

spinlock_t       kernel_flag __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;

volatile unsigned long phys_cpu_present_map;
volatile unsigned long cpu_online_map;
unsigned long    cache_decay_ticks = 0;

/*
 *      Setup routine for controlling SMP activation
 *
 *      Command-line option of "nosmp" or "maxcpus=0" will disable SMP
 *      activation entirely (the MPS table probe still happens, though).
 *
 *      Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
 *      greater than 0, limits the maximum number of CPUs activated in
 *      SMP mode to <NUM>.
 */

static int __init nosmp(char *str)
{
	max_cpus = 0;
	return 1;
}

__setup("nosmp", nosmp);

static int __init maxcpus(char *str)
{
	get_option(&str, &max_cpus);
	return 1;
}

__setup("maxcpus=", maxcpus);

/*
 * Reboot, halt and power_off routines for SMP.
 */
extern char vmhalt_cmd[];
extern char vmpoff_cmd[];

extern void reipl(unsigned long devno);

static sigp_ccode smp_ext_bitcall(int, ec_bit_sig);
static void smp_ext_bitcall_others(ec_bit_sig);

/*
 * Structure and data for smp_call_function(). This is designed to minimise
 * static memory requirements. It also looks cleaner.
 */
static spinlock_t call_lock = SPIN_LOCK_UNLOCKED;

struct call_data_struct {
	void (*func) (void *info);
	void *info;
	atomic_t started;
	atomic_t finished;
	int wait;
};

static struct call_data_struct * call_data;

/*
 * 'Call function' interrupt callback
 */
static void do_call_function(void)
{
	void (*func) (void *info) = call_data->func;
	void *info = call_data->info;
	int wait = call_data->wait;

	atomic_inc(&call_data->started);
	(*func)(info);
	if (wait)
		atomic_inc(&call_data->finished);
}

/*
 * this function sends a 'generic call function' IPI to all other CPUs
 * in the system.
 */

int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
			int wait)
/*
 * [SUMMARY] Run a function on all other CPUs.
 * <func> The function to run. This must be fast and non-blocking.
 * <info> An arbitrary pointer to pass to the function.
 * <nonatomic> currently unused.
 * <wait> If true, wait (atomically) until function has completed on other CPUs.
 * [RETURNS] 0 on success, else a negative status code. Does not return until
 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
 *
 * You must not call this function with disabled interrupts or from a
 * hardware interrupt handler or from a bottom half handler.
 */
{
	struct call_data_struct data;
	int cpus = smp_num_cpus-1;

	if (!cpus || !atomic_read(&smp_commenced))
		return 0;

	data.func = func;
	data.info = info;
	atomic_set(&data.started, 0);
	data.wait = wait;
	if (wait)
		atomic_set(&data.finished, 0);

	spin_lock(&call_lock);
	call_data = &data;
	/* Send a message to all other CPUs and wait for them to respond */
        smp_ext_bitcall_others(ec_call_function);

	/* Wait for response */
	while (atomic_read(&data.started) != cpus)
		barrier();

	if (wait)
		while (atomic_read(&data.finished) != cpus)
			barrier();
	spin_unlock(&call_lock);

	return 0;
}

static inline void do_send_stop(void)
{
        u32 dummy;
        int i, rc;

        /* stop all processors */
        for (i =  0; i < smp_num_cpus; i++) {
                if (smp_processor_id() == i)
			continue;
		do {
			rc = signal_processor_ps(&dummy, 0, i, sigp_stop);
		} while (rc == sigp_busy);
	}
}

static inline void do_store_status(void)
{
        unsigned long low_core_addr;
        u32 dummy;
        int i, rc;

        /* store status of all processors in their lowcores (real 0) */
        for (i =  0; i < smp_num_cpus; i++) {
                if (smp_processor_id() == i)
			continue;
		low_core_addr = (unsigned long)get_cpu_lowcore(i);
		do {
			rc = signal_processor_ps(&dummy, low_core_addr, i,
						 sigp_store_status_at_address);
		} while(rc == sigp_busy);
        }
}

/*
 * this function sends a 'stop' sigp to all other CPUs in the system.
 * it goes straight through.
 */
void smp_send_stop(void)
{
        /* write magic number to zero page (absolute 0) */
        get_cpu_lowcore(smp_processor_id())->panic_magic = __PANIC_MAGIC;

	/* stop other processors. */
	do_send_stop();

	/* store status of other processors. */
	do_store_status();
}

/*
 * Reboot, halt and power_off routines for SMP.
 */
static volatile unsigned long cpu_restart_map;

static void do_machine_restart(void * __unused)
{
	clear_bit(smp_processor_id(), &cpu_restart_map);
	if (smp_processor_id() == 0) {
		/* Wait for all other cpus to enter do_machine_restart. */
		while (cpu_restart_map != 0);
		/* Store status of other cpus. */
		do_store_status();
		/*
		 * Finally call reipl. Because we waited for all other
		 * cpus to enter this function we know that they do
		 * not hold any s390irq-locks (the cpus have been
		 * interrupted by an external interrupt and s390irq
		 * locks are always held disabled).
		 */
		reipl(S390_lowcore.ipl_device);
	}
	signal_processor(smp_processor_id(), sigp_stop);
}

void machine_restart_smp(char * __unused) 
{
	cpu_restart_map = cpu_online_map;
        smp_call_function(do_machine_restart, NULL, 0, 0);
	do_machine_restart(NULL);
}

static void do_machine_halt(void * __unused)
{
	if (smp_processor_id() == 0) {
		smp_send_stop();
		if (MACHINE_IS_VM && strlen(vmhalt_cmd) > 0)
			cpcmd(vmhalt_cmd, NULL, 0);
		signal_processor(smp_processor_id(),
				 sigp_stop_and_store_status);
	}
	for (;;)
		enabled_wait();
}

void machine_halt_smp(void)
{
        smp_call_function(do_machine_halt, NULL, 0, 0);
	do_machine_halt(NULL);
}

static void do_machine_power_off(void * __unused)
{
	if (smp_processor_id() == 0) {
		smp_send_stop();
		if (MACHINE_IS_VM && strlen(vmpoff_cmd) > 0)
			cpcmd(vmpoff_cmd, NULL, 0);
		signal_processor(smp_processor_id(),
				 sigp_stop_and_store_status);
	}
	for (;;)
		enabled_wait();
}

void machine_power_off_smp(void)
{
        smp_call_function(do_machine_power_off, NULL, 0, 0);
	do_machine_power_off(NULL);
}

/*
 * This is the main routine where commands issued by other
 * cpus are handled.
 */

void do_ext_call_interrupt(struct pt_regs *regs, __u16 code)
{
        int bits;

        /*
         * handle bit signal external calls
         *
         * For the ec_schedule signal we have to do nothing. All the work
         * is done automatically when we return from the interrupt.
         */
        do {
                bits = atomic_read(&S390_lowcore.ext_call_fast);
        } while (atomic_compare_and_swap(bits,0,&S390_lowcore.ext_call_fast));

	if (test_bit(ec_call_function, &bits)) 
		do_call_function();
}

/*
 * Send an external call sigp to another cpu and return without waiting
 * for its completion.
 */
static sigp_ccode smp_ext_bitcall(int cpu, ec_bit_sig sig)
{
        struct _lowcore *lowcore = get_cpu_lowcore(cpu);
        sigp_ccode ccode;

        /*
         * Set signaling bit in lowcore of target cpu and kick it
         */
        atomic_set_mask(1<<sig, &lowcore->ext_call_fast);
        ccode = signal_processor(cpu, sigp_external_call);
        return ccode;
}

/*
 * Send an external call sigp to every other cpu in the system and
 * return without waiting for its completion.
 */
static void smp_ext_bitcall_others(ec_bit_sig sig)
{
        struct _lowcore *lowcore;
        int i;

        for (i = 0; i < smp_num_cpus; i++) {
                if (smp_processor_id() == i)
                        continue;
                lowcore = get_cpu_lowcore(i);
                /*
                 * Set signaling bit in lowcore of target cpu and kick it
                 */
                atomic_set_mask(1<<sig, &lowcore->ext_call_fast);
                while (signal_processor(i, sigp_external_call) == sigp_busy)
			udelay(10);
        }
}

/*
 * this function sends a 'purge tlb' signal to another CPU.
 */
void smp_ptlb_callback(void *info)
{
	local_flush_tlb();
}

void smp_ptlb_all(void)
{
        smp_call_function(smp_ptlb_callback, NULL, 0, 1);
	local_flush_tlb();
}

/*
 * this function sends a 'reschedule' IPI to another CPU.
 * it goes straight through and wastes no time serializing
 * anything. Worst case is that we lose a reschedule ...
 */
void smp_send_reschedule(int cpu)
{
        smp_ext_bitcall(cpu, ec_schedule);
}

/*
 * parameter area for the set/clear control bit callbacks
 */
typedef struct
{
	__u16 start_ctl;
	__u16 end_ctl;
	__u32 orvals[16];
	__u32 andvals[16];
} ec_creg_mask_parms;

/*
 * callback for setting/clearing control bits
 */
void smp_ctl_bit_callback(void *info) {
	ec_creg_mask_parms *pp;
	u32 cregs[16];
	int i;
	
	pp = (ec_creg_mask_parms *) info;
	asm volatile ("   bras  1,0f\n"
		      "   stctl 0,0,0(%0)\n"
		      "0: ex    %1,0(1)\n"
		      : : "a" (cregs+pp->start_ctl),
		          "a" ((pp->start_ctl<<4) + pp->end_ctl)
		      : "memory", "1" );
	for (i = pp->start_ctl; i <= pp->end_ctl; i++)
		cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
	asm volatile ("   bras  1,0f\n"
		      "   lctl 0,0,0(%0)\n"
		      "0: ex    %1,0(1)\n"
		      : : "a" (cregs+pp->start_ctl),
		          "a" ((pp->start_ctl<<4) + pp->end_ctl)
		      : "memory", "1" );
	return;
}

/*
 * Set a bit in a control register of all cpus
 */
void smp_ctl_set_bit(int cr, int bit) {
        ec_creg_mask_parms parms;

        if (atomic_read(&smp_commenced) != 0) {
                parms.start_ctl = cr;
                parms.end_ctl = cr;
                parms.orvals[cr] = 1 << bit;
                parms.andvals[cr] = 0xFFFFFFFF;
                smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
        }
        __ctl_set_bit(cr, bit);
}

/*
 * Clear a bit in a control register of all cpus
 */
void smp_ctl_clear_bit(int cr, int bit) {
        ec_creg_mask_parms parms;

        if (atomic_read(&smp_commenced) != 0) {
                parms.start_ctl = cr;
                parms.end_ctl = cr;
                parms.orvals[cr] = 0x00000000;
                parms.andvals[cr] = ~(1 << bit);
                smp_call_function(smp_ctl_bit_callback, &parms, 0, 1);
        }
        __ctl_clear_bit(cr, bit);
}

/*
 * Lets check how many CPUs we have.
 */

void smp_count_cpus(void)
{
        int curr_cpu;

        current_thread_info()->cpu = 0;
        smp_num_cpus = 1;
	phys_cpu_present_map = 1;
	cpu_online_map = 1;
        for (curr_cpu = 0;
             curr_cpu <= 65535 && smp_num_cpus < max_cpus; curr_cpu++) {
                if ((__u16) curr_cpu == boot_cpu_addr)
                        continue;
                __cpu_logical_map[smp_num_cpus] = (__u16) curr_cpu;
                if (signal_processor(smp_num_cpus, sigp_sense) ==
                    sigp_not_operational)
                        continue;
		set_bit(smp_num_cpus, &phys_cpu_present_map);
                smp_num_cpus++;
        }
        printk("Detected %d CPU's\n",(int) smp_num_cpus);
        printk("Boot cpu address %2X\n", boot_cpu_addr);
}


/*
 *      Activate a secondary processor.
 */
extern void init_cpu_timer(void);
extern int pfault_init(void);
extern int pfault_token(void);

int __init start_secondary(void *cpuvoid)
{
        /* Setup the cpu */
        cpu_init();
	/* Mark this cpu as online */
	set_bit(smp_processor_id(), &cpu_online_map);
        /* Print info about this processor */
        print_cpu_info(&safe_get_cpu_lowcore(smp_processor_id())->cpu_data);
        /* Wait for completion of smp startup */
        while (!atomic_read(&smp_commenced))
                /* nothing */ ;
        /* init per CPU timer */
        init_cpu_timer();
#ifdef CONFIG_PFAULT
	/* Enable pfault pseudo page faults on this cpu. */
	pfault_init();
#endif
        /* cpu_idle will call schedule for us */
        return cpu_idle(NULL);
}

static struct task_struct *__init fork_by_hand(void)
{
       struct pt_regs regs;
       /* don't care about the psw and regs settings since we'll never
          reschedule the forked task. */
       memset(&regs,0,sizeof(struct pt_regs));
       return do_fork(CLONE_VM|CLONE_IDLETASK, 0, &regs, 0);
}

static void __init do_boot_cpu(int cpu)
{
        struct task_struct *idle;
        struct _lowcore    *cpu_lowcore;

        /* We can't use kernel_thread since we must _avoid_ to reschedule
           the child. */
        idle = fork_by_hand();
	if (IS_ERR(idle))
                panic("failed fork for CPU %d", cpu);

        /*
         * We remove it from the pidhash and the runqueue
         * once we got the process:
         */
	init_idle(idle, cpu);

        unhash_process(idle);

        cpu_lowcore = get_cpu_lowcore(cpu);
	cpu_lowcore->save_area[15] = idle->thread.ksp;
	cpu_lowcore->kernel_stack = (__u32) idle->thread_info + 8192;
        __asm__ __volatile__("la    1,%0\n\t"
			     "stctl 0,15,0(1)\n\t"
			     "la    1,%1\n\t"
                             "stam  0,15,0(1)"
                             : "=m" (cpu_lowcore->cregs_save_area[0]),
                               "=m" (cpu_lowcore->access_regs_save_area[0])
                             : : "1", "memory");

        eieio();
        signal_processor(cpu,sigp_restart);
}

/*
 *      Architecture specific routine called by the kernel just before init is
 *      fired off. This allows the BP to have everything in order [we hope].
 *      At the end of this all the APs will hit the system scheduling and off
 *      we go. Each AP will load the system gdt's and jump through the kernel
 *      init into idle(). At this point the scheduler will one day take over
 *      and give them jobs to do. smp_callin is a standard routine
 *      we use to track CPUs as they power up.
 */

void __init smp_commence(void)
{
        /*
         *      Lets the callins below out of their loop.
         */
        atomic_set(&smp_commenced,1);
}

/*
 *	Cycle through the processors sending sigp_restart to boot each.
 */

void __init smp_boot_cpus(void)
{
	unsigned long async_stack;
        sigp_ccode   ccode;
        int i;

        /* request the 0x1202 external interrupt */
        if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
                panic("Couldn't request external interrupt 0x1202");
        smp_count_cpus();
        memset(lowcore_ptr,0,sizeof(lowcore_ptr));  
        
        /*
         *      Initialize the logical to physical CPU number mapping
         */
        print_cpu_info(&safe_get_cpu_lowcore(0)->cpu_data);

        for(i = 0; i < smp_num_cpus; i++) {
		lowcore_ptr[i] = (struct _lowcore *)
			__get_free_page(GFP_KERNEL|GFP_DMA);
		async_stack = __get_free_pages(GFP_KERNEL,1);
		if (lowcore_ptr[i] == NULL || async_stack == 0UL)
			panic("smp_boot_cpus failed to allocate memory\n");

                memcpy(lowcore_ptr[i], &S390_lowcore, sizeof(struct _lowcore));
		lowcore_ptr[i]->async_stack = async_stack + (2 * PAGE_SIZE);
                /*
                 * Most of the parameters are set up when the cpu is
                 * started up.
                 */
		if (smp_processor_id() == i) {
			set_prefix((u32) lowcore_ptr[i]);
			continue;
		}
		ccode = signal_processor_p((u32)(lowcore_ptr[i]),
					   i, sigp_set_prefix);
		if (ccode)
			panic("sigp_set_prefix failed for cpu %d "
			      "with condition code %d\n",
			      (int) i, (int) ccode);
		do_boot_cpu(i);
	}
	/*
	 * Now wait until all of the cpus are online.
	 */
	while (phys_cpu_present_map != cpu_online_map);
}

/*
 * the frequency of the profiling timer can be changed
 * by writing a multiplier value into /proc/profile.
 *
 * usually you want to run this on all CPUs ;)
 */
int setup_profiling_timer(unsigned int multiplier)
{
        return 0;
}

EXPORT_SYMBOL(lowcore_ptr);
EXPORT_SYMBOL(kernel_flag);
EXPORT_SYMBOL(smp_ctl_set_bit);
EXPORT_SYMBOL(smp_ctl_clear_bit);
EXPORT_SYMBOL(smp_num_cpus);
EXPORT_SYMBOL(smp_call_function);