/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk). * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen <engebret@us.ibm.com> * Rework for PPC64 port. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include <linux/config.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/stddef.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/bootmem.h> #include <linux/highmem.h> #include <linux/proc_fs.h> #include <asm/pgalloc.h> #include <asm/page.h> #include <asm/abs_addr.h> #include <asm/prom.h> #include <asm/lmb.h> #include <asm/rtas.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/pgtable.h> #include <asm/mmu.h> #include <asm/uaccess.h> #include <asm/smp.h> #include <asm/machdep.h> #include <asm/tlb.h> #include <asm/naca.h> #include <asm/eeh.h> #include <asm/processor.h> #include <asm/mmzone.h> #include <asm/cputable.h> #include <asm/ppcdebug.h> #include <asm/sections.h> #ifdef CONFIG_PPC_ISERIES #include <asm/iSeries/iSeries_dma.h> #endif struct mmu_context_queue_t mmu_context_queue; int mem_init_done; unsigned long ioremap_bot = IMALLOC_BASE; extern pgd_t swapper_pg_dir[]; extern struct task_struct *current_set[NR_CPUS]; extern pgd_t ioremap_dir[]; pgd_t * ioremap_pgd = (pgd_t *)&ioremap_dir; static void map_io_page(unsigned long va, unsigned long pa, int flags); unsigned long klimit = (unsigned long)_end; HPTE *Hash=0; unsigned long Hash_size=0; unsigned long _SDR1=0; unsigned long _ASR=0; /* max amount of RAM to use */ unsigned long __max_memory; /* This is declared as we are using the more or less generic * include/asm-ppc64/tlb.h file -- tgall */ DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); void show_mem(void) { int total = 0, reserved = 0; int shared = 0, cached = 0; struct page *page; pg_data_t *pgdat; unsigned long i; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10)); for_each_pgdat(pgdat) { for (i = 0; i < pgdat->node_spanned_pages; i++) { page = pgdat->node_mem_map + i; total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } } printk("%d pages of RAM\n",total); printk("%d reserved pages\n",reserved); printk("%d pages shared\n",shared); printk("%d pages swap cached\n",cached); } void * ioremap(unsigned long addr, unsigned long size) { #ifdef CONFIG_PPC_ISERIES return (void*)addr; #else void *ret = __ioremap(addr, size, _PAGE_NO_CACHE); if(mem_init_done) return eeh_ioremap(addr, ret); /* may remap the addr */ return ret; #endif } extern struct vm_struct * get_im_area( unsigned long size ); void * __ioremap(unsigned long addr, unsigned long size, unsigned long flags) { unsigned long pa, ea, i; /* * Choose an address to map it to. * Once the imalloc system is running, we use it. * Before that, we map using addresses going * up from ioremap_bot. imalloc will use * the addresses from ioremap_bot through * IMALLOC_END (0xE000001fffffffff) * */ pa = addr & PAGE_MASK; size = PAGE_ALIGN(addr + size) - pa; if (size == 0) return NULL; if (mem_init_done) { struct vm_struct *area; area = get_im_area(size); if (area == 0) return NULL; ea = (unsigned long)(area->addr); } else { ea = ioremap_bot; ioremap_bot += size; } if ((flags & _PAGE_PRESENT) == 0) flags |= pgprot_val(PAGE_KERNEL); if (flags & (_PAGE_NO_CACHE | _PAGE_WRITETHRU)) flags |= _PAGE_GUARDED; for (i = 0; i < size; i += PAGE_SIZE) { map_io_page(ea+i, pa+i, flags); } return (void *) (ea + (addr & ~PAGE_MASK)); } void iounmap(void *addr) { #ifdef CONFIG_PPC_ISERIES /* iSeries I/O Remap is a noop */ return; #else /* DRENG / PPPBBB todo */ return; #endif } /* * map_io_page currently only called by __ioremap * map_io_page adds an entry to the ioremap page table * and adds an entry to the HPT, possibly bolting it */ static void map_io_page(unsigned long ea, unsigned long pa, int flags) { pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; unsigned long vsid; if (mem_init_done) { spin_lock(&ioremap_mm.page_table_lock); pgdp = pgd_offset_i(ea); pmdp = pmd_alloc(&ioremap_mm, pgdp, ea); ptep = pte_alloc_kernel(&ioremap_mm, pmdp, ea); pa = absolute_to_phys(pa); set_pte(ptep, pfn_pte(pa >> PAGE_SHIFT, __pgprot(flags))); spin_unlock(&ioremap_mm.page_table_lock); } else { unsigned long va, vpn, hash, hpteg; /* * If the mm subsystem is not fully up, we cannot create a * linux page table entry for this mapping. Simply bolt an * entry in the hardware page table. */ vsid = get_kernel_vsid(ea); va = (vsid << 28) | (ea & 0xFFFFFFF); vpn = va >> PAGE_SHIFT; hash = hpt_hash(vpn, 0); hpteg = ((hash & htab_data.htab_hash_mask)*HPTES_PER_GROUP); /* Panic if a pte grpup is full */ if (ppc_md.hpte_insert(hpteg, va, pa >> PAGE_SHIFT, 0, _PAGE_NO_CACHE|_PAGE_GUARDED|PP_RWXX, 1, 0) == -1) { panic("map_io_page: could not insert mapping"); } } } void flush_tlb_mm(struct mm_struct *mm) { struct vm_area_struct *mp; spin_lock(&mm->page_table_lock); for (mp = mm->mmap; mp != NULL; mp = mp->vm_next) __flush_tlb_range(mm, mp->vm_start, mp->vm_end); /* XXX are there races with checking cpu_vm_mask? - Anton */ cpus_clear(mm->cpu_vm_mask); spin_unlock(&mm->page_table_lock); } /* * Callers should hold the mm->page_table_lock */ void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { unsigned long context = 0; pgd_t *pgd; pmd_t *pmd; pte_t *ptep; pte_t pte; int local = 0; cpumask_t tmp; switch( REGION_ID(vmaddr) ) { case VMALLOC_REGION_ID: pgd = pgd_offset_k( vmaddr ); break; case IO_REGION_ID: pgd = pgd_offset_i( vmaddr ); break; case USER_REGION_ID: pgd = pgd_offset( vma->vm_mm, vmaddr ); context = vma->vm_mm->context; /* XXX are there races with checking cpu_vm_mask? - Anton */ tmp = cpumask_of_cpu(smp_processor_id()); if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp)) local = 1; break; default: panic("flush_tlb_page: invalid region 0x%016lx", vmaddr); } if (!pgd_none(*pgd)) { pmd = pmd_offset(pgd, vmaddr); if (pmd_present(*pmd)) { ptep = pte_offset_kernel(pmd, vmaddr); /* Check if HPTE might exist and flush it if so */ pte = __pte(pte_update(ptep, _PAGE_HPTEFLAGS, 0)); if ( pte_val(pte) & _PAGE_HASHPTE ) { flush_hash_page(context, vmaddr, pte, local); } } WARN_ON(pmd_hugepage(*pmd)); } } struct ppc64_tlb_batch ppc64_tlb_batch[NR_CPUS]; void __flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { pgd_t *pgd; pmd_t *pmd; pte_t *ptep; pte_t pte; unsigned long pgd_end, pmd_end; unsigned long context = 0; struct ppc64_tlb_batch *batch = &ppc64_tlb_batch[smp_processor_id()]; unsigned long i = 0; int local = 0; cpumask_t tmp; switch(REGION_ID(start)) { case VMALLOC_REGION_ID: pgd = pgd_offset_k(start); break; case IO_REGION_ID: pgd = pgd_offset_i(start); break; case USER_REGION_ID: pgd = pgd_offset(mm, start); context = mm->context; /* XXX are there races with checking cpu_vm_mask? - Anton */ tmp = cpumask_of_cpu(smp_processor_id()); if (cpus_equal(mm->cpu_vm_mask, tmp)) local = 1; break; default: panic("flush_tlb_range: invalid region for start (%016lx) and end (%016lx)\n", start, end); } do { pgd_end = (start + PGDIR_SIZE) & PGDIR_MASK; if (pgd_end > end) pgd_end = end; if (!pgd_none(*pgd)) { pmd = pmd_offset(pgd, start); do { pmd_end = (start + PMD_SIZE) & PMD_MASK; if (pmd_end > end) pmd_end = end; if (pmd_present(*pmd)) { ptep = pte_offset_kernel(pmd, start); do { if (pte_val(*ptep) & _PAGE_HASHPTE) { pte = __pte(pte_update(ptep, _PAGE_HPTEFLAGS, 0)); if (pte_val(pte) & _PAGE_HASHPTE) { batch->pte[i] = pte; batch->addr[i] = start; i++; if (i == PPC64_TLB_BATCH_NR) { flush_hash_range(context, i, local); i = 0; } } } start += PAGE_SIZE; ++ptep; } while (start < pmd_end); } else { WARN_ON(pmd_hugepage(*pmd)); start = pmd_end; } ++pmd; } while (start < pgd_end); } else { start = pgd_end; } ++pgd; } while (start < end); if (i) flush_hash_range(context, i, local); } void free_initmem(void) { unsigned long addr; addr = (unsigned long)__init_begin; for (; addr < (unsigned long)__init_end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); set_page_count(virt_to_page(addr), 1); free_page(addr); totalram_pages++; } printk ("Freeing unused kernel memory: %luk freed\n", ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); totalram_pages++; } } #endif /* * Do very early mm setup. */ void __init mm_init_ppc64(void) { struct paca_struct *lpaca; unsigned long guard_page, index; ppc64_boot_msg(0x100, "MM Init"); /* Reserve all contexts < FIRST_USER_CONTEXT for kernel use. * The range of contexts [FIRST_USER_CONTEXT, NUM_USER_CONTEXT) * are stored on a stack/queue for easy allocation and deallocation. */ mmu_context_queue.lock = SPIN_LOCK_UNLOCKED; mmu_context_queue.head = 0; mmu_context_queue.tail = NUM_USER_CONTEXT-1; mmu_context_queue.size = NUM_USER_CONTEXT; for(index=0; index < NUM_USER_CONTEXT ;index++) { mmu_context_queue.elements[index] = index+FIRST_USER_CONTEXT; } /* Setup guard pages for the Paca's */ for (index = 0; index < NR_CPUS; index++) { lpaca = &paca[index]; guard_page = ((unsigned long)lpaca) + 0x1000; ppc_md.hpte_updateboltedpp(PP_RXRX, guard_page); } ppc64_boot_msg(0x100, "MM Init Done"); } /* * Initialize the bootmem system and give it all the memory we * have available. */ #ifndef CONFIG_DISCONTIGMEM void __init do_init_bootmem(void) { unsigned long i; unsigned long start, bootmap_pages; unsigned long total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; int boot_mapsize; /* * Find an area to use for the bootmem bitmap. Calculate the size of * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. * Add 1 additional page in case the address isn't page-aligned. */ bootmap_pages = bootmem_bootmap_pages(total_pages); start = (unsigned long)__a2p(lmb_alloc(bootmap_pages<<PAGE_SHIFT, PAGE_SIZE)); if (start == 0) { udbg_printf("do_init_bootmem: failed to allocate a bitmap.\n"); udbg_printf("\tbootmap_pages = 0x%lx.\n", bootmap_pages); PPCDBG_ENTER_DEBUGGER(); } boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); /* add all physical memory to the bootmem map */ for (i=0; i < lmb.memory.cnt; i++) { unsigned long physbase, size; unsigned long type = lmb.memory.region[i].type; if ( type != LMB_MEMORY_AREA ) continue; physbase = lmb.memory.region[i].physbase; size = lmb.memory.region[i].size; free_bootmem(physbase, size); } /* reserve the sections we're already using */ for (i=0; i < lmb.reserved.cnt; i++) { unsigned long physbase = lmb.reserved.region[i].physbase; unsigned long size = lmb.reserved.region[i].size; reserve_bootmem(physbase, size); } } /* * paging_init() sets up the page tables - in fact we've already done this. */ void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES], i; /* * All pages are DMA-able so we put them all in the DMA zone. */ zones_size[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT; for (i = 1; i < MAX_NR_ZONES; i++) zones_size[i] = 0; free_area_init(zones_size); } #endif static struct kcore_list kcore_vmem; static int __init setup_kcore(void) { int i; for (i=0; i < lmb.memory.cnt; i++) { unsigned long physbase, size; unsigned long type = lmb.memory.region[i].type; struct kcore_list *kcore_mem; if (type != LMB_MEMORY_AREA) continue; physbase = lmb.memory.region[i].physbase; size = lmb.memory.region[i].size; /* GFP_ATOMIC to avoid might_sleep warnings during boot */ kcore_mem = kmalloc(sizeof(struct kcore_list), GFP_ATOMIC); if (!kcore_mem) panic("mem_init: kmalloc failed\n"); kclist_add(kcore_mem, __va(physbase), size); } kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START); return 0; } module_init(setup_kcore); void __init mem_init(void) { #ifndef CONFIG_DISCONTIGMEM extern char *sysmap; extern unsigned long sysmap_size; unsigned long addr; #endif int codepages = 0; int datapages = 0; int initpages = 0; num_physpages = max_low_pfn; /* RAM is assumed contiguous */ high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); max_pfn = max_low_pfn; #ifdef CONFIG_DISCONTIGMEM { int nid; for (nid = 0; nid < numnodes; nid++) { if (node_data[nid].node_spanned_pages != 0) { printk("freeing bootmem node %x\n", nid); totalram_pages += free_all_bootmem_node(NODE_DATA(nid)); } } printk("Memory: %luk available (%dk kernel code, %dk data, %dk init) [%08lx,%08lx]\n", (unsigned long)nr_free_pages()<< (PAGE_SHIFT-10), codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10), initpages<< (PAGE_SHIFT-10), PAGE_OFFSET, (unsigned long)__va(lmb_end_of_DRAM())); } #else max_mapnr = num_physpages; totalram_pages += free_all_bootmem(); if ( sysmap_size ) for (addr = (unsigned long)sysmap; addr < PAGE_ALIGN((unsigned long)sysmap+sysmap_size) ; addr += PAGE_SIZE) SetPageReserved(virt_to_page(addr)); for (addr = KERNELBASE; addr <= (unsigned long)__va(lmb_end_of_DRAM()); addr += PAGE_SIZE) { if (!PageReserved(virt_to_page(addr))) continue; if (addr < (unsigned long)_etext) codepages++; else if (addr >= (unsigned long)__init_begin && addr < (unsigned long)__init_end) initpages++; else if (addr < klimit) datapages++; } printk("Memory: %luk available (%dk kernel code, %dk data, %dk init) [%08lx,%08lx]\n", (unsigned long)nr_free_pages()<< (PAGE_SHIFT-10), codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10), initpages<< (PAGE_SHIFT-10), PAGE_OFFSET, (unsigned long)__va(lmb_end_of_DRAM())); #endif mem_init_done = 1; #ifdef CONFIG_PPC_ISERIES create_virtual_bus_tce_table(); #endif } /* * This is called when a page has been modified by the kernel. * It just marks the page as not i-cache clean. We do the i-cache * flush later when the page is given to a user process, if necessary. */ void flush_dcache_page(struct page *page) { /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &page->flags)) clear_bit(PG_arch_1, &page->flags); } void clear_user_page(void *page, unsigned long vaddr, struct page *pg) { clear_page(page); /* * We shouldnt have to do this, but some versions of glibc * require it (ld.so assumes zero filled pages are icache clean) * - Anton */ /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &pg->flags)) clear_bit(PG_arch_1, &pg->flags); } void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, struct page *pg) { copy_page(vto, vfrom); /* * We should be able to use the following optimisation, however * there are two problems. * Firstly a bug in some versions of binutils meant PLT sections * were not marked executable. * Secondly the first word in the GOT section is blrl, used * to establish the GOT address. Until recently the GOT was * not marked executable. * - Anton */ #if 0 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) return; #endif /* avoid an atomic op if possible */ if (test_bit(PG_arch_1, &pg->flags)) clear_bit(PG_arch_1, &pg->flags); } void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, unsigned long addr, int len) { unsigned long maddr; maddr = (unsigned long)page_address(page) + (addr & ~PAGE_MASK); flush_icache_range(maddr, maddr + len); } extern pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea); int __hash_page(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, int local); /* * This is called at the end of handling a user page fault, when the * fault has been handled by updating a PTE in the linux page tables. * We use it to preload an HPTE into the hash table corresponding to * the updated linux PTE. * * This must always be called with the mm->page_table_lock held */ void update_mmu_cache(struct vm_area_struct *vma, unsigned long ea, pte_t pte) { unsigned long vsid; void *pgdir; pte_t *ptep; int local = 0; cpumask_t tmp; /* handle i-cache coherency */ if (!(cur_cpu_spec->cpu_features & CPU_FTR_NOEXECUTE)) { unsigned long pfn = pte_pfn(pte); if (pfn_valid(pfn)) { struct page *page = pfn_to_page(pfn); if (!PageReserved(page) && !test_bit(PG_arch_1, &page->flags)) { __flush_dcache_icache(page_address(page)); set_bit(PG_arch_1, &page->flags); } } } /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ if (!pte_young(pte)) return; pgdir = vma->vm_mm->pgd; if (pgdir == NULL) return; ptep = find_linux_pte(pgdir, ea); vsid = get_vsid(vma->vm_mm->context, ea); tmp = cpumask_of_cpu(smp_processor_id()); if (cpus_equal(vma->vm_mm->cpu_vm_mask, tmp)) local = 1; __hash_page(ea, pte_val(pte) & (_PAGE_USER|_PAGE_RW), vsid, ptep, 0x300, local); } kmem_cache_t *zero_cache; static void zero_ctor(void *pte, kmem_cache_t *cache, unsigned long flags) { memset(pte, 0, PAGE_SIZE); } void pgtable_cache_init(void) { zero_cache = kmem_cache_create("zero", PAGE_SIZE, 0, SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN, zero_ctor, NULL); if (!zero_cache) panic("pgtable_cache_init(): could not create zero_cache!\n"); }