/* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $ * irq.c: UltraSparc IRQ handling/init/registry. * * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) */ #include <linux/config.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/kernel_stat.h> #include <linux/signal.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <asm/ptrace.h> #include <asm/processor.h> #include <asm/atomic.h> #include <asm/system.h> #include <asm/irq.h> #include <asm/sbus.h> #include <asm/iommu.h> #include <asm/upa.h> #include <asm/oplib.h> #include <asm/timer.h> #include <asm/smp.h> #include <asm/hardirq.h> #include <asm/starfire.h> #include <asm/uaccess.h> #include <asm/cache.h> #include <asm/cpudata.h> #ifdef CONFIG_SMP static void distribute_irqs(void); #endif /* UPA nodes send interrupt packet to UltraSparc with first data reg * value low 5 (7 on Starfire) bits holding the IRQ identifier being * delivered. We must translate this into a non-vector IRQ so we can * set the softint on this cpu. * * To make processing these packets efficient and race free we use * an array of irq buckets below. The interrupt vector handler in * entry.S feeds incoming packets into per-cpu pil-indexed lists. * The IVEC handler does not need to act atomically, the PIL dispatch * code uses CAS to get an atomic snapshot of the list and clear it * at the same time. */ struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES))); /* This has to be in the main kernel image, it cannot be * turned into per-cpu data. The reason is that the main * kernel image is locked into the TLB and this structure * is accessed from the vectored interrupt trap handler. If * access to this structure takes a TLB miss it could cause * the 5-level sparc v9 trap stack to overflow. */ struct irq_work_struct { unsigned int irq_worklists[16]; }; struct irq_work_struct __irq_work[NR_CPUS]; #define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)]) #ifdef CONFIG_PCI /* This is a table of physical addresses used to deal with IBF_DMA_SYNC. * It is used for PCI only to synchronize DMA transfers with IRQ delivery * for devices behind busses other than APB on Sabre systems. * * Currently these physical addresses are just config space accesses * to the command register for that device. */ unsigned long pci_dma_wsync; unsigned long dma_sync_reg_table[256]; unsigned char dma_sync_reg_table_entry = 0; #endif /* This is based upon code in the 32-bit Sparc kernel written mostly by * David Redman (djhr@tadpole.co.uk). */ #define MAX_STATIC_ALLOC 4 static struct irqaction static_irqaction[MAX_STATIC_ALLOC]; static int static_irq_count; /* This is exported so that fast IRQ handlers can get at it... -DaveM */ struct irqaction *irq_action[NR_IRQS+1] = { NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL , NULL, NULL }; /* This only synchronizes entities which modify IRQ handler * state and some selected user-level spots that want to * read things in the table. IRQ handler processing orders * its' accesses such that no locking is needed. */ static spinlock_t irq_action_lock = SPIN_LOCK_UNLOCKED; static void register_irq_proc (unsigned int irq); /* * Upper 2b of irqaction->flags holds the ino. * irqaction->mask holds the smp affinity information. */ #define put_ino_in_irqaction(action, irq) \ action->flags &= 0xffffffffffffUL; \ if (__bucket(irq) == &pil0_dummy_bucket) \ action->flags |= 0xdeadUL << 48; \ else \ action->flags |= __irq_ino(irq) << 48; #define get_ino_in_irqaction(action) (action->flags >> 48) #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff) #define get_smpaff_in_irqaction(action) ((action)->mask) int show_interrupts(struct seq_file *p, void *v) { unsigned long flags; int i = *(loff_t *) v; struct irqaction *action; #ifdef CONFIG_SMP int j; #endif spin_lock_irqsave(&irq_action_lock, flags); if (i <= NR_IRQS) { if (!(action = *(i + irq_action))) goto out_unlock; seq_printf(p, "%3d: ", i); #ifndef CONFIG_SMP seq_printf(p, "%10u ", kstat_irqs(i)); #else for (j = 0; j < NR_CPUS; j++) { if (!cpu_online(j)) continue; seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]); } #endif seq_printf(p, " %s:%lx", action->name, get_ino_in_irqaction(action)); for (action = action->next; action; action = action->next) { seq_printf(p, ", %s:%lx", action->name, get_ino_in_irqaction(action)); } seq_putc(p, '\n'); } out_unlock: spin_unlock_irqrestore(&irq_action_lock, flags); return 0; } /* Now these are always passed a true fully specified sun4u INO. */ void enable_irq(unsigned int irq) { struct ino_bucket *bucket = __bucket(irq); unsigned long imap; unsigned long tid; imap = bucket->imap; if (imap == 0UL) return; preempt_disable(); if (tlb_type == cheetah || tlb_type == cheetah_plus) { unsigned long ver; __asm__ ("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32) == 0x003e0016) { /* We set it to our JBUS ID. */ __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (tid) : "i" (ASI_JBUS_CONFIG)); tid = ((tid & (0x1fUL<<17)) << 9); tid &= IMAP_TID_JBUS; } else { /* We set it to our Safari AID. */ __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (tid) : "i" (ASI_SAFARI_CONFIG)); tid = ((tid & (0x3ffUL<<17)) << 9); tid &= IMAP_AID_SAFARI; } } else if (this_is_starfire == 0) { /* We set it to our UPA MID. */ __asm__ __volatile__("ldxa [%%g0] %1, %0" : "=r" (tid) : "i" (ASI_UPA_CONFIG)); tid = ((tid & UPA_CONFIG_MID) << 9); tid &= IMAP_TID_UPA; } else { tid = (starfire_translate(imap, smp_processor_id()) << 26); tid &= IMAP_TID_UPA; } /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product * of this SYSIO's preconfigured IGN in the SYSIO Control * Register, the hardware just mirrors that value here. * However for Graphics and UPA Slave devices the full * IMAP_INR field can be set by the programmer here. * * Things like FFB can now be handled via the new IRQ mechanism. */ upa_writel(tid | IMAP_VALID, imap); preempt_enable(); } /* This now gets passed true ino's as well. */ void disable_irq(unsigned int irq) { struct ino_bucket *bucket = __bucket(irq); unsigned long imap; imap = bucket->imap; if (imap != 0UL) { u32 tmp; /* NOTE: We do not want to futz with the IRQ clear registers * and move the state to IDLE, the SCSI code does call * disable_irq() to assure atomicity in the queue cmd * SCSI adapter driver code. Thus we'd lose interrupts. */ tmp = upa_readl(imap); tmp &= ~IMAP_VALID; upa_writel(tmp, imap); } } /* The timer is the one "weird" interrupt which is generated by * the CPU %tick register and not by some normal vectored interrupt * source. To handle this special case, we use this dummy INO bucket. */ static struct ino_bucket pil0_dummy_bucket = { 0, /* irq_chain */ 0, /* pil */ 0, /* pending */ 0, /* flags */ 0, /* __unused */ NULL, /* irq_info */ 0UL, /* iclr */ 0UL, /* imap */ }; unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap) { struct ino_bucket *bucket; int ino; if (pil == 0) { if (iclr != 0UL || imap != 0UL) { prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n", iclr, imap); prom_halt(); } return __irq(&pil0_dummy_bucket); } /* RULE: Both must be specified in all other cases. */ if (iclr == 0UL || imap == 0UL) { prom_printf("Invalid build_irq %d %d %016lx %016lx\n", pil, inofixup, iclr, imap); prom_halt(); } ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup; if (ino > NUM_IVECS) { prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n", ino, pil, inofixup, iclr, imap); prom_halt(); } /* Ok, looks good, set it up. Don't touch the irq_chain or * the pending flag. */ bucket = &ivector_table[ino]; if ((bucket->flags & IBF_ACTIVE) || (bucket->irq_info != NULL)) { /* This is a gross fatal error if it happens here. */ prom_printf("IRQ: Trying to reinit INO bucket, fatal error.\n"); prom_printf("IRQ: Request INO %04x (%d:%d:%016lx:%016lx)\n", ino, pil, inofixup, iclr, imap); prom_printf("IRQ: Existing (%d:%016lx:%016lx)\n", bucket->pil, bucket->iclr, bucket->imap); prom_printf("IRQ: Cannot continue, halting...\n"); prom_halt(); } bucket->imap = imap; bucket->iclr = iclr; bucket->pil = pil; bucket->flags = 0; bucket->irq_info = NULL; return __irq(bucket); } static void atomic_bucket_insert(struct ino_bucket *bucket) { unsigned long pstate; unsigned int *ent; __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); __asm__ __volatile__("wrpr %0, %1, %%pstate" : : "r" (pstate), "i" (PSTATE_IE)); ent = irq_work(smp_processor_id(), bucket->pil); bucket->irq_chain = *ent; *ent = __irq(bucket); __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate)); } int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *), unsigned long irqflags, const char *name, void *dev_id) { struct irqaction *action, *tmp = NULL; struct ino_bucket *bucket = __bucket(irq); unsigned long flags; int pending = 0; if ((bucket != &pil0_dummy_bucket) && (bucket < &ivector_table[0] || bucket >= &ivector_table[NUM_IVECS])) { unsigned int *caller; __asm__ __volatile__("mov %%i7, %0" : "=r" (caller)); printk(KERN_CRIT "request_irq: Old style IRQ registry attempt " "from %p, irq %08x.\n", caller, irq); return -EINVAL; } if (!handler) return -EINVAL; if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) { /* * This function might sleep, we want to call it first, * outside of the atomic block. In SA_STATIC_ALLOC case, * random driver's kmalloc will fail, but it is safe. * If already initialized, random driver will not reinit. * Yes, this might clear the entropy pool if the wrong * driver is attempted to be loaded, without actually * installing a new handler, but is this really a problem, * only the sysadmin is able to do this. */ rand_initialize_irq(irq); } spin_lock_irqsave(&irq_action_lock, flags); action = *(bucket->pil + irq_action); if (action) { if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) for (tmp = action; tmp->next; tmp = tmp->next) ; else { spin_unlock_irqrestore(&irq_action_lock, flags); return -EBUSY; } action = NULL; /* Or else! */ } /* If this is flagged as statically allocated then we use our * private struct which is never freed. */ if (irqflags & SA_STATIC_ALLOC) { if (static_irq_count < MAX_STATIC_ALLOC) action = &static_irqaction[static_irq_count++]; else printk("Request for IRQ%d (%s) SA_STATIC_ALLOC failed " "using kmalloc\n", irq, name); } if (action == NULL) action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_ATOMIC); if (!action) { spin_unlock_irqrestore(&irq_action_lock, flags); return -ENOMEM; } if (bucket == &pil0_dummy_bucket) { bucket->irq_info = action; bucket->flags |= IBF_ACTIVE; } else { if ((bucket->flags & IBF_ACTIVE) != 0) { void *orig = bucket->irq_info; void **vector = NULL; if ((bucket->flags & IBF_PCI) == 0) { printk("IRQ: Trying to share non-PCI bucket.\n"); goto free_and_ebusy; } if ((bucket->flags & IBF_MULTI) == 0) { vector = kmalloc(sizeof(void *) * 4, GFP_ATOMIC); if (vector == NULL) goto free_and_enomem; /* We might have slept. */ if ((bucket->flags & IBF_MULTI) != 0) { int ent; kfree(vector); vector = (void **)bucket->irq_info; for(ent = 0; ent < 4; ent++) { if (vector[ent] == NULL) { vector[ent] = action; break; } } if (ent == 4) goto free_and_ebusy; } else { vector[0] = orig; vector[1] = action; vector[2] = NULL; vector[3] = NULL; bucket->irq_info = vector; bucket->flags |= IBF_MULTI; } } else { int ent; vector = (void **)orig; for (ent = 0; ent < 4; ent++) { if (vector[ent] == NULL) { vector[ent] = action; break; } } if (ent == 4) goto free_and_ebusy; } } else { bucket->irq_info = action; bucket->flags |= IBF_ACTIVE; } pending = bucket->pending; if (pending) bucket->pending = 0; } action->handler = handler; action->flags = irqflags; action->name = name; action->next = NULL; action->dev_id = dev_id; put_ino_in_irqaction(action, irq); put_smpaff_in_irqaction(action, CPU_MASK_NONE); if (tmp) tmp->next = action; else *(bucket->pil + irq_action) = action; enable_irq(irq); /* We ate the IVEC already, this makes sure it does not get lost. */ if (pending) { atomic_bucket_insert(bucket); set_softint(1 << bucket->pil); } spin_unlock_irqrestore(&irq_action_lock, flags); if ((bucket != &pil0_dummy_bucket) && (!(irqflags & SA_STATIC_ALLOC))) register_irq_proc(__irq_ino(irq)); #ifdef CONFIG_SMP distribute_irqs(); #endif return 0; free_and_ebusy: kfree(action); spin_unlock_irqrestore(&irq_action_lock, flags); return -EBUSY; free_and_enomem: kfree(action); spin_unlock_irqrestore(&irq_action_lock, flags); return -ENOMEM; } EXPORT_SYMBOL(request_irq); void free_irq(unsigned int irq, void *dev_id) { struct irqaction *action; struct irqaction *tmp = NULL; unsigned long flags; struct ino_bucket *bucket = __bucket(irq), *bp; if ((bucket != &pil0_dummy_bucket) && (bucket < &ivector_table[0] || bucket >= &ivector_table[NUM_IVECS])) { unsigned int *caller; __asm__ __volatile__("mov %%i7, %0" : "=r" (caller)); printk(KERN_CRIT "free_irq: Old style IRQ removal attempt " "from %p, irq %08x.\n", caller, irq); return; } spin_lock_irqsave(&irq_action_lock, flags); action = *(bucket->pil + irq_action); if (!action->handler) { printk("Freeing free IRQ %d\n", bucket->pil); return; } if (dev_id) { for ( ; action; action = action->next) { if (action->dev_id == dev_id) break; tmp = action; } if (!action) { printk("Trying to free free shared IRQ %d\n", bucket->pil); spin_unlock_irqrestore(&irq_action_lock, flags); return; } } else if (action->flags & SA_SHIRQ) { printk("Trying to free shared IRQ %d with NULL device ID\n", bucket->pil); spin_unlock_irqrestore(&irq_action_lock, flags); return; } if (action->flags & SA_STATIC_ALLOC) { printk("Attempt to free statically allocated IRQ %d (%s)\n", bucket->pil, action->name); spin_unlock_irqrestore(&irq_action_lock, flags); return; } if (action && tmp) tmp->next = action->next; else *(bucket->pil + irq_action) = action->next; spin_unlock_irqrestore(&irq_action_lock, flags); synchronize_irq(irq); spin_lock_irqsave(&irq_action_lock, flags); if (bucket != &pil0_dummy_bucket) { unsigned long imap = bucket->imap; void **vector, *orig; int ent; orig = bucket->irq_info; vector = (void **)orig; if ((bucket->flags & IBF_MULTI) != 0) { int other = 0; void *orphan = NULL; for (ent = 0; ent < 4; ent++) { if (vector[ent] == action) vector[ent] = NULL; else if (vector[ent] != NULL) { orphan = vector[ent]; other++; } } /* Only free when no other shared irq * uses this bucket. */ if (other) { if (other == 1) { /* Convert back to non-shared bucket. */ bucket->irq_info = orphan; bucket->flags &= ~(IBF_MULTI); kfree(vector); } goto out; } } else { bucket->irq_info = NULL; } /* This unique interrupt source is now inactive. */ bucket->flags &= ~IBF_ACTIVE; /* See if any other buckets share this bucket's IMAP * and are still active. */ for (ent = 0; ent < NUM_IVECS; ent++) { bp = &ivector_table[ent]; if (bp != bucket && bp->imap == imap && (bp->flags & IBF_ACTIVE) != 0) break; } /* Only disable when no other sub-irq levels of * the same IMAP are active. */ if (ent == NUM_IVECS) disable_irq(irq); } out: kfree(action); spin_unlock_irqrestore(&irq_action_lock, flags); } EXPORT_SYMBOL(free_irq); #ifdef CONFIG_SMP void synchronize_irq(unsigned int irq) { struct ino_bucket *bucket = __bucket(irq); #if 0 /* The following is how I wish I could implement this. * Unfortunately the ICLR registers are read-only, you can * only write ICLR_foo values to them. To get the current * IRQ status you would need to get at the IRQ diag registers * in the PCI/SBUS controller and the layout of those vary * from one controller to the next, sigh... -DaveM */ unsigned long iclr = bucket->iclr; while (1) { u32 tmp = upa_readl(iclr); if (tmp == ICLR_TRANSMIT || tmp == ICLR_PENDING) { cpu_relax(); continue; } break; } #else /* So we have to do this with a INPROGRESS bit just like x86. */ while (bucket->flags & IBF_INPROGRESS) cpu_relax(); #endif } #endif /* CONFIG_SMP */ void catch_disabled_ivec(struct pt_regs *regs) { int cpu = smp_processor_id(); struct ino_bucket *bucket = __bucket(*irq_work(cpu, 0)); /* We can actually see this on Ultra/PCI PCI cards, which are bridges * to other devices. Here a single IMAP enabled potentially multiple * unique interrupt sources (which each do have a unique ICLR register. * * So what we do is just register that the IVEC arrived, when registered * for real the request_irq() code will check the bit and signal * a local CPU interrupt for it. */ #if 0 printk("IVEC: Spurious interrupt vector (%x) received at (%016lx)\n", bucket - &ivector_table[0], regs->tpc); #endif *irq_work(cpu, 0) = 0; bucket->pending = 1; } /* Tune this... */ #define FORWARD_VOLUME 12 #ifdef CONFIG_SMP static inline void redirect_intr(int cpu, struct ino_bucket *bp) { /* Ok, here is what is going on: * 1) Retargeting IRQs on Starfire is very * expensive so just forget about it on them. * 2) Moving around very high priority interrupts * is a losing game. * 3) If the current cpu is idle, interrupts are * useful work, so keep them here. But do not * pass to our neighbour if he is not very idle. * 4) If sysadmin explicitly asks for directed intrs, * Just Do It. */ struct irqaction *ap = bp->irq_info; cpumask_t cpu_mask; unsigned int buddy, ticks; cpu_mask = get_smpaff_in_irqaction(ap); cpus_and(cpu_mask, cpu_mask, cpu_online_map); if (cpus_empty(cpu_mask)) cpu_mask = cpu_online_map; if (this_is_starfire != 0 || bp->pil >= 10 || current->pid == 0) goto out; /* 'cpu' is the MID (ie. UPAID), calculate the MID * of our buddy. */ buddy = cpu + 1; if (buddy >= NR_CPUS) buddy = 0; ticks = 0; while (!cpu_isset(buddy, cpu_mask)) { if (++buddy >= NR_CPUS) buddy = 0; if (++ticks > NR_CPUS) { put_smpaff_in_irqaction(ap, CPU_MASK_NONE); goto out; } } if (buddy == cpu) goto out; /* Voo-doo programming. */ if (cpu_data(buddy).idle_volume < FORWARD_VOLUME) goto out; /* This just so happens to be correct on Cheetah * at the moment. */ buddy <<= 26; /* Push it to our buddy. */ upa_writel(buddy | IMAP_VALID, bp->imap); out: return; } #endif void handler_irq(int irq, struct pt_regs *regs) { struct ino_bucket *bp, *nbp; int cpu = smp_processor_id(); #ifndef CONFIG_SMP /* * Check for TICK_INT on level 14 softint. */ { unsigned long clr_mask = 1 << irq; unsigned long tick_mask = tick_ops->softint_mask; if ((irq == 14) && (get_softint() & tick_mask)) { irq = 0; clr_mask = tick_mask; } clear_softint(clr_mask); } #else int should_forward = 1; clear_softint(1 << irq); #endif irq_enter(); kstat_this_cpu.irqs[irq]++; /* Sliiiick... */ #ifndef CONFIG_SMP bp = ((irq != 0) ? __bucket(xchg32(irq_work(cpu, irq), 0)) : &pil0_dummy_bucket); #else bp = __bucket(xchg32(irq_work(cpu, irq), 0)); #endif for ( ; bp != NULL; bp = nbp) { unsigned char flags = bp->flags; unsigned char random = 0; nbp = __bucket(bp->irq_chain); bp->irq_chain = 0; bp->flags |= IBF_INPROGRESS; if ((flags & IBF_ACTIVE) != 0) { #ifdef CONFIG_PCI if ((flags & IBF_DMA_SYNC) != 0) { upa_readl(dma_sync_reg_table[bp->synctab_ent]); upa_readq(pci_dma_wsync); } #endif if ((flags & IBF_MULTI) == 0) { struct irqaction *ap = bp->irq_info; int ret; ret = ap->handler(__irq(bp), ap->dev_id, regs); if (ret == IRQ_HANDLED) random |= ap->flags; } else { void **vector = (void **)bp->irq_info; int ent; for (ent = 0; ent < 4; ent++) { struct irqaction *ap = vector[ent]; if (ap != NULL) { int ret; ret = ap->handler(__irq(bp), ap->dev_id, regs); if (ret == IRQ_HANDLED) random |= ap->flags; } } } /* Only the dummy bucket lacks IMAP/ICLR. */ if (bp->pil != 0) { #ifdef CONFIG_SMP if (should_forward) { redirect_intr(cpu, bp); should_forward = 0; } #endif upa_writel(ICLR_IDLE, bp->iclr); /* Test and add entropy */ if (random & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); } } else bp->pending = 1; bp->flags &= ~IBF_INPROGRESS; } irq_exit(); } #ifdef CONFIG_BLK_DEV_FD extern void floppy_interrupt(int irq, void *dev_cookie, struct pt_regs *regs); void sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs) { struct irqaction *action = *(irq + irq_action); struct ino_bucket *bucket; int cpu = smp_processor_id(); irq_enter(); kstat_this_cpu.irqs[irq]++; *(irq_work(cpu, irq)) = 0; bucket = get_ino_in_irqaction(action) + ivector_table; bucket->flags |= IBF_INPROGRESS; floppy_interrupt(irq, dev_cookie, regs); upa_writel(ICLR_IDLE, bucket->iclr); bucket->flags &= ~IBF_INPROGRESS; irq_exit(); } #endif /* The following assumes that the branch lies before the place we * are branching to. This is the case for a trap vector... * You have been warned. */ #define SPARC_BRANCH(dest_addr, inst_addr) \ (0x10800000 | ((((dest_addr)-(inst_addr))>>2)&0x3fffff)) #define SPARC_NOP (0x01000000) static void install_fast_irq(unsigned int cpu_irq, irqreturn_t (*handler)(int, void *, struct pt_regs *)) { extern unsigned long sparc64_ttable_tl0; unsigned long ttent = (unsigned long) &sparc64_ttable_tl0; unsigned int *insns; ttent += 0x820; ttent += (cpu_irq - 1) << 5; insns = (unsigned int *) ttent; insns[0] = SPARC_BRANCH(((unsigned long) handler), ((unsigned long)&insns[0])); insns[1] = SPARC_NOP; __asm__ __volatile__("membar #StoreStore; flush %0" : : "r" (ttent)); } int request_fast_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *), unsigned long irqflags, const char *name, void *dev_id) { struct irqaction *action; struct ino_bucket *bucket = __bucket(irq); unsigned long flags; /* No pil0 dummy buckets allowed here. */ if (bucket < &ivector_table[0] || bucket >= &ivector_table[NUM_IVECS]) { unsigned int *caller; __asm__ __volatile__("mov %%i7, %0" : "=r" (caller)); printk(KERN_CRIT "request_fast_irq: Old style IRQ registry attempt " "from %p, irq %08x.\n", caller, irq); return -EINVAL; } if (!handler) return -EINVAL; if ((bucket->pil == 0) || (bucket->pil == 14)) { printk("request_fast_irq: Trying to register shared IRQ 0 or 14.\n"); return -EBUSY; } spin_lock_irqsave(&irq_action_lock, flags); action = *(bucket->pil + irq_action); if (action) { if (action->flags & SA_SHIRQ) panic("Trying to register fast irq when already shared.\n"); if (irqflags & SA_SHIRQ) panic("Trying to register fast irq as shared.\n"); printk("request_fast_irq: Trying to register yet already owned.\n"); spin_unlock_irqrestore(&irq_action_lock, flags); return -EBUSY; } /* * We do not check for SA_SAMPLE_RANDOM in this path. Neither do we * support smp intr affinity in this path. */ if (irqflags & SA_STATIC_ALLOC) { if (static_irq_count < MAX_STATIC_ALLOC) action = &static_irqaction[static_irq_count++]; else printk("Request for IRQ%d (%s) SA_STATIC_ALLOC failed " "using kmalloc\n", bucket->pil, name); } if (action == NULL) action = (struct irqaction *)kmalloc(sizeof(struct irqaction), GFP_ATOMIC); if (!action) { spin_unlock_irqrestore(&irq_action_lock, flags); return -ENOMEM; } install_fast_irq(bucket->pil, handler); bucket->irq_info = action; bucket->flags |= IBF_ACTIVE; action->handler = handler; action->flags = irqflags; action->dev_id = NULL; action->name = name; action->next = NULL; put_ino_in_irqaction(action, irq); put_smpaff_in_irqaction(action, CPU_MASK_NONE); *(bucket->pil + irq_action) = action; enable_irq(irq); spin_unlock_irqrestore(&irq_action_lock, flags); #ifdef CONFIG_SMP distribute_irqs(); #endif return 0; } /* We really don't need these at all on the Sparc. We only have * stubs here because they are exported to modules. */ unsigned long probe_irq_on(void) { return 0; } EXPORT_SYMBOL(probe_irq_on); int probe_irq_off(unsigned long mask) { return 0; } EXPORT_SYMBOL(probe_irq_off); #ifdef CONFIG_SMP static int retarget_one_irq(struct irqaction *p, int goal_cpu) { struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table; unsigned long imap = bucket->imap; unsigned int tid; while (!cpu_online(goal_cpu)) { if (++goal_cpu >= NR_CPUS) goal_cpu = 0; } if (tlb_type == cheetah || tlb_type == cheetah_plus) { tid = goal_cpu << 26; tid &= IMAP_AID_SAFARI; } else if (this_is_starfire == 0) { tid = goal_cpu << 26; tid &= IMAP_TID_UPA; } else { tid = (starfire_translate(imap, goal_cpu) << 26); tid &= IMAP_TID_UPA; } upa_writel(tid | IMAP_VALID, imap); while (!cpu_online(goal_cpu)) { if (++goal_cpu >= NR_CPUS) goal_cpu = 0; } return goal_cpu; } /* Called from request_irq. */ static void distribute_irqs(void) { unsigned long flags; int cpu, level; spin_lock_irqsave(&irq_action_lock, flags); cpu = 0; /* * Skip the timer at [0], and very rare error/power intrs at [15]. * Also level [12], it causes problems on Ex000 systems. */ for (level = 1; level < NR_IRQS; level++) { struct irqaction *p = irq_action[level]; if (level == 12) continue; while(p) { cpu = retarget_one_irq(p, cpu); p = p->next; } } spin_unlock_irqrestore(&irq_action_lock, flags); } #endif struct sun5_timer *prom_timers; static u64 prom_limit0, prom_limit1; static void map_prom_timers(void) { unsigned int addr[3]; int tnode, err; /* PROM timer node hangs out in the top level of device siblings... */ tnode = prom_finddevice("/counter-timer"); /* Assume if node is not present, PROM uses different tick mechanism * which we should not care about. */ if (tnode == 0 || tnode == -1) { prom_timers = (struct sun5_timer *) 0; return; } /* If PROM is really using this, it must be mapped by him. */ err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr)); if (err == -1) { prom_printf("PROM does not have timer mapped, trying to continue.\n"); prom_timers = (struct sun5_timer *) 0; return; } prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]); } static void kill_prom_timer(void) { if (!prom_timers) return; /* Save them away for later. */ prom_limit0 = prom_timers->limit0; prom_limit1 = prom_timers->limit1; /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14. * We turn both off here just to be paranoid. */ prom_timers->limit0 = 0; prom_timers->limit1 = 0; /* Wheee, eat the interrupt packet too... */ __asm__ __volatile__( " mov 0x40, %%g2\n" " ldxa [%%g0] %0, %%g1\n" " ldxa [%%g2] %1, %%g1\n" " stxa %%g0, [%%g0] %0\n" " membar #Sync\n" : /* no outputs */ : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R) : "g1", "g2"); } void enable_prom_timer(void) { if (!prom_timers) return; /* Set it to whatever was there before. */ prom_timers->limit1 = prom_limit1; prom_timers->count1 = 0; prom_timers->limit0 = prom_limit0; prom_timers->count0 = 0; } void init_irqwork_curcpu(void) { register struct irq_work_struct *workp asm("o2"); unsigned long tmp; int cpu = hard_smp_processor_id(); memset(__irq_work + cpu, 0, sizeof(*workp)); /* Make sure we are called with PSTATE_IE disabled. */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" : "=r" (tmp)); if (tmp & PSTATE_IE) { prom_printf("BUG: init_irqwork_curcpu() called with " "PSTATE_IE enabled, bailing.\n"); __asm__ __volatile__("mov %%i7, %0\n\t" : "=r" (tmp)); prom_printf("BUG: Called from %lx\n", tmp); prom_halt(); } /* Set interrupt globals. */ workp = &__irq_work[cpu]; __asm__ __volatile__( "rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate\n\t" "mov %2, %%g6\n\t" "wrpr %0, 0x0, %%pstate\n\t" : "=&r" (tmp) : "i" (PSTATE_IG), "r" (workp)); } /* Only invoked on boot processor. */ void __init init_IRQ(void) { map_prom_timers(); kill_prom_timer(); memset(&ivector_table[0], 0, sizeof(ivector_table)); /* We need to clear any IRQ's pending in the soft interrupt * registers, a spurious one could be left around from the * PROM timer which we just disabled. */ clear_softint(get_softint()); /* Now that ivector table is initialized, it is safe * to receive IRQ vector traps. We will normally take * one or two right now, in case some device PROM used * to boot us wants to speak to us. We just ignore them. */ __asm__ __volatile__("rdpr %%pstate, %%g1\n\t" "or %%g1, %0, %%g1\n\t" "wrpr %%g1, 0x0, %%pstate" : /* No outputs */ : "i" (PSTATE_IE) : "g1"); } static struct proc_dir_entry * root_irq_dir; static struct proc_dir_entry * irq_dir [NUM_IVECS]; #ifdef CONFIG_SMP static int irq_affinity_read_proc (char *page, char **start, off_t off, int count, int *eof, void *data) { struct ino_bucket *bp = ivector_table + (long)data; struct irqaction *ap = bp->irq_info; cpumask_t mask; int len; mask = get_smpaff_in_irqaction(ap); if (cpus_empty(mask)) mask = cpu_online_map; len = cpumask_scnprintf(page, count, mask); if (count - len < 2) return -EINVAL; len += sprintf(page + len, "\n"); return len; } static inline void set_intr_affinity(int irq, cpumask_t hw_aff) { struct ino_bucket *bp = ivector_table + irq; /* Users specify affinity in terms of hw cpu ids. * As soon as we do this, handler_irq() might see and take action. */ put_smpaff_in_irqaction((struct irqaction *)bp->irq_info, hw_aff); /* Migration is simply done by the next cpu to service this * interrupt. */ } static int irq_affinity_write_proc (struct file *file, const char __user *buffer, unsigned long count, void *data) { int irq = (long) data, full_count = count, err; cpumask_t new_value; err = cpumask_parse(buffer, count, new_value); /* * Do not allow disabling IRQs completely - it's a too easy * way to make the system unusable accidentally :-) At least * one online CPU still has to be targeted. */ cpus_and(new_value, new_value, cpu_online_map); if (cpus_empty(new_value)) return -EINVAL; set_intr_affinity(irq, new_value); return full_count; } #endif #define MAX_NAMELEN 10 static void register_irq_proc (unsigned int irq) { char name [MAX_NAMELEN]; if (!root_irq_dir || irq_dir[irq]) return; memset(name, 0, MAX_NAMELEN); sprintf(name, "%x", irq); /* create /proc/irq/1234 */ irq_dir[irq] = proc_mkdir(name, root_irq_dir); #ifdef CONFIG_SMP /* XXX SMP affinity not supported on starfire yet. */ if (this_is_starfire == 0) { struct proc_dir_entry *entry; /* create /proc/irq/1234/smp_affinity */ entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]); if (entry) { entry->nlink = 1; entry->data = (void *)(long)irq; entry->read_proc = irq_affinity_read_proc; entry->write_proc = irq_affinity_write_proc; } } #endif } void init_irq_proc (void) { /* create /proc/irq */ root_irq_dir = proc_mkdir("irq", NULL); }