// SPDX-License-Identifier: GPL-2.0-only /* * Intel(R) Processor Trace PMU driver for perf * Copyright (c) 2013-2014, Intel Corporation. * * Intel PT is specified in the Intel Architecture Instruction Set Extensions * Programming Reference: * http://software.intel.com/en-us/intel-isa-extensions */ #undef DEBUG #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/bits.h> #include <linux/limits.h> #include <linux/slab.h> #include <linux/device.h> #include <asm/perf_event.h> #include <asm/insn.h> #include <asm/io.h> #include <asm/intel_pt.h> #include <asm/cpu_device_id.h> #include "../perf_event.h" #include "pt.h" static DEFINE_PER_CPU(struct pt, pt_ctx); static struct pt_pmu pt_pmu; /* * Capabilities of Intel PT hardware, such as number of address bits or * supported output schemes, are cached and exported to userspace as "caps" * attribute group of pt pmu device * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store * relevant bits together with intel_pt traces. * * These are necessary for both trace decoding (payloads_lip, contains address * width encoded in IP-related packets), and event configuration (bitmasks with * permitted values for certain bit fields). */ #define PT_CAP(_n, _l, _r, _m) \ [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \ .reg = _r, .mask = _m } static struct pt_cap_desc { const char *name; u32 leaf; u8 reg; u32 mask; } pt_caps[] = { PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff), PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)), PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)), PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)), PT_CAP(mtc, 0, CPUID_EBX, BIT(3)), PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)), PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)), PT_CAP(event_trace, 0, CPUID_EBX, BIT(7)), PT_CAP(tnt_disable, 0, CPUID_EBX, BIT(8)), PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)), PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)), PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)), PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)), PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)), PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x7), PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000), PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff), PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000), }; u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) { struct pt_cap_desc *cd = &pt_caps[capability]; u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg]; unsigned int shift = __ffs(cd->mask); return (c & cd->mask) >> shift; } EXPORT_SYMBOL_GPL(intel_pt_validate_cap); u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) { return intel_pt_validate_cap(pt_pmu.caps, cap); } EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap); static ssize_t pt_cap_show(struct device *cdev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = container_of(attr, struct dev_ext_attribute, attr); enum pt_capabilities cap = (long)ea->var; return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap)); } static struct attribute_group pt_cap_group __ro_after_init = { .name = "caps", }; PMU_FORMAT_ATTR(pt, "config:0" ); PMU_FORMAT_ATTR(cyc, "config:1" ); PMU_FORMAT_ATTR(pwr_evt, "config:4" ); PMU_FORMAT_ATTR(fup_on_ptw, "config:5" ); PMU_FORMAT_ATTR(mtc, "config:9" ); PMU_FORMAT_ATTR(tsc, "config:10" ); PMU_FORMAT_ATTR(noretcomp, "config:11" ); PMU_FORMAT_ATTR(ptw, "config:12" ); PMU_FORMAT_ATTR(branch, "config:13" ); PMU_FORMAT_ATTR(event, "config:31" ); PMU_FORMAT_ATTR(notnt, "config:55" ); PMU_FORMAT_ATTR(mtc_period, "config:14-17" ); PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" ); PMU_FORMAT_ATTR(psb_period, "config:24-27" ); static struct attribute *pt_formats_attr[] = { &format_attr_pt.attr, &format_attr_cyc.attr, &format_attr_pwr_evt.attr, &format_attr_event.attr, &format_attr_notnt.attr, &format_attr_fup_on_ptw.attr, &format_attr_mtc.attr, &format_attr_tsc.attr, &format_attr_noretcomp.attr, &format_attr_ptw.attr, &format_attr_branch.attr, &format_attr_mtc_period.attr, &format_attr_cyc_thresh.attr, &format_attr_psb_period.attr, NULL, }; static struct attribute_group pt_format_group = { .name = "format", .attrs = pt_formats_attr, }; static ssize_t pt_timing_attr_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); switch (pmu_attr->id) { case 0: return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio); case 1: return sprintf(page, "%u:%u\n", pt_pmu.tsc_art_num, pt_pmu.tsc_art_den); default: break; } return -EINVAL; } PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0, pt_timing_attr_show); PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1, pt_timing_attr_show); static struct attribute *pt_timing_attr[] = { &timing_attr_max_nonturbo_ratio.attr.attr, &timing_attr_tsc_art_ratio.attr.attr, NULL, }; static struct attribute_group pt_timing_group = { .attrs = pt_timing_attr, }; static const struct attribute_group *pt_attr_groups[] = { &pt_cap_group, &pt_format_group, &pt_timing_group, NULL, }; static int __init pt_pmu_hw_init(void) { struct dev_ext_attribute *de_attrs; struct attribute **attrs; size_t size; u64 reg; int ret; long i; rdmsrl(MSR_PLATFORM_INFO, reg); pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8; /* * if available, read in TSC to core crystal clock ratio, * otherwise, zero for numerator stands for "not enumerated" * as per SDM */ if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) { u32 eax, ebx, ecx, edx; cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx); pt_pmu.tsc_art_num = ebx; pt_pmu.tsc_art_den = eax; } /* model-specific quirks */ switch (boot_cpu_data.x86_vfm) { case INTEL_BROADWELL: case INTEL_BROADWELL_D: case INTEL_BROADWELL_G: case INTEL_BROADWELL_X: /* not setting BRANCH_EN will #GP, erratum BDM106 */ pt_pmu.branch_en_always_on = true; break; default: break; } if (boot_cpu_has(X86_FEATURE_VMX)) { /* * Intel SDM, 36.5 "Tracing post-VMXON" says that * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace * post-VMXON. */ rdmsrl(MSR_IA32_VMX_MISC, reg); if (reg & BIT(14)) pt_pmu.vmx = true; } for (i = 0; i < PT_CPUID_LEAVES; i++) { cpuid_count(20, i, &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM], &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM], &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM], &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]); } ret = -ENOMEM; size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1); attrs = kzalloc(size, GFP_KERNEL); if (!attrs) goto fail; size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1); de_attrs = kzalloc(size, GFP_KERNEL); if (!de_attrs) goto fail; for (i = 0; i < ARRAY_SIZE(pt_caps); i++) { struct dev_ext_attribute *de_attr = de_attrs + i; de_attr->attr.attr.name = pt_caps[i].name; sysfs_attr_init(&de_attr->attr.attr); de_attr->attr.attr.mode = S_IRUGO; de_attr->attr.show = pt_cap_show; de_attr->var = (void *)i; attrs[i] = &de_attr->attr.attr; } pt_cap_group.attrs = attrs; return 0; fail: kfree(attrs); return ret; } #define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \ RTIT_CTL_CYC_THRESH | \ RTIT_CTL_PSB_FREQ) #define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \ RTIT_CTL_MTC_RANGE) #define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \ RTIT_CTL_FUP_ON_PTW) /* * Bit 0 (TraceEn) in the attr.config is meaningless as the * corresponding bit in the RTIT_CTL can only be controlled * by the driver; therefore, repurpose it to mean: pass * through the bit that was previously assumed to be always * on for PT, thereby allowing the user to *not* set it if * they so wish. See also pt_event_valid() and pt_config(). */ #define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN #define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \ RTIT_CTL_TSC_EN | \ RTIT_CTL_DISRETC | \ RTIT_CTL_BRANCH_EN | \ RTIT_CTL_CYC_PSB | \ RTIT_CTL_MTC | \ RTIT_CTL_PWR_EVT_EN | \ RTIT_CTL_EVENT_EN | \ RTIT_CTL_NOTNT | \ RTIT_CTL_FUP_ON_PTW | \ RTIT_CTL_PTW_EN) static bool pt_event_valid(struct perf_event *event) { u64 config = event->attr.config; u64 allowed, requested; if ((config & PT_CONFIG_MASK) != config) return false; if (config & RTIT_CTL_CYC_PSB) { if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc)) return false; allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods); requested = (config & RTIT_CTL_PSB_FREQ) >> RTIT_CTL_PSB_FREQ_OFFSET; if (requested && (!(allowed & BIT(requested)))) return false; allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds); requested = (config & RTIT_CTL_CYC_THRESH) >> RTIT_CTL_CYC_THRESH_OFFSET; if (requested && (!(allowed & BIT(requested)))) return false; } if (config & RTIT_CTL_MTC) { /* * In the unlikely case that CPUID lists valid mtc periods, * but not the mtc capability, drop out here. * * Spec says that setting mtc period bits while mtc bit in * CPUID is 0 will #GP, so better safe than sorry. */ if (!intel_pt_validate_hw_cap(PT_CAP_mtc)) return false; allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods); if (!allowed) return false; requested = (config & RTIT_CTL_MTC_RANGE) >> RTIT_CTL_MTC_RANGE_OFFSET; if (!(allowed & BIT(requested))) return false; } if (config & RTIT_CTL_PWR_EVT_EN && !intel_pt_validate_hw_cap(PT_CAP_power_event_trace)) return false; if (config & RTIT_CTL_EVENT_EN && !intel_pt_validate_hw_cap(PT_CAP_event_trace)) return false; if (config & RTIT_CTL_NOTNT && !intel_pt_validate_hw_cap(PT_CAP_tnt_disable)) return false; if (config & RTIT_CTL_PTW) { if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite)) return false; /* FUPonPTW without PTW doesn't make sense */ if ((config & RTIT_CTL_FUP_ON_PTW) && !(config & RTIT_CTL_PTW_EN)) return false; } /* * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config * clears the assumption that BranchEn must always be enabled, * as was the case with the first implementation of PT. * If this bit is not set, the legacy behavior is preserved * for compatibility with the older userspace. * * Re-using bit 0 for this purpose is fine because it is never * directly set by the user; previous attempts at setting it in * the attr.config resulted in -EINVAL. */ if (config & RTIT_CTL_PASSTHROUGH) { /* * Disallow not setting BRANCH_EN where BRANCH_EN is * always required. */ if (pt_pmu.branch_en_always_on && !(config & RTIT_CTL_BRANCH_EN)) return false; } else { /* * Disallow BRANCH_EN without the PASSTHROUGH. */ if (config & RTIT_CTL_BRANCH_EN) return false; } return true; } /* * PT configuration helpers * These all are cpu affine and operate on a local PT */ static void pt_config_start(struct perf_event *event) { struct pt *pt = this_cpu_ptr(&pt_ctx); u64 ctl = event->hw.config; ctl |= RTIT_CTL_TRACEEN; if (READ_ONCE(pt->vmx_on)) perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL); else wrmsrl(MSR_IA32_RTIT_CTL, ctl); WRITE_ONCE(event->hw.config, ctl); } /* Address ranges and their corresponding msr configuration registers */ static const struct pt_address_range { unsigned long msr_a; unsigned long msr_b; unsigned int reg_off; } pt_address_ranges[] = { { .msr_a = MSR_IA32_RTIT_ADDR0_A, .msr_b = MSR_IA32_RTIT_ADDR0_B, .reg_off = RTIT_CTL_ADDR0_OFFSET, }, { .msr_a = MSR_IA32_RTIT_ADDR1_A, .msr_b = MSR_IA32_RTIT_ADDR1_B, .reg_off = RTIT_CTL_ADDR1_OFFSET, }, { .msr_a = MSR_IA32_RTIT_ADDR2_A, .msr_b = MSR_IA32_RTIT_ADDR2_B, .reg_off = RTIT_CTL_ADDR2_OFFSET, }, { .msr_a = MSR_IA32_RTIT_ADDR3_A, .msr_b = MSR_IA32_RTIT_ADDR3_B, .reg_off = RTIT_CTL_ADDR3_OFFSET, } }; static u64 pt_config_filters(struct perf_event *event) { struct pt_filters *filters = event->hw.addr_filters; struct pt *pt = this_cpu_ptr(&pt_ctx); unsigned int range = 0; u64 rtit_ctl = 0; if (!filters) return 0; perf_event_addr_filters_sync(event); for (range = 0; range < filters->nr_filters; range++) { struct pt_filter *filter = &filters->filter[range]; /* * Note, if the range has zero start/end addresses due * to its dynamic object not being loaded yet, we just * go ahead and program zeroed range, which will simply * produce no data. Note^2: if executable code at 0x0 * is a concern, we can set up an "invalid" configuration * such as msr_b < msr_a. */ /* avoid redundant msr writes */ if (pt->filters.filter[range].msr_a != filter->msr_a) { wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a); pt->filters.filter[range].msr_a = filter->msr_a; } if (pt->filters.filter[range].msr_b != filter->msr_b) { wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b); pt->filters.filter[range].msr_b = filter->msr_b; } rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off; } return rtit_ctl; } static void pt_config(struct perf_event *event) { struct pt *pt = this_cpu_ptr(&pt_ctx); struct pt_buffer *buf = perf_get_aux(&pt->handle); u64 reg; /* First round: clear STATUS, in particular the PSB byte counter. */ if (!event->hw.config) { perf_event_itrace_started(event); wrmsrl(MSR_IA32_RTIT_STATUS, 0); } reg = pt_config_filters(event); reg |= RTIT_CTL_TRACEEN; if (!buf->single) reg |= RTIT_CTL_TOPA; /* * Previously, we had BRANCH_EN on by default, but now that PT has * grown features outside of branch tracing, it is useful to allow * the user to disable it. Setting bit 0 in the event's attr.config * allows BRANCH_EN to pass through instead of being always on. See * also the comment in pt_event_valid(). */ if (event->attr.config & BIT(0)) { reg |= event->attr.config & RTIT_CTL_BRANCH_EN; } else { reg |= RTIT_CTL_BRANCH_EN; } if (!event->attr.exclude_kernel) reg |= RTIT_CTL_OS; if (!event->attr.exclude_user) reg |= RTIT_CTL_USR; reg |= (event->attr.config & PT_CONFIG_MASK); event->hw.config = reg; pt_config_start(event); } static void pt_config_stop(struct perf_event *event) { struct pt *pt = this_cpu_ptr(&pt_ctx); u64 ctl = READ_ONCE(event->hw.config); /* may be already stopped by a PMI */ if (!(ctl & RTIT_CTL_TRACEEN)) return; ctl &= ~RTIT_CTL_TRACEEN; if (!READ_ONCE(pt->vmx_on)) wrmsrl(MSR_IA32_RTIT_CTL, ctl); WRITE_ONCE(event->hw.config, ctl); /* * A wrmsr that disables trace generation serializes other PT * registers and causes all data packets to be written to memory, * but a fence is required for the data to become globally visible. * * The below WMB, separating data store and aux_head store matches * the consumer's RMB that separates aux_head load and data load. */ wmb(); } /** * struct topa - ToPA metadata * @list: linkage to struct pt_buffer's list of tables * @offset: offset of the first entry in this table in the buffer * @size: total size of all entries in this table * @last: index of the last initialized entry in this table * @z_count: how many times the first entry repeats */ struct topa { struct list_head list; u64 offset; size_t size; int last; unsigned int z_count; }; /* * Keep ToPA table-related metadata on the same page as the actual table, * taking up a few words from the top */ #define TENTS_PER_PAGE \ ((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry)) /** * struct topa_page - page-sized ToPA table with metadata at the top * @table: actual ToPA table entries, as understood by PT hardware * @topa: metadata */ struct topa_page { struct topa_entry table[TENTS_PER_PAGE]; struct topa topa; }; static inline struct topa_page *topa_to_page(struct topa *topa) { return container_of(topa, struct topa_page, topa); } static inline struct topa_page *topa_entry_to_page(struct topa_entry *te) { return (struct topa_page *)((unsigned long)te & PAGE_MASK); } static inline phys_addr_t topa_pfn(struct topa *topa) { return PFN_DOWN(virt_to_phys(topa_to_page(topa))); } /* make -1 stand for the last table entry */ #define TOPA_ENTRY(t, i) \ ((i) == -1 \ ? &topa_to_page(t)->table[(t)->last] \ : &topa_to_page(t)->table[(i)]) #define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size)) #define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size) static void pt_config_buffer(struct pt_buffer *buf) { struct pt *pt = this_cpu_ptr(&pt_ctx); u64 reg, mask; void *base; if (buf->single) { base = buf->data_pages[0]; mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7; } else { base = topa_to_page(buf->cur)->table; mask = (u64)buf->cur_idx; } reg = virt_to_phys(base); if (pt->output_base != reg) { pt->output_base = reg; wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg); } reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32); if (pt->output_mask != reg) { pt->output_mask = reg; wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg); } } /** * topa_alloc() - allocate page-sized ToPA table * @cpu: CPU on which to allocate. * @gfp: Allocation flags. * * Return: On success, return the pointer to ToPA table page. */ static struct topa *topa_alloc(int cpu, gfp_t gfp) { int node = cpu_to_node(cpu); struct topa_page *tp; struct page *p; p = alloc_pages_node(node, gfp | __GFP_ZERO, 0); if (!p) return NULL; tp = page_address(p); tp->topa.last = 0; /* * In case of singe-entry ToPA, always put the self-referencing END * link as the 2nd entry in the table */ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT; TOPA_ENTRY(&tp->topa, 1)->end = 1; } return &tp->topa; } /** * topa_free() - free a page-sized ToPA table * @topa: Table to deallocate. */ static void topa_free(struct topa *topa) { free_page((unsigned long)topa); } /** * topa_insert_table() - insert a ToPA table into a buffer * @buf: PT buffer that's being extended. * @topa: New topa table to be inserted. * * If it's the first table in this buffer, set up buffer's pointers * accordingly; otherwise, add a END=1 link entry to @topa to the current * "last" table and adjust the last table pointer to @topa. */ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa) { struct topa *last = buf->last; list_add_tail(&topa->list, &buf->tables); if (!buf->first) { buf->first = buf->last = buf->cur = topa; return; } topa->offset = last->offset + last->size; buf->last = topa; if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return; BUG_ON(last->last != TENTS_PER_PAGE - 1); TOPA_ENTRY(last, -1)->base = topa_pfn(topa); TOPA_ENTRY(last, -1)->end = 1; } /** * topa_table_full() - check if a ToPA table is filled up * @topa: ToPA table. */ static bool topa_table_full(struct topa *topa) { /* single-entry ToPA is a special case */ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return !!topa->last; return topa->last == TENTS_PER_PAGE - 1; } /** * topa_insert_pages() - create a list of ToPA tables * @buf: PT buffer being initialized. * @cpu: CPU on which to allocate. * @gfp: Allocation flags. * * This initializes a list of ToPA tables with entries from * the data_pages provided by rb_alloc_aux(). * * Return: 0 on success or error code. */ static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp) { struct topa *topa = buf->last; int order = 0; struct page *p; p = virt_to_page(buf->data_pages[buf->nr_pages]); if (PagePrivate(p)) order = page_private(p); if (topa_table_full(topa)) { topa = topa_alloc(cpu, gfp); if (!topa) return -ENOMEM; topa_insert_table(buf, topa); } if (topa->z_count == topa->last - 1) { if (order == TOPA_ENTRY(topa, topa->last - 1)->size) topa->z_count++; } TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT; TOPA_ENTRY(topa, -1)->size = order; if (!buf->snapshot && !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(topa, -1)->intr = 1; TOPA_ENTRY(topa, -1)->stop = 1; } topa->last++; topa->size += sizes(order); buf->nr_pages += 1ul << order; return 0; } /** * pt_topa_dump() - print ToPA tables and their entries * @buf: PT buffer. */ static void pt_topa_dump(struct pt_buffer *buf) { struct topa *topa; list_for_each_entry(topa, &buf->tables, list) { struct topa_page *tp = topa_to_page(topa); int i; pr_debug("# table @%p, off %llx size %zx\n", tp->table, topa->offset, topa->size); for (i = 0; i < TENTS_PER_PAGE; i++) { pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n", &tp->table[i], (unsigned long)tp->table[i].base << TOPA_SHIFT, sizes(tp->table[i].size), tp->table[i].end ? 'E' : ' ', tp->table[i].intr ? 'I' : ' ', tp->table[i].stop ? 'S' : ' ', *(u64 *)&tp->table[i]); if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && tp->table[i].stop) || tp->table[i].end) break; if (!i && topa->z_count) i += topa->z_count; } } } /** * pt_buffer_advance() - advance to the next output region * @buf: PT buffer. * * Advance the current pointers in the buffer to the next ToPA entry. */ static void pt_buffer_advance(struct pt_buffer *buf) { buf->output_off = 0; buf->cur_idx++; if (buf->cur_idx == buf->cur->last) { if (buf->cur == buf->last) buf->cur = buf->first; else buf->cur = list_entry(buf->cur->list.next, struct topa, list); buf->cur_idx = 0; } } /** * pt_update_head() - calculate current offsets and sizes * @pt: Per-cpu pt context. * * Update buffer's current write pointer position and data size. */ static void pt_update_head(struct pt *pt) { struct pt_buffer *buf = perf_get_aux(&pt->handle); u64 topa_idx, base, old; if (buf->single) { local_set(&buf->data_size, buf->output_off); return; } /* offset of the first region in this table from the beginning of buf */ base = buf->cur->offset + buf->output_off; /* offset of the current output region within this table */ for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++) base += TOPA_ENTRY_SIZE(buf->cur, topa_idx); if (buf->snapshot) { local_set(&buf->data_size, base); } else { old = (local64_xchg(&buf->head, base) & ((buf->nr_pages << PAGE_SHIFT) - 1)); if (base < old) base += buf->nr_pages << PAGE_SHIFT; local_add(base - old, &buf->data_size); } } /** * pt_buffer_region() - obtain current output region's address * @buf: PT buffer. */ static void *pt_buffer_region(struct pt_buffer *buf) { return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT); } /** * pt_buffer_region_size() - obtain current output region's size * @buf: PT buffer. */ static size_t pt_buffer_region_size(struct pt_buffer *buf) { return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx); } /** * pt_handle_status() - take care of possible status conditions * @pt: Per-cpu pt context. */ static void pt_handle_status(struct pt *pt) { struct pt_buffer *buf = perf_get_aux(&pt->handle); int advance = 0; u64 status; rdmsrl(MSR_IA32_RTIT_STATUS, status); if (status & RTIT_STATUS_ERROR) { pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n"); pt_topa_dump(buf); status &= ~RTIT_STATUS_ERROR; } if (status & RTIT_STATUS_STOPPED) { status &= ~RTIT_STATUS_STOPPED; /* * On systems that only do single-entry ToPA, hitting STOP * means we are already losing data; need to let the decoder * know. */ if (!buf->single && (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) || buf->output_off == pt_buffer_region_size(buf))) { perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_TRUNCATED); advance++; } } /* * Also on single-entry ToPA implementations, interrupt will come * before the output reaches its output region's boundary. */ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) && !buf->snapshot && pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) { void *head = pt_buffer_region(buf); /* everything within this margin needs to be zeroed out */ memset(head + buf->output_off, 0, pt_buffer_region_size(buf) - buf->output_off); advance++; } if (advance) pt_buffer_advance(buf); wrmsrl(MSR_IA32_RTIT_STATUS, status); } /** * pt_read_offset() - translate registers into buffer pointers * @buf: PT buffer. * * Set buffer's output pointers from MSR values. */ static void pt_read_offset(struct pt_buffer *buf) { struct pt *pt = this_cpu_ptr(&pt_ctx); struct topa_page *tp; if (!buf->single) { rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base); tp = phys_to_virt(pt->output_base); buf->cur = &tp->topa; } rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask); /* offset within current output region */ buf->output_off = pt->output_mask >> 32; /* index of current output region within this table */ if (!buf->single) buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7; } static struct topa_entry * pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg) { struct topa_page *tp; struct topa *topa; unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0; /* * Indicates a bug in the caller. */ if (WARN_ON_ONCE(pg >= buf->nr_pages)) return NULL; /* * First, find the ToPA table where @pg fits. With high * order allocations, there shouldn't be many of these. */ list_for_each_entry(topa, &buf->tables, list) { if (topa->offset + topa->size > pg << PAGE_SHIFT) goto found; } /* * Hitting this means we have a problem in the ToPA * allocation code. */ WARN_ON_ONCE(1); return NULL; found: /* * Indicates a problem in the ToPA allocation code. */ if (WARN_ON_ONCE(topa->last == -1)) return NULL; tp = topa_to_page(topa); cur_pg = PFN_DOWN(topa->offset); if (topa->z_count) { z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1); start_idx = topa->z_count + 1; } /* * Multiple entries at the beginning of the table have the same size, * ideally all of them; if @pg falls there, the search is done. */ if (pg >= cur_pg && pg < cur_pg + z_pg) { idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0); return &tp->table[idx]; } /* * Otherwise, slow path: iterate through the remaining entries. */ for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) { if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg) return &tp->table[idx]; cur_pg += TOPA_ENTRY_PAGES(topa, idx); } /* * Means we couldn't find a ToPA entry in the table that does match. */ WARN_ON_ONCE(1); return NULL; } static struct topa_entry * pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te) { unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1); struct topa_page *tp; struct topa *topa; tp = (struct topa_page *)table; if (tp->table != te) return --te; topa = &tp->topa; if (topa == buf->first) topa = buf->last; else topa = list_prev_entry(topa, list); tp = topa_to_page(topa); return &tp->table[topa->last - 1]; } /** * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer * @buf: PT buffer. * @handle: Current output handle. * * Place INT and STOP marks to prevent overwriting old data that the consumer * hasn't yet collected and waking up the consumer after a certain fraction of * the buffer has filled up. Only needed and sensible for non-snapshot counters. * * This obviously relies on buf::head to figure out buffer markers, so it has * to be called after pt_buffer_reset_offsets() and before the hardware tracing * is enabled. */ static int pt_buffer_reset_markers(struct pt_buffer *buf, struct perf_output_handle *handle) { unsigned long head = local64_read(&buf->head); unsigned long idx, npages, wakeup; if (buf->single) return 0; /* can't stop in the middle of an output region */ if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) { perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); return -EINVAL; } /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) return 0; /* clear STOP and INT from current entry */ if (buf->stop_te) { buf->stop_te->stop = 0; buf->stop_te->intr = 0; } if (buf->intr_te) buf->intr_te->intr = 0; /* how many pages till the STOP marker */ npages = handle->size >> PAGE_SHIFT; /* if it's on a page boundary, fill up one more page */ if (!offset_in_page(head + handle->size + 1)) npages++; idx = (head >> PAGE_SHIFT) + npages; idx &= buf->nr_pages - 1; if (idx != buf->stop_pos) { buf->stop_pos = idx; buf->stop_te = pt_topa_entry_for_page(buf, idx); buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te); } wakeup = handle->wakeup >> PAGE_SHIFT; /* in the worst case, wake up the consumer one page before hard stop */ idx = (head >> PAGE_SHIFT) + npages - 1; if (idx > wakeup) idx = wakeup; idx &= buf->nr_pages - 1; if (idx != buf->intr_pos) { buf->intr_pos = idx; buf->intr_te = pt_topa_entry_for_page(buf, idx); buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te); } buf->stop_te->stop = 1; buf->stop_te->intr = 1; buf->intr_te->intr = 1; return 0; } /** * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head * @buf: PT buffer. * @head: Write pointer (aux_head) from AUX buffer. * * Find the ToPA table and entry corresponding to given @head and set buffer's * "current" pointers accordingly. This is done after we have obtained the * current aux_head position from a successful call to perf_aux_output_begin() * to make sure the hardware is writing to the right place. * * This function modifies buf::{cur,cur_idx,output_off} that will be programmed * into PT msrs when the tracing is enabled and buf::head and buf::data_size, * which are used to determine INT and STOP markers' locations by a subsequent * call to pt_buffer_reset_markers(). */ static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head) { struct topa_page *cur_tp; struct topa_entry *te; int pg; if (buf->snapshot) head &= (buf->nr_pages << PAGE_SHIFT) - 1; if (!buf->single) { pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1); te = pt_topa_entry_for_page(buf, pg); cur_tp = topa_entry_to_page(te); buf->cur = &cur_tp->topa; buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0); buf->output_off = head & (pt_buffer_region_size(buf) - 1); } else { buf->output_off = head; } local64_set(&buf->head, head); local_set(&buf->data_size, 0); } /** * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer * @buf: PT buffer. */ static void pt_buffer_fini_topa(struct pt_buffer *buf) { struct topa *topa, *iter; if (buf->single) return; list_for_each_entry_safe(topa, iter, &buf->tables, list) { /* * right now, this is in free_aux() path only, so * no need to unlink this table from the list */ topa_free(topa); } } /** * pt_buffer_init_topa() - initialize ToPA table for pt buffer * @buf: PT buffer. * @cpu: CPU on which to allocate. * @nr_pages: No. of pages to allocate. * @gfp: Allocation flags. * * Return: 0 on success or error code. */ static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu, unsigned long nr_pages, gfp_t gfp) { struct topa *topa; int err; topa = topa_alloc(cpu, gfp); if (!topa) return -ENOMEM; topa_insert_table(buf, topa); while (buf->nr_pages < nr_pages) { err = topa_insert_pages(buf, cpu, gfp); if (err) { pt_buffer_fini_topa(buf); return -ENOMEM; } } /* link last table to the first one, unless we're double buffering */ if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) { TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first); TOPA_ENTRY(buf->last, -1)->end = 1; } pt_topa_dump(buf); return 0; } static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages) { struct page *p = virt_to_page(buf->data_pages[0]); int ret = -ENOTSUPP, order = 0; /* * We can use single range output mode * + in snapshot mode, where we don't need interrupts; * + if the hardware supports it; * + if the entire buffer is one contiguous allocation. */ if (!buf->snapshot) goto out; if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output)) goto out; if (PagePrivate(p)) order = page_private(p); if (1 << order != nr_pages) goto out; /* * Some processors cannot always support single range for more than * 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might * also be affected, so for now rather than trying to keep track of * which ones, just disable it for all. */ if (nr_pages > 1) goto out; buf->single = true; buf->nr_pages = nr_pages; ret = 0; out: return ret; } /** * pt_buffer_setup_aux() - set up topa tables for a PT buffer * @event: Performance event * @pages: Array of pointers to buffer pages passed from perf core. * @nr_pages: Number of pages in the buffer. * @snapshot: If this is a snapshot/overwrite counter. * * This is a pmu::setup_aux callback that sets up ToPA tables and all the * bookkeeping for an AUX buffer. * * Return: Our private PT buffer structure. */ static void * pt_buffer_setup_aux(struct perf_event *event, void **pages, int nr_pages, bool snapshot) { struct pt_buffer *buf; int node, ret, cpu = event->cpu; if (!nr_pages) return NULL; /* * Only support AUX sampling in snapshot mode, where we don't * generate NMIs. */ if (event->attr.aux_sample_size && !snapshot) return NULL; if (cpu == -1) cpu = raw_smp_processor_id(); node = cpu_to_node(cpu); buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node); if (!buf) return NULL; buf->snapshot = snapshot; buf->data_pages = pages; buf->stop_pos = -1; buf->intr_pos = -1; INIT_LIST_HEAD(&buf->tables); ret = pt_buffer_try_single(buf, nr_pages); if (!ret) return buf; ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL); if (ret) { kfree(buf); return NULL; } return buf; } /** * pt_buffer_free_aux() - perf AUX deallocation path callback * @data: PT buffer. */ static void pt_buffer_free_aux(void *data) { struct pt_buffer *buf = data; pt_buffer_fini_topa(buf); kfree(buf); } static int pt_addr_filters_init(struct perf_event *event) { struct pt_filters *filters; int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu); if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) return 0; filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node); if (!filters) return -ENOMEM; if (event->parent) memcpy(filters, event->parent->hw.addr_filters, sizeof(*filters)); event->hw.addr_filters = filters; return 0; } static void pt_addr_filters_fini(struct perf_event *event) { kfree(event->hw.addr_filters); event->hw.addr_filters = NULL; } #ifdef CONFIG_X86_64 /* Clamp to a canonical address greater-than-or-equal-to the address given */ static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits) { return __is_canonical_address(vaddr, vaddr_bits) ? vaddr : -BIT_ULL(vaddr_bits - 1); } /* Clamp to a canonical address less-than-or-equal-to the address given */ static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits) { return __is_canonical_address(vaddr, vaddr_bits) ? vaddr : BIT_ULL(vaddr_bits - 1) - 1; } #else #define clamp_to_ge_canonical_addr(x, y) (x) #define clamp_to_le_canonical_addr(x, y) (x) #endif static int pt_event_addr_filters_validate(struct list_head *filters) { struct perf_addr_filter *filter; int range = 0; list_for_each_entry(filter, filters, entry) { /* * PT doesn't support single address triggers and * 'start' filters. */ if (!filter->size || filter->action == PERF_ADDR_FILTER_ACTION_START) return -EOPNOTSUPP; if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges)) return -EOPNOTSUPP; } return 0; } static void pt_event_addr_filters_sync(struct perf_event *event) { struct perf_addr_filters_head *head = perf_event_addr_filters(event); unsigned long msr_a, msr_b; struct perf_addr_filter_range *fr = event->addr_filter_ranges; struct pt_filters *filters = event->hw.addr_filters; struct perf_addr_filter *filter; int range = 0; if (!filters) return; list_for_each_entry(filter, &head->list, entry) { if (filter->path.dentry && !fr[range].start) { msr_a = msr_b = 0; } else { unsigned long n = fr[range].size - 1; unsigned long a = fr[range].start; unsigned long b; if (a > ULONG_MAX - n) b = ULONG_MAX; else b = a + n; /* * Apply the offset. 64-bit addresses written to the * MSRs must be canonical, but the range can encompass * non-canonical addresses. Since software cannot * execute at non-canonical addresses, adjusting to * canonical addresses does not affect the result of the * address filter. */ msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits); msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits); if (msr_b < msr_a) msr_a = msr_b = 0; } filters->filter[range].msr_a = msr_a; filters->filter[range].msr_b = msr_b; if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER) filters->filter[range].config = 1; else filters->filter[range].config = 2; range++; } filters->nr_filters = range; } /** * intel_pt_interrupt() - PT PMI handler */ void intel_pt_interrupt(void) { struct pt *pt = this_cpu_ptr(&pt_ctx); struct pt_buffer *buf; struct perf_event *event = pt->handle.event; /* * There may be a dangling PT bit in the interrupt status register * after PT has been disabled by pt_event_stop(). Make sure we don't * do anything (particularly, re-enable) for this event here. */ if (!READ_ONCE(pt->handle_nmi)) return; if (!event) return; pt_config_stop(event); buf = perf_get_aux(&pt->handle); if (!buf) return; pt_read_offset(buf); pt_handle_status(pt); pt_update_head(pt); perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); if (!event->hw.state) { int ret; buf = perf_aux_output_begin(&pt->handle, event); if (!buf) { event->hw.state = PERF_HES_STOPPED; return; } pt_buffer_reset_offsets(buf, pt->handle.head); /* snapshot counters don't use PMI, so it's safe */ ret = pt_buffer_reset_markers(buf, &pt->handle); if (ret) { perf_aux_output_end(&pt->handle, 0); return; } pt_config_buffer(buf); pt_config_start(event); } } void intel_pt_handle_vmx(int on) { struct pt *pt = this_cpu_ptr(&pt_ctx); struct perf_event *event; unsigned long flags; /* PT plays nice with VMX, do nothing */ if (pt_pmu.vmx) return; /* * VMXON will clear RTIT_CTL.TraceEn; we need to make * sure to not try to set it while VMX is on. Disable * interrupts to avoid racing with pmu callbacks; * concurrent PMI should be handled fine. */ local_irq_save(flags); WRITE_ONCE(pt->vmx_on, on); /* * If an AUX transaction is in progress, it will contain * gap(s), so flag it PARTIAL to inform the user. */ event = pt->handle.event; if (event) perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL); /* Turn PTs back on */ if (!on && event) wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config); local_irq_restore(flags); } EXPORT_SYMBOL_GPL(intel_pt_handle_vmx); /* * PMU callbacks */ static void pt_event_start(struct perf_event *event, int mode) { struct hw_perf_event *hwc = &event->hw; struct pt *pt = this_cpu_ptr(&pt_ctx); struct pt_buffer *buf; buf = perf_aux_output_begin(&pt->handle, event); if (!buf) goto fail_stop; pt_buffer_reset_offsets(buf, pt->handle.head); if (!buf->snapshot) { if (pt_buffer_reset_markers(buf, &pt->handle)) goto fail_end_stop; } WRITE_ONCE(pt->handle_nmi, 1); hwc->state = 0; pt_config_buffer(buf); pt_config(event); return; fail_end_stop: perf_aux_output_end(&pt->handle, 0); fail_stop: hwc->state = PERF_HES_STOPPED; } static void pt_event_stop(struct perf_event *event, int mode) { struct pt *pt = this_cpu_ptr(&pt_ctx); /* * Protect against the PMI racing with disabling wrmsr, * see comment in intel_pt_interrupt(). */ WRITE_ONCE(pt->handle_nmi, 0); pt_config_stop(event); if (event->hw.state == PERF_HES_STOPPED) return; event->hw.state = PERF_HES_STOPPED; if (mode & PERF_EF_UPDATE) { struct pt_buffer *buf = perf_get_aux(&pt->handle); if (!buf) return; if (WARN_ON_ONCE(pt->handle.event != event)) return; pt_read_offset(buf); pt_handle_status(pt); pt_update_head(pt); if (buf->snapshot) pt->handle.head = local_xchg(&buf->data_size, buf->nr_pages << PAGE_SHIFT); perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0)); } } static long pt_event_snapshot_aux(struct perf_event *event, struct perf_output_handle *handle, unsigned long size) { struct pt *pt = this_cpu_ptr(&pt_ctx); struct pt_buffer *buf = perf_get_aux(&pt->handle); unsigned long from = 0, to; long ret; if (WARN_ON_ONCE(!buf)) return 0; /* * Sampling is only allowed on snapshot events; * see pt_buffer_setup_aux(). */ if (WARN_ON_ONCE(!buf->snapshot)) return 0; /* * Here, handle_nmi tells us if the tracing is on */ if (READ_ONCE(pt->handle_nmi)) pt_config_stop(event); pt_read_offset(buf); pt_update_head(pt); to = local_read(&buf->data_size); if (to < size) from = buf->nr_pages << PAGE_SHIFT; from += to - size; ret = perf_output_copy_aux(&pt->handle, handle, from, to); /* * If the tracing was on when we turned up, restart it. * Compiler barrier not needed as we couldn't have been * preempted by anything that touches pt->handle_nmi. */ if (pt->handle_nmi) pt_config_start(event); return ret; } static void pt_event_del(struct perf_event *event, int mode) { pt_event_stop(event, PERF_EF_UPDATE); } static int pt_event_add(struct perf_event *event, int mode) { struct pt *pt = this_cpu_ptr(&pt_ctx); struct hw_perf_event *hwc = &event->hw; int ret = -EBUSY; if (pt->handle.event) goto fail; if (mode & PERF_EF_START) { pt_event_start(event, 0); ret = -EINVAL; if (hwc->state == PERF_HES_STOPPED) goto fail; } else { hwc->state = PERF_HES_STOPPED; } ret = 0; fail: return ret; } static void pt_event_read(struct perf_event *event) { } static void pt_event_destroy(struct perf_event *event) { pt_addr_filters_fini(event); x86_del_exclusive(x86_lbr_exclusive_pt); } static int pt_event_init(struct perf_event *event) { if (event->attr.type != pt_pmu.pmu.type) return -ENOENT; if (!pt_event_valid(event)) return -EINVAL; if (x86_add_exclusive(x86_lbr_exclusive_pt)) return -EBUSY; if (pt_addr_filters_init(event)) { x86_del_exclusive(x86_lbr_exclusive_pt); return -ENOMEM; } event->destroy = pt_event_destroy; return 0; } void cpu_emergency_stop_pt(void) { struct pt *pt = this_cpu_ptr(&pt_ctx); if (pt->handle.event) pt_event_stop(pt->handle.event, PERF_EF_UPDATE); } int is_intel_pt_event(struct perf_event *event) { return event->pmu == &pt_pmu.pmu; } static __init int pt_init(void) { int ret, cpu, prior_warn = 0; BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE); if (!boot_cpu_has(X86_FEATURE_INTEL_PT)) return -ENODEV; cpus_read_lock(); for_each_online_cpu(cpu) { u64 ctl; ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl); if (!ret && (ctl & RTIT_CTL_TRACEEN)) prior_warn++; } cpus_read_unlock(); if (prior_warn) { x86_add_exclusive(x86_lbr_exclusive_pt); pr_warn("PT is enabled at boot time, doing nothing\n"); return -EBUSY; } ret = pt_pmu_hw_init(); if (ret) return ret; if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) { pr_warn("ToPA output is not supported on this CPU\n"); return -ENODEV; } if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG; pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE; pt_pmu.pmu.attr_groups = pt_attr_groups; pt_pmu.pmu.task_ctx_nr = perf_sw_context; pt_pmu.pmu.event_init = pt_event_init; pt_pmu.pmu.add = pt_event_add; pt_pmu.pmu.del = pt_event_del; pt_pmu.pmu.start = pt_event_start; pt_pmu.pmu.stop = pt_event_stop; pt_pmu.pmu.snapshot_aux = pt_event_snapshot_aux; pt_pmu.pmu.read = pt_event_read; pt_pmu.pmu.setup_aux = pt_buffer_setup_aux; pt_pmu.pmu.free_aux = pt_buffer_free_aux; pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync; pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate; pt_pmu.pmu.nr_addr_filters = intel_pt_validate_hw_cap(PT_CAP_num_address_ranges); ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1); return ret; } arch_initcall(pt_init);