/* * Routines providing a simple monitor for use on the PowerMac. * * Copyright (C) 1996 Paul Mackerras. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/mm.h> #include <linux/reboot.h> #include <linux/delay.h> #include <linux/kallsyms.h> #include <linux/cpumask.h> #include <asm/ptrace.h> #include <asm/string.h> #include <asm/prom.h> #include <asm/machdep.h> #include <asm/processor.h> #include <asm/pgtable.h> #include <asm/mmu.h> #include <asm/mmu_context.h> #include <asm/naca.h> #include <asm/paca.h> #include <asm/ppcdebug.h> #include <asm/cputable.h> #include <asm/rtas.h> #include "nonstdio.h" #include "privinst.h" #define scanhex xmon_scanhex #define skipbl xmon_skipbl #ifdef CONFIG_SMP volatile cpumask_t cpus_in_xmon = CPU_MASK_NONE; static unsigned long xmon_taken = 1; static int xmon_owner; static int xmon_gate; #endif /* CONFIG_SMP */ static unsigned long in_xmon = 0; static unsigned long adrs; static int size = 1; static unsigned long ndump = 64; static unsigned long nidump = 16; static unsigned long ncsum = 4096; static int termch; static char tmpstr[128]; #define JMP_BUF_LEN (184/sizeof(long)) static long bus_error_jmp[JMP_BUF_LEN]; static int catch_memory_errors; static long *xmon_fault_jmp[NR_CPUS]; #define setjmp xmon_setjmp #define longjmp xmon_longjmp /* Breakpoint stuff */ struct bpt { unsigned long address; unsigned int instr[2]; atomic_t ref_count; int enabled; unsigned long pad; }; /* Bits in bpt.enabled */ #define BP_IABR_TE 1 /* IABR translation enabled */ #define BP_IABR 2 #define BP_TRAP 8 #define BP_DABR 0x10 #define NBPTS 256 static struct bpt bpts[NBPTS]; static struct bpt dabr; static struct bpt *iabr; static unsigned bpinstr = 0x7fe00008; /* trap */ #define BP_NUM(bp) ((bp) - bpts + 1) /* Bits in SRR1 that are copied from MSR */ #define MSR_MASK 0xffffffff87c0ffff /* Prototypes */ static int cmds(struct pt_regs *); static int mread(unsigned long, void *, int); static int mwrite(unsigned long, void *, int); static int handle_fault(struct pt_regs *); static void byterev(unsigned char *, int); static void memex(void); static int bsesc(void); static void dump(void); static void prdump(unsigned long, long); static int ppc_inst_dump(unsigned long, long, int); void print_address(unsigned long); static void backtrace(struct pt_regs *); static void excprint(struct pt_regs *); static void prregs(struct pt_regs *); static void memops(int); static void memlocate(void); static void memzcan(void); static void memdiffs(unsigned char *, unsigned char *, unsigned, unsigned); int skipbl(void); int scanhex(unsigned long *valp); static void scannl(void); static int hexdigit(int); void getstring(char *, int); static void flush_input(void); static int inchar(void); static void take_input(char *); static unsigned long read_spr(int); static void write_spr(int, unsigned long); static void super_regs(void); static void remove_bpts(void); static void insert_bpts(void); static void remove_cpu_bpts(void); static void insert_cpu_bpts(void); static struct bpt *at_breakpoint(unsigned long pc); static struct bpt *in_breakpoint_table(unsigned long pc, unsigned long *offp); static int do_step(struct pt_regs *); static void bpt_cmds(void); static void cacheflush(void); static int cpu_cmd(void); static void csum(void); static void bootcmds(void); void dump_segments(void); static void symbol_lookup(void); static int emulate_step(struct pt_regs *regs, unsigned int instr); static void xmon_print_symbol(unsigned long address, const char *mid, const char *after); static const char *getvecname(unsigned long vec); static void debug_trace(void); extern int print_insn_powerpc(unsigned long, unsigned long, int); extern void printf(const char *fmt, ...); extern void xmon_vfprintf(void *f, const char *fmt, va_list ap); extern int xmon_putc(int c, void *f); extern int putchar(int ch); extern int xmon_read_poll(void); extern int setjmp(long *); extern void longjmp(long *, int); extern unsigned long _ASR; extern char SystemCall_common[]; pte_t *find_linux_pte(pgd_t *pgdir, unsigned long va); /* from htab.c */ #define GETWORD(v) (((v)[0] << 24) + ((v)[1] << 16) + ((v)[2] << 8) + (v)[3]) #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'f') \ || ('A' <= (c) && (c) <= 'F')) #define isalnum(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'z') \ || ('A' <= (c) && (c) <= 'Z')) #define isspace(c) (c == ' ' || c == '\t' || c == 10 || c == 13 || c == 0) static char *help_string = "\ Commands:\n\ b show breakpoints\n\ bd set data breakpoint\n\ bi set instruction breakpoint\n\ bc clear breakpoint\n" #ifdef CONFIG_SMP "\ c print cpus stopped in xmon\n\ c# try to switch to cpu number h (in hex)\n" #endif "\ C checksum\n\ d dump bytes\n\ di dump instructions\n\ df dump float values\n\ dd dump double values\n\ e print exception information\n\ f flush cache\n\ la lookup symbol+offset of specified address\n\ ls lookup address of specified symbol\n\ m examine/change memory\n\ mm move a block of memory\n\ ms set a block of memory\n\ md compare two blocks of memory\n\ ml locate a block of memory\n\ mz zero a block of memory\n\ mi show information about memory allocation\n\ p show the task list\n\ r print registers\n\ s single step\n\ S print special registers\n\ t print backtrace\n\ T Enable/Disable PPCDBG flags\n\ x exit monitor and recover\n\ X exit monitor and dont recover\n\ u dump segment table or SLB\n\ ? help\n" "\ zr reboot\n\ zh halt\n" ; static struct pt_regs *xmon_regs; extern inline void sync(void) { asm volatile("sync; isync"); } /* (Ref: 64-bit PowerPC ELF ABI Spplement; Ian Lance Taylor, Zembu Labs). A PPC stack frame looks like this: High Address Back Chain FP reg save area GP reg save area Local var space Parameter save area (SP+48) TOC save area (SP+40) link editor doubleword (SP+32) compiler doubleword (SP+24) LR save (SP+16) CR save (SP+8) Back Chain (SP+0) Note that the LR (ret addr) may not be saved in the current frame if no functions have been called from the current function. */ /* * We don't allow single-stepping an mtmsrd that would clear * MSR_RI, since that would make the exception unrecoverable. * Since we need to single-step to proceed from a breakpoint, * we don't allow putting a breakpoint on an mtmsrd instruction. * Similarly we don't allow breakpoints on rfid instructions. * These macros tell us if an instruction is a mtmsrd or rfid. */ #define IS_MTMSRD(instr) (((instr) & 0xfc0007fe) == 0x7c000164) #define IS_RFID(instr) (((instr) & 0xfc0007fe) == 0x4c000024) /* * Disable surveillance (the service processor watchdog function) * while we are in xmon. * XXX we should re-enable it when we leave. :) */ #define SURVEILLANCE_TOKEN 9000 static inline void disable_surveillance(void) { #ifndef CONFIG_PPC_ISERIES /* Since this can't be a module, args should end up below 4GB. */ static struct rtas_args args; if (systemcfg->platform & PLATFORM_PSERIES) { /* * At this point we have got all the cpus we can into * xmon, so there is hopefully no other cpu calling RTAS * at the moment, even though we don't take rtas.lock. * If we did try to take rtas.lock there would be a * real possibility of deadlock. */ args.token = rtas_token("set-indicator"); if (args.token == RTAS_UNKNOWN_SERVICE) return; args.nargs = 3; args.nret = 1; args.rets = &args.args[3]; args.args[0] = SURVEILLANCE_TOKEN; args.args[1] = 0; args.args[2] = 0; enter_rtas(__pa(&args)); } #endif } #ifdef CONFIG_SMP static int xmon_speaker; static void get_output_lock(void) { int me = smp_processor_id() + 0x100; int last_speaker = 0, prev; long timeout; if (xmon_speaker == me) return; for (;;) { if (xmon_speaker == 0) { last_speaker = cmpxchg(&xmon_speaker, 0, me); if (last_speaker == 0) return; } timeout = 10000000; while (xmon_speaker == last_speaker) { if (--timeout > 0) continue; /* hostile takeover */ prev = cmpxchg(&xmon_speaker, last_speaker, me); if (prev == last_speaker) return; break; } } } static void release_output_lock(void) { xmon_speaker = 0; } #endif int xmon_core(struct pt_regs *regs, int fromipi) { int cmd = 0; unsigned long msr; struct bpt *bp; long recurse_jmp[JMP_BUF_LEN]; unsigned long offset; #ifdef CONFIG_SMP int cpu; int secondary; unsigned long timeout; #endif msr = get_msr(); set_msrd(msr & ~MSR_EE); /* disable interrupts */ bp = in_breakpoint_table(regs->nip, &offset); if (bp != NULL) { regs->nip = bp->address + offset; atomic_dec(&bp->ref_count); } remove_cpu_bpts(); #ifdef CONFIG_SMP cpu = smp_processor_id(); if (cpu_isset(cpu, cpus_in_xmon)) { get_output_lock(); excprint(regs); printf("cpu 0x%x: Exception %lx %s in xmon, " "returning to main loop\n", cpu, regs->trap, getvecname(TRAP(regs))); longjmp(xmon_fault_jmp[cpu], 1); } if (setjmp(recurse_jmp) != 0) { if (!in_xmon || !xmon_gate) { printf("xmon: WARNING: bad recursive fault " "on cpu 0x%x\n", cpu); goto waiting; } secondary = !(xmon_taken && cpu == xmon_owner); goto cmdloop; } xmon_fault_jmp[cpu] = recurse_jmp; cpu_set(cpu, cpus_in_xmon); bp = NULL; if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) == (MSR_IR|MSR_SF)) bp = at_breakpoint(regs->nip); if (bp || (regs->msr & MSR_RI) == 0) fromipi = 0; if (!fromipi) { get_output_lock(); excprint(regs); if (bp) { printf("cpu 0x%x stopped at breakpoint 0x%x (", cpu, BP_NUM(bp)); xmon_print_symbol(regs->nip, " ", ")\n"); } if ((regs->msr & MSR_RI) == 0) printf("WARNING: exception is not recoverable, " "can't continue\n"); release_output_lock(); } waiting: secondary = 1; while (secondary && !xmon_gate) { if (in_xmon == 0) { if (fromipi) goto leave; secondary = test_and_set_bit(0, &in_xmon); } barrier(); } if (!secondary && !xmon_gate) { /* we are the first cpu to come in */ /* interrupt other cpu(s) */ int ncpus = num_online_cpus(); xmon_owner = cpu; mb(); if (ncpus > 1) { smp_send_debugger_break(MSG_ALL_BUT_SELF); /* wait for other cpus to come in */ for (timeout = 100000000; timeout != 0; --timeout) if (cpus_weight(cpus_in_xmon) >= ncpus) break; } remove_bpts(); disable_surveillance(); /* for breakpoint or single step, print the current instr. */ if (bp || TRAP(regs) == 0xd00) ppc_inst_dump(regs->nip, 1, 0); printf("enter ? for help\n"); mb(); xmon_gate = 1; barrier(); } cmdloop: while (in_xmon) { if (secondary) { if (cpu == xmon_owner) { if (!test_and_set_bit(0, &xmon_taken)) { secondary = 0; continue; } /* missed it */ while (cpu == xmon_owner) barrier(); } barrier(); } else { cmd = cmds(regs); if (cmd != 0) { /* exiting xmon */ insert_bpts(); xmon_gate = 0; wmb(); in_xmon = 0; break; } /* have switched to some other cpu */ secondary = 1; } } leave: cpu_clear(cpu, cpus_in_xmon); xmon_fault_jmp[cpu] = NULL; #else /* UP is simple... */ if (in_xmon) { printf("Exception %lx %s in xmon, returning to main loop\n", regs->trap, getvecname(TRAP(regs))); longjmp(xmon_fault_jmp[0], 1); } if (setjmp(recurse_jmp) == 0) { xmon_fault_jmp[0] = recurse_jmp; in_xmon = 1; excprint(regs); bp = at_breakpoint(regs->nip); if (bp) { printf("Stopped at breakpoint %x (", BP_NUM(bp)); xmon_print_symbol(regs->nip, " ", ")\n"); } if ((regs->msr & MSR_RI) == 0) printf("WARNING: exception is not recoverable, " "can't continue\n"); remove_bpts(); disable_surveillance(); /* for breakpoint or single step, print the current instr. */ if (bp || TRAP(regs) == 0xd00) ppc_inst_dump(regs->nip, 1, 0); printf("enter ? for help\n"); } cmd = cmds(regs); insert_bpts(); in_xmon = 0; #endif if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) == (MSR_IR|MSR_SF)) { bp = at_breakpoint(regs->nip); if (bp != NULL) { int stepped = emulate_step(regs, bp->instr[0]); if (stepped == 0) { regs->nip = (unsigned long) &bp->instr[0]; atomic_inc(&bp->ref_count); } } } insert_cpu_bpts(); set_msrd(msr); /* restore interrupt enable */ return cmd != 'X'; } int xmon(struct pt_regs *excp) { struct pt_regs regs; if (excp == NULL) { /* Ok, grab regs as they are now. This won't do a particularily good job because the prologue has already been executed. ToDo: We could reach back into the callers save area to do a better job of representing the caller's state. */ asm volatile ("std 0,0(%0)\n\ std 1,8(%0)\n\ std 2,16(%0)\n\ std 3,24(%0)\n\ std 4,32(%0)\n\ std 5,40(%0)\n\ std 6,48(%0)\n\ std 7,56(%0)\n\ std 8,64(%0)\n\ std 9,72(%0)\n\ std 10,80(%0)\n\ std 11,88(%0)\n\ std 12,96(%0)\n\ std 13,104(%0)\n\ std 14,112(%0)\n\ std 15,120(%0)\n\ std 16,128(%0)\n\ std 17,136(%0)\n\ std 18,144(%0)\n\ std 19,152(%0)\n\ std 20,160(%0)\n\ std 21,168(%0)\n\ std 22,176(%0)\n\ std 23,184(%0)\n\ std 24,192(%0)\n\ std 25,200(%0)\n\ std 26,208(%0)\n\ std 27,216(%0)\n\ std 28,224(%0)\n\ std 29,232(%0)\n\ std 30,240(%0)\n\ std 31,248(%0)" : : "b" (®s)); regs.nip = regs.link = ((unsigned long *)(regs.gpr[1]))[2]; regs.msr = get_msr(); regs.ctr = get_ctr(); regs.xer = get_xer(); regs.ccr = get_cr(); regs.trap = 0; excp = ®s; } return xmon_core(excp, 0); } int xmon_bpt(struct pt_regs *regs) { struct bpt *bp; unsigned long offset; if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) != (MSR_IR|MSR_SF)) return 0; /* Are we at the trap at bp->instr[1] for some bp? */ bp = in_breakpoint_table(regs->nip, &offset); if (bp != NULL && offset == 4) { regs->nip = bp->address + 4; atomic_dec(&bp->ref_count); return 1; } /* Are we at a breakpoint? */ bp = at_breakpoint(regs->nip); if (!bp) return 0; xmon_core(regs, 0); return 1; } int xmon_sstep(struct pt_regs *regs) { if (user_mode(regs)) return 0; xmon_core(regs, 0); return 1; } int xmon_dabr_match(struct pt_regs *regs) { if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) != (MSR_IR|MSR_SF)) return 0; xmon_core(regs, 0); return 1; } int xmon_iabr_match(struct pt_regs *regs) { if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) != (MSR_IR|MSR_SF)) return 0; if (iabr == 0) return 0; xmon_core(regs, 0); return 1; } int xmon_ipi(struct pt_regs *regs) { #ifdef CONFIG_SMP if (in_xmon && !cpu_isset(smp_processor_id(), cpus_in_xmon)) xmon_core(regs, 1); #endif return 0; } int xmon_fault_handler(struct pt_regs *regs) { struct bpt *bp; unsigned long offset; if (in_xmon && catch_memory_errors) handle_fault(regs); /* doesn't return */ if ((regs->msr & (MSR_IR|MSR_PR|MSR_SF)) == (MSR_IR|MSR_SF)) { bp = in_breakpoint_table(regs->nip, &offset); if (bp != NULL) { regs->nip = bp->address + offset; atomic_dec(&bp->ref_count); } } return 0; } static struct bpt *at_breakpoint(unsigned long pc) { int i; struct bpt *bp; bp = bpts; for (i = 0; i < NBPTS; ++i, ++bp) if (bp->enabled && pc == bp->address) return bp; return 0; } static struct bpt *in_breakpoint_table(unsigned long nip, unsigned long *offp) { unsigned long off; off = nip - (unsigned long) bpts; if (off >= sizeof(bpts)) return NULL; off %= sizeof(struct bpt); if (off != offsetof(struct bpt, instr[0]) && off != offsetof(struct bpt, instr[1])) return NULL; *offp = off - offsetof(struct bpt, instr[0]); return (struct bpt *) (nip - off); } static struct bpt *new_breakpoint(unsigned long a) { struct bpt *bp; a &= ~3UL; bp = at_breakpoint(a); if (bp) return bp; for (bp = bpts; bp < &bpts[NBPTS]; ++bp) { if (!bp->enabled && atomic_read(&bp->ref_count) == 0) { bp->address = a; bp->instr[1] = bpinstr; store_inst(&bp->instr[1]); return bp; } } printf("Sorry, no free breakpoints. Please clear one first.\n"); return NULL; } static void insert_bpts(void) { int i; struct bpt *bp; bp = bpts; for (i = 0; i < NBPTS; ++i, ++bp) { if ((bp->enabled & (BP_TRAP|BP_IABR)) == 0) continue; if (mread(bp->address, &bp->instr[0], 4) != 4) { printf("Couldn't read instruction at %lx, " "disabling breakpoint there\n", bp->address); bp->enabled = 0; continue; } if (IS_MTMSRD(bp->instr[0]) || IS_RFID(bp->instr[0])) { printf("Breakpoint at %lx is on an mtmsrd or rfid " "instruction, disabling it\n", bp->address); bp->enabled = 0; continue; } store_inst(&bp->instr[0]); if (bp->enabled & BP_IABR) continue; if (mwrite(bp->address, &bpinstr, 4) != 4) { printf("Couldn't write instruction at %lx, " "disabling breakpoint there\n", bp->address); bp->enabled &= ~BP_TRAP; continue; } store_inst((void *)bp->address); } } static void insert_cpu_bpts(void) { if (dabr.enabled) set_dabr(dabr.address | (dabr.enabled & 7)); if (iabr && (cur_cpu_spec->cpu_features & CPU_FTR_IABR)) set_iabr(iabr->address | (iabr->enabled & (BP_IABR|BP_IABR_TE))); } static void remove_bpts(void) { int i; struct bpt *bp; unsigned instr; bp = bpts; for (i = 0; i < NBPTS; ++i, ++bp) { if ((bp->enabled & (BP_TRAP|BP_IABR)) != BP_TRAP) continue; if (mread(bp->address, &instr, 4) == 4 && instr == bpinstr && mwrite(bp->address, &bp->instr, 4) != 4) printf("Couldn't remove breakpoint at %lx\n", bp->address); else store_inst((void *)bp->address); } } static void remove_cpu_bpts(void) { set_dabr(0); if ((cur_cpu_spec->cpu_features & CPU_FTR_IABR)) set_iabr(0); } static int branch_taken(unsigned int instr, struct pt_regs *regs) { unsigned int bo = (instr >> 21) & 0x1f; unsigned int bi; if ((bo & 4) == 0) { /* decrement counter */ --regs->ctr; if (((bo >> 1) & 1) ^ (regs->ctr == 0)) return 0; } if ((bo & 0x10) == 0) { /* check bit from CR */ bi = (instr >> 16) & 0x1f; if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) return 0; } return 1; } /* * Emulate instructions that cause a transfer of control. * Returns 1 if the step was emulated, 0 if not, * or -1 if the instruction is one that should not be stepped, * such as an rfid, or a mtmsrd that would clear MSR_RI. */ static int emulate_step(struct pt_regs *regs, unsigned int instr) { unsigned int opcode, rd; unsigned long int imm; opcode = instr >> 26; switch (opcode) { case 16: /* bc */ imm = (signed short)(instr & 0xfffc); if ((instr & 2) == 0) imm += regs->nip; regs->nip += 4; /* XXX check 32-bit mode */ if (instr & 1) regs->link = regs->nip; if (branch_taken(instr, regs)) regs->nip = imm; return 1; case 17: /* sc */ regs->gpr[9] = regs->gpr[13]; regs->gpr[11] = regs->nip + 4; regs->gpr[12] = regs->msr & MSR_MASK; regs->gpr[13] = (unsigned long) get_paca(); regs->nip = (unsigned long) &SystemCall_common; regs->msr = MSR_KERNEL; return 1; case 18: /* b */ imm = instr & 0x03fffffc; if (imm & 0x02000000) imm -= 0x04000000; if ((instr & 2) == 0) imm += regs->nip; if (instr & 1) regs->link = regs->nip + 4; regs->nip = imm; return 1; case 19: switch (instr & 0x7fe) { case 0x20: /* bclr */ case 0x420: /* bcctr */ imm = (instr & 0x400)? regs->ctr: regs->link; regs->nip += 4; /* XXX check 32-bit mode */ if (instr & 1) regs->link = regs->nip; if (branch_taken(instr, regs)) regs->nip = imm; return 1; case 0x24: /* rfid, scary */ printf("Can't single-step an rfid instruction\n"); return -1; } case 31: rd = (instr >> 21) & 0x1f; switch (instr & 0x7fe) { case 0xa6: /* mfmsr */ regs->gpr[rd] = regs->msr & MSR_MASK; regs->nip += 4; return 1; case 0x164: /* mtmsrd */ /* only MSR_EE and MSR_RI get changed if bit 15 set */ /* mtmsrd doesn't change MSR_HV and MSR_ME */ imm = (instr & 0x10000)? 0x8002: 0xefffffffffffefffUL; imm = (regs->msr & MSR_MASK & ~imm) | (regs->gpr[rd] & imm); if ((imm & MSR_RI) == 0) { printf("Can't step an instruction that would " "clear MSR.RI\n"); return -1; } regs->msr = imm; regs->nip += 4; return 1; } } return 0; } /* Command interpreting routine */ static char *last_cmd; static int cmds(struct pt_regs *excp) { int cmd = 0; last_cmd = NULL; xmon_regs = excp; for(;;) { #ifdef CONFIG_SMP printf("%x:", smp_processor_id()); #endif /* CONFIG_SMP */ printf("mon> "); fflush(stdout); flush_input(); termch = 0; cmd = skipbl(); if( cmd == '\n' ) { if (last_cmd == NULL) continue; take_input(last_cmd); last_cmd = NULL; cmd = inchar(); } switch (cmd) { case 'm': cmd = inchar(); switch (cmd) { case 'm': case 's': case 'd': memops(cmd); break; case 'l': memlocate(); break; case 'z': memzcan(); break; case 'i': show_mem(); break; default: termch = cmd; memex(); } break; case 'd': dump(); break; case 'l': symbol_lookup(); break; case 'r': prregs(excp); /* print regs */ break; case 'e': excprint(excp); break; case 'S': super_regs(); break; case 't': backtrace(excp); break; case 'f': cacheflush(); break; case 's': if (do_step(excp)) return cmd; break; case 'x': case 'X': case EOF: return cmd; case '?': printf(help_string); break; case 'p': show_state(); break; case 'b': bpt_cmds(); break; case 'C': csum(); break; case 'c': if (cpu_cmd()) return 0; break; case 'z': bootcmds(); break; case 'T': debug_trace(); break; case 'u': dump_segments(); break; default: printf("Unrecognized command: "); do { if (' ' < cmd && cmd <= '~') putchar(cmd); else printf("\\x%x", cmd); cmd = inchar(); } while (cmd != '\n'); printf(" (type ? for help)\n"); break; } } } /* * Step a single instruction. * Some instructions we emulate, others we execute with MSR_SE set. */ static int do_step(struct pt_regs *regs) { unsigned int instr; int stepped; /* check we are in 64-bit kernel mode, translation enabled */ if ((regs->msr & (MSR_SF|MSR_PR|MSR_IR)) == (MSR_SF|MSR_IR)) { if (mread(regs->nip, &instr, 4) == 4) { stepped = emulate_step(regs, instr); if (stepped < 0) return 0; if (stepped > 0) { regs->trap = 0xd00 | (regs->trap & 1); printf("stepped to "); xmon_print_symbol(regs->nip, " ", "\n"); ppc_inst_dump(regs->nip, 1, 0); return 0; } } } regs->msr |= MSR_SE; return 1; } static void bootcmds(void) { int cmd; cmd = inchar(); if (cmd == 'r') ppc_md.restart(NULL); else if (cmd == 'h') ppc_md.halt(); else if (cmd == 'p') ppc_md.power_off(); } static int cpu_cmd(void) { #ifdef CONFIG_SMP unsigned long cpu; int timeout; int count; if (!scanhex(&cpu)) { /* print cpus waiting or in xmon */ printf("cpus stopped:"); count = 0; for (cpu = 0; cpu < NR_CPUS; ++cpu) { if (cpu_isset(cpu, cpus_in_xmon)) { if (count == 0) printf(" %x", cpu); ++count; } else { if (count > 1) printf("-%x", cpu - 1); count = 0; } } if (count > 1) printf("-%x", NR_CPUS - 1); printf("\n"); return 0; } /* try to switch to cpu specified */ if (!cpu_isset(cpu, cpus_in_xmon)) { printf("cpu 0x%x isn't in xmon\n", cpu); return 0; } xmon_taken = 0; mb(); xmon_owner = cpu; timeout = 10000000; while (!xmon_taken) { if (--timeout == 0) { if (test_and_set_bit(0, &xmon_taken)) break; /* take control back */ mb(); xmon_owner = smp_processor_id(); printf("cpu %u didn't take control\n", cpu); return 0; } barrier(); } return 1; #else return 0; #endif /* CONFIG_SMP */ } static unsigned short fcstab[256] = { 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 }; #define FCS(fcs, c) (((fcs) >> 8) ^ fcstab[((fcs) ^ (c)) & 0xff]) static void csum(void) { unsigned int i; unsigned short fcs; unsigned char v; if (!scanhex(&adrs)) return; if (!scanhex(&ncsum)) return; fcs = 0xffff; for (i = 0; i < ncsum; ++i) { if (mread(adrs+i, &v, 1) == 0) { printf("csum stopped at %x\n", adrs+i); break; } fcs = FCS(fcs, v); } printf("%x\n", fcs); } /* * Check if this is a suitable place to put a breakpoint. */ static long check_bp_loc(unsigned long addr) { unsigned int instr; addr &= ~3; if (addr < KERNELBASE) { printf("Breakpoints may only be placed at kernel addresses\n"); return 0; } if (!mread(addr, &instr, sizeof(instr))) { printf("Can't read instruction at address %lx\n", addr); return 0; } if (IS_MTMSRD(instr) || IS_RFID(instr)) { printf("Breakpoints may not be placed on mtmsrd or rfid " "instructions\n"); return 0; } return 1; } static char *breakpoint_help_string = "Breakpoint command usage:\n" "b show breakpoints\n" "b <addr> [cnt] set breakpoint at given instr addr\n" "bc clear all breakpoints\n" "bc <n/addr> clear breakpoint number n or at addr\n" "bi <addr> [cnt] set hardware instr breakpoint (broken?)\n" "bd <addr> [cnt] set hardware data breakpoint (broken?)\n" ""; static void bpt_cmds(void) { int cmd; unsigned long a; int mode, i; struct bpt *bp; const char badaddr[] = "Only kernel addresses are permitted " "for breakpoints\n"; cmd = inchar(); switch (cmd) { case 'd': /* bd - hardware data breakpoint */ mode = 7; cmd = inchar(); if (cmd == 'r') mode = 5; else if (cmd == 'w') mode = 6; else termch = cmd; dabr.address = 0; dabr.enabled = 0; if (scanhex(&dabr.address)) { if (dabr.address < KERNELBASE) { printf(badaddr); break; } dabr.address &= ~7; dabr.enabled = mode | BP_DABR; } break; case 'i': /* bi - hardware instr breakpoint */ if (!(cur_cpu_spec->cpu_features & CPU_FTR_IABR)) { printf("Hardware instruction breakpoint " "not supported on this cpu\n"); break; } if (iabr) { iabr->enabled &= ~(BP_IABR | BP_IABR_TE); iabr = NULL; } if (!scanhex(&a)) break; if (!check_bp_loc(a)) break; bp = new_breakpoint(a); if (bp != NULL) { bp->enabled |= BP_IABR | BP_IABR_TE; iabr = bp; } break; case 'c': if (!scanhex(&a)) { /* clear all breakpoints */ for (i = 0; i < NBPTS; ++i) bpts[i].enabled = 0; iabr = NULL; dabr.enabled = 0; printf("All breakpoints cleared\n"); break; } if (a <= NBPTS && a >= 1) { /* assume a breakpoint number */ bp = &bpts[a-1]; /* bp nums are 1 based */ } else { /* assume a breakpoint address */ bp = at_breakpoint(a); if (bp == 0) { printf("No breakpoint at %x\n", a); break; } } printf("Cleared breakpoint %x (", BP_NUM(bp)); xmon_print_symbol(bp->address, " ", ")\n"); bp->enabled = 0; break; default: termch = cmd; cmd = skipbl(); if (cmd == '?') { printf(breakpoint_help_string); break; } termch = cmd; if (!scanhex(&a)) { /* print all breakpoints */ printf(" type address\n"); if (dabr.enabled) { printf(" data %.16lx [", dabr.address); if (dabr.enabled & 1) printf("r"); if (dabr.enabled & 2) printf("w"); printf("]\n"); } for (bp = bpts; bp < &bpts[NBPTS]; ++bp) { if (!bp->enabled) continue; printf("%2x %s ", BP_NUM(bp), (bp->enabled & BP_IABR)? "inst": "trap"); xmon_print_symbol(bp->address, " ", "\n"); } break; } if (!check_bp_loc(a)) break; bp = new_breakpoint(a); if (bp != NULL) bp->enabled |= BP_TRAP; break; } } /* Very cheap human name for vector lookup. */ static const char *getvecname(unsigned long vec) { char *ret; switch (vec) { case 0x100: ret = "(System Reset)"; break; case 0x200: ret = "(Machine Check)"; break; case 0x300: ret = "(Data Access)"; break; case 0x380: ret = "(Data SLB Access)"; break; case 0x400: ret = "(Instruction Access)"; break; case 0x480: ret = "(Instruction SLB Access)"; break; case 0x500: ret = "(Hardware Interrupt)"; break; case 0x600: ret = "(Alignment)"; break; case 0x700: ret = "(Program Check)"; break; case 0x800: ret = "(FPU Unavailable)"; break; case 0x900: ret = "(Decrementer)"; break; case 0xc00: ret = "(System Call)"; break; case 0xd00: ret = "(Single Step)"; break; case 0xf00: ret = "(Performance Monitor)"; break; case 0xf20: ret = "(Altivec Unavailable)"; break; case 0x1300: ret = "(Instruction Breakpoint)"; break; default: ret = ""; } return ret; } static void get_function_bounds(unsigned long pc, unsigned long *startp, unsigned long *endp) { unsigned long size, offset; const char *name; char *modname; *startp = *endp = 0; if (pc == 0) return; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); name = kallsyms_lookup(pc, &size, &offset, &modname, tmpstr); if (name != NULL) { *startp = pc - offset; *endp = pc - offset + size; } sync(); } catch_memory_errors = 0; } static int xmon_depth_to_print = 64; static void xmon_show_stack(unsigned long sp, unsigned long lr, unsigned long pc) { unsigned long ip; unsigned long newsp; unsigned long marker; int count = 0; struct pt_regs regs; do { if (sp < PAGE_OFFSET) { if (sp != 0) printf("SP (%lx) is in userspace\n", sp); break; } if (!mread(sp + 16, &ip, sizeof(unsigned long)) || !mread(sp, &newsp, sizeof(unsigned long))) { printf("Couldn't read stack frame at %lx\n", sp); break; } /* * For the first stack frame, try to work out if * LR and/or the saved LR value in the bottommost * stack frame are valid. */ if ((pc | lr) != 0) { unsigned long fnstart, fnend; unsigned long nextip; int printip = 1; get_function_bounds(pc, &fnstart, &fnend); nextip = 0; if (newsp > sp) mread(newsp + 16, &nextip, sizeof(unsigned long)); if (lr == ip) { if (lr < PAGE_OFFSET || (fnstart <= lr && lr < fnend)) printip = 0; } else if (lr == nextip) { printip = 0; } else if (lr >= PAGE_OFFSET && !(fnstart <= lr && lr < fnend)) { printf("[link register ] "); xmon_print_symbol(lr, " ", "\n"); } if (printip) { printf("[%.16lx] ", sp); xmon_print_symbol(ip, " ", " (unreliable)\n"); } pc = lr = 0; } else { printf("[%.16lx] ", sp); xmon_print_symbol(ip, " ", "\n"); } /* Look for "regshere" marker to see if this is an exception frame. */ if (mread(sp + 0x60, &marker, sizeof(unsigned long)) && marker == 0x7265677368657265ul) { if (mread(sp + 0x70, ®s, sizeof(regs)) != sizeof(regs)) { printf("Couldn't read registers at %lx\n", sp + 0x70); break; } printf("--- Exception: %lx %s at ", regs.trap, getvecname(TRAP(®s))); pc = regs.nip; lr = regs.link; xmon_print_symbol(pc, " ", "\n"); } if (newsp == 0) break; sp = newsp; } while (count++ < xmon_depth_to_print); } static void backtrace(struct pt_regs *excp) { unsigned long sp; if (scanhex(&sp)) xmon_show_stack(sp, 0, 0); else xmon_show_stack(excp->gpr[1], excp->link, excp->nip); scannl(); } void excprint(struct pt_regs *fp) { unsigned long trap; #ifdef CONFIG_SMP printf("cpu 0x%x: ", smp_processor_id()); #endif /* CONFIG_SMP */ trap = TRAP(fp); printf("Vector: %lx %s at [%lx]\n", fp->trap, getvecname(trap), fp); printf(" pc: "); xmon_print_symbol(fp->nip, ": ", "\n"); printf(" lr: ", fp->link); xmon_print_symbol(fp->link, ": ", "\n"); printf(" sp: %lx\n", fp->gpr[1]); printf(" msr: %lx\n", fp->msr); if (trap == 0x300 || trap == 0x380 || trap == 0x600) { printf(" dar: %lx\n", fp->dar); if (trap != 0x380) printf(" dsisr: %lx\n", fp->dsisr); } printf(" current = 0x%lx\n", current); printf(" paca = 0x%lx\n", get_paca()); if (current) { printf(" pid = %ld, comm = %s\n", current->pid, current->comm); } } void prregs(struct pt_regs *fp) { int n; unsigned long base; struct pt_regs regs; if (scanhex(&base)) { if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); regs = *(struct pt_regs *)base; sync(); __delay(200); } else { catch_memory_errors = 0; printf("*** Error reading registers from %.16lx\n", base); return; } catch_memory_errors = 0; fp = ®s; } if (FULL_REGS(fp)) { for (n = 0; n < 16; ++n) printf("R%.2ld = %.16lx R%.2ld = %.16lx\n", n, fp->gpr[n], n+16, fp->gpr[n+16]); } else { for (n = 0; n < 7; ++n) printf("R%.2ld = %.16lx R%.2ld = %.16lx\n", n, fp->gpr[n], n+7, fp->gpr[n+7]); } printf("pc = "); xmon_print_symbol(fp->nip, " ", "\n"); printf("lr = "); xmon_print_symbol(fp->link, " ", "\n"); printf("msr = %.16lx cr = %.8lx\n", fp->msr, fp->ccr); printf("ctr = %.16lx xer = %.16lx trap = %8lx\n", fp->ctr, fp->xer, fp->trap); } void cacheflush(void) { int cmd; unsigned long nflush; cmd = inchar(); if (cmd != 'i') termch = cmd; scanhex((void *)&adrs); if (termch != '\n') termch = 0; nflush = 1; scanhex(&nflush); nflush = (nflush + L1_CACHE_BYTES - 1) / L1_CACHE_BYTES; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); if (cmd != 'i') { for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES) cflush((void *) adrs); } else { for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES) cinval((void *) adrs); } sync(); /* wait a little while to see if we get a machine check */ __delay(200); } catch_memory_errors = 0; } unsigned long read_spr(int n) { unsigned int instrs[2]; unsigned long (*code)(void); unsigned long opd[3]; unsigned long ret = -1UL; instrs[0] = 0x7c6002a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6); instrs[1] = 0x4e800020; opd[0] = (unsigned long)instrs; opd[1] = 0; opd[2] = 0; store_inst(instrs); store_inst(instrs+1); code = (unsigned long (*)(void)) opd; ret = code(); return ret; } void write_spr(int n, unsigned long val) { unsigned int instrs[2]; unsigned long (*code)(unsigned long); unsigned long opd[3]; instrs[0] = 0x7c6003a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6); instrs[1] = 0x4e800020; opd[0] = (unsigned long)instrs; opd[1] = 0; opd[2] = 0; store_inst(instrs); store_inst(instrs+1); code = (unsigned long (*)(unsigned long)) opd; code(val); } static unsigned long regno; extern char exc_prolog; extern char dec_exc; void super_regs() { int cmd; unsigned long val; #ifdef CONFIG_PPC_ISERIES struct paca_struct *ptrPaca = NULL; struct ItLpPaca *ptrLpPaca = NULL; struct ItLpRegSave *ptrLpRegSave = NULL; #endif cmd = skipbl(); if (cmd == '\n') { unsigned long sp, toc; asm("mr %0,1" : "=r" (sp) :); asm("mr %0,2" : "=r" (toc) :); printf("msr = %.16lx sprg0= %.16lx\n", get_msr(), get_sprg0()); printf("pvr = %.16lx sprg1= %.16lx\n", get_pvr(), get_sprg1()); printf("dec = %.16lx sprg2= %.16lx\n", get_dec(), get_sprg2()); printf("sp = %.16lx sprg3= %.16lx\n", sp, get_sprg3()); printf("toc = %.16lx dar = %.16lx\n", toc, get_dar()); printf("srr0 = %.16lx srr1 = %.16lx\n", get_srr0(), get_srr1()); #ifdef CONFIG_PPC_ISERIES // Dump out relevant Paca data areas. printf("Paca: \n"); ptrPaca = get_paca(); printf(" Local Processor Control Area (LpPaca): \n"); ptrLpPaca = ptrPaca->lppaca_ptr; printf(" Saved Srr0=%.16lx Saved Srr1=%.16lx \n", ptrLpPaca->xSavedSrr0, ptrLpPaca->xSavedSrr1); printf(" Saved Gpr3=%.16lx Saved Gpr4=%.16lx \n", ptrLpPaca->xSavedGpr3, ptrLpPaca->xSavedGpr4); printf(" Saved Gpr5=%.16lx \n", ptrLpPaca->xSavedGpr5); printf(" Local Processor Register Save Area (LpRegSave): \n"); ptrLpRegSave = ptrPaca->reg_save_ptr; printf(" Saved Sprg0=%.16lx Saved Sprg1=%.16lx \n", ptrLpRegSave->xSPRG0, ptrLpRegSave->xSPRG0); printf(" Saved Sprg2=%.16lx Saved Sprg3=%.16lx \n", ptrLpRegSave->xSPRG2, ptrLpRegSave->xSPRG3); printf(" Saved Msr =%.16lx Saved Nia =%.16lx \n", ptrLpRegSave->xMSR, ptrLpRegSave->xNIA); #endif return; } scanhex(®no); switch (cmd) { case 'w': val = read_spr(regno); scanhex(&val); write_spr(regno, val); /* fall through */ case 'r': printf("spr %lx = %lx\n", regno, read_spr(regno)); break; case 'm': val = get_msr(); scanhex(&val); set_msrd(val); break; } scannl(); } /* * Stuff for reading and writing memory safely */ int mread(unsigned long adrs, void *buf, int size) { volatile int n; char *p, *q; n = 0; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); p = (char *)adrs; q = (char *)buf; switch (size) { case 2: *(short *)q = *(short *)p; break; case 4: *(int *)q = *(int *)p; break; case 8: *(long *)q = *(long *)p; break; default: for( ; n < size; ++n) { *q++ = *p++; sync(); } } sync(); /* wait a little while to see if we get a machine check */ __delay(200); n = size; } catch_memory_errors = 0; return n; } int mwrite(unsigned long adrs, void *buf, int size) { volatile int n; char *p, *q; n = 0; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); p = (char *) adrs; q = (char *) buf; switch (size) { case 2: *(short *)p = *(short *)q; break; case 4: *(int *)p = *(int *)q; break; case 8: *(long *)p = *(long *)q; break; default: for ( ; n < size; ++n) { *p++ = *q++; sync(); } } sync(); /* wait a little while to see if we get a machine check */ __delay(200); n = size; } else { printf("*** Error writing address %x\n", adrs + n); } catch_memory_errors = 0; return n; } static int fault_type; static char *fault_chars[] = { "--", "**", "##" }; static int handle_fault(struct pt_regs *regs) { switch (TRAP(regs)) { case 0x200: fault_type = 0; break; case 0x300: case 0x380: fault_type = 1; break; default: fault_type = 2; } longjmp(bus_error_jmp, 1); return 0; } #define SWAP(a, b, t) ((t) = (a), (a) = (b), (b) = (t)) void byterev(unsigned char *val, int size) { int t; switch (size) { case 2: SWAP(val[0], val[1], t); break; case 4: SWAP(val[0], val[3], t); SWAP(val[1], val[2], t); break; case 8: /* is there really any use for this? */ SWAP(val[0], val[7], t); SWAP(val[1], val[6], t); SWAP(val[2], val[5], t); SWAP(val[3], val[4], t); break; } } static int brev; static int mnoread; static char *memex_help_string = "Memory examine command usage:\n" "m [addr] [flags] examine/change memory\n" " addr is optional. will start where left off.\n" " flags may include chars from this set:\n" " b modify by bytes (default)\n" " w modify by words (2 byte)\n" " l modify by longs (4 byte)\n" " d modify by doubleword (8 byte)\n" " r toggle reverse byte order mode\n" " n do not read memory (for i/o spaces)\n" " . ok to read (default)\n" "NOTE: flags are saved as defaults\n" ""; static char *memex_subcmd_help_string = "Memory examine subcommands:\n" " hexval write this val to current location\n" " 'string' write chars from string to this location\n" " ' increment address\n" " ^ decrement address\n" " / increment addr by 0x10. //=0x100, ///=0x1000, etc\n" " \\ decrement addr by 0x10. \\\\=0x100, \\\\\\=0x1000, etc\n" " ` clear no-read flag\n" " ; stay at this addr\n" " v change to byte mode\n" " w change to word (2 byte) mode\n" " l change to long (4 byte) mode\n" " u change to doubleword (8 byte) mode\n" " m addr change current addr\n" " n toggle no-read flag\n" " r toggle byte reverse flag\n" " < count back up count bytes\n" " > count skip forward count bytes\n" " x exit this mode\n" ""; void memex() { int cmd, inc, i, nslash; unsigned long n; unsigned char val[16]; scanhex((void *)&adrs); cmd = skipbl(); if (cmd == '?') { printf(memex_help_string); return; } else { termch = cmd; } last_cmd = "m\n"; while ((cmd = skipbl()) != '\n') { switch( cmd ){ case 'b': size = 1; break; case 'w': size = 2; break; case 'l': size = 4; break; case 'd': size = 8; break; case 'r': brev = !brev; break; case 'n': mnoread = 1; break; case '.': mnoread = 0; break; } } if( size <= 0 ) size = 1; else if( size > 8 ) size = 8; for(;;){ if (!mnoread) n = mread(adrs, val, size); printf("%.16x%c", adrs, brev? 'r': ' '); if (!mnoread) { if (brev) byterev(val, size); putchar(' '); for (i = 0; i < n; ++i) printf("%.2x", val[i]); for (; i < size; ++i) printf("%s", fault_chars[fault_type]); } putchar(' '); inc = size; nslash = 0; for(;;){ if( scanhex(&n) ){ for (i = 0; i < size; ++i) val[i] = n >> (i * 8); if (!brev) byterev(val, size); mwrite(adrs, val, size); inc = size; } cmd = skipbl(); if (cmd == '\n') break; inc = 0; switch (cmd) { case '\'': for(;;){ n = inchar(); if( n == '\\' ) n = bsesc(); else if( n == '\'' ) break; for (i = 0; i < size; ++i) val[i] = n >> (i * 8); if (!brev) byterev(val, size); mwrite(adrs, val, size); adrs += size; } adrs -= size; inc = size; break; case ',': adrs += size; break; case '.': mnoread = 0; break; case ';': break; case 'x': case EOF: scannl(); return; case 'b': case 'v': size = 1; break; case 'w': size = 2; break; case 'l': size = 4; break; case 'u': size = 8; break; case '^': adrs -= size; break; break; case '/': if (nslash > 0) adrs -= 1 << nslash; else nslash = 0; nslash += 4; adrs += 1 << nslash; break; case '\\': if (nslash < 0) adrs += 1 << -nslash; else nslash = 0; nslash -= 4; adrs -= 1 << -nslash; break; case 'm': scanhex((void *)&adrs); break; case 'n': mnoread = 1; break; case 'r': brev = !brev; break; case '<': n = size; scanhex(&n); adrs -= n; break; case '>': n = size; scanhex(&n); adrs += n; break; case '?': printf(memex_subcmd_help_string); break; } } adrs += inc; } } int bsesc() { int c; c = inchar(); switch( c ){ case 'n': c = '\n'; break; case 'r': c = '\r'; break; case 'b': c = '\b'; break; case 't': c = '\t'; break; } return c; } #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'f') \ || ('A' <= (c) && (c) <= 'F')) void dump() { int c; c = inchar(); if ((isxdigit(c) && c != 'f' && c != 'd') || c == '\n') termch = c; scanhex((void *)&adrs); if( termch != '\n') termch = 0; if( c == 'i' ){ scanhex(&nidump); if( nidump == 0 ) nidump = 16; adrs += ppc_inst_dump(adrs, nidump, 1); last_cmd = "di\n"; } else { scanhex(&ndump); if( ndump == 0 ) ndump = 64; prdump(adrs, ndump); adrs += ndump; last_cmd = "d\n"; } } void prdump(unsigned long adrs, long ndump) { long n, m, c, r, nr; unsigned char temp[16]; for (n = ndump; n > 0;) { printf("%.16lx", adrs); putchar(' '); r = n < 16? n: 16; nr = mread(adrs, temp, r); adrs += nr; for (m = 0; m < r; ++m) { if ((m & 7) == 0 && m > 0) putchar(' '); if (m < nr) printf("%.2x", temp[m]); else printf("%s", fault_chars[fault_type]); } if (m <= 8) printf(" "); for (; m < 16; ++m) printf(" "); printf(" |"); for (m = 0; m < r; ++m) { if (m < nr) { c = temp[m]; putchar(' ' <= c && c <= '~'? c: '.'); } else putchar(' '); } n -= r; for (; m < 16; ++m) putchar(' '); printf("|\n"); if (nr < r) break; } } int ppc_inst_dump(unsigned long adr, long count, int praddr) { int nr, dotted; unsigned long first_adr; unsigned long inst, last_inst; unsigned char val[4]; dotted = 0; for (first_adr = adr; count > 0; --count, adr += 4) { nr = mread(adr, val, 4); if (nr == 0) { if (praddr) { const char *x = fault_chars[fault_type]; printf("%.16lx %s%s%s%s\n", adr, x, x, x, x); } break; } inst = GETWORD(val); if (adr > first_adr && inst == last_inst) { if (!dotted) { printf(" ...\n"); dotted = 1; } continue; } dotted = 0; last_inst = inst; if (praddr) printf("%.16lx %.8x", adr, inst); printf("\t"); print_insn_powerpc(inst, adr, 0); /* always returns 4 */ printf("\n"); } return adr - first_adr; } void print_address(unsigned long addr) { xmon_print_symbol(addr, "\t# ", ""); } /* * Memory operations - move, set, print differences */ static unsigned long mdest; /* destination address */ static unsigned long msrc; /* source address */ static unsigned long mval; /* byte value to set memory to */ static unsigned long mcount; /* # bytes to affect */ static unsigned long mdiffs; /* max # differences to print */ void memops(int cmd) { scanhex((void *)&mdest); if( termch != '\n' ) termch = 0; scanhex((void *)(cmd == 's'? &mval: &msrc)); if( termch != '\n' ) termch = 0; scanhex((void *)&mcount); switch( cmd ){ case 'm': memmove((void *)mdest, (void *)msrc, mcount); break; case 's': memset((void *)mdest, mval, mcount); break; case 'd': if( termch != '\n' ) termch = 0; scanhex((void *)&mdiffs); memdiffs((unsigned char *)mdest, (unsigned char *)msrc, mcount, mdiffs); break; } } void memdiffs(unsigned char *p1, unsigned char *p2, unsigned nb, unsigned maxpr) { unsigned n, prt; prt = 0; for( n = nb; n > 0; --n ) if( *p1++ != *p2++ ) if( ++prt <= maxpr ) printf("%.16x %.2x # %.16x %.2x\n", p1 - 1, p1[-1], p2 - 1, p2[-1]); if( prt > maxpr ) printf("Total of %d differences\n", prt); } static unsigned mend; static unsigned mask; void memlocate() { unsigned a, n; unsigned char val[4]; last_cmd = "ml"; scanhex((void *)&mdest); if (termch != '\n') { termch = 0; scanhex((void *)&mend); if (termch != '\n') { termch = 0; scanhex((void *)&mval); mask = ~0; if (termch != '\n') termch = 0; scanhex((void *)&mask); } } n = 0; for (a = mdest; a < mend; a += 4) { if (mread(a, val, 4) == 4 && ((GETWORD(val) ^ mval) & mask) == 0) { printf("%.16x: %.16x\n", a, GETWORD(val)); if (++n >= 10) break; } } } static unsigned long mskip = 0x1000; static unsigned long mlim = 0xffffffff; void memzcan() { unsigned char v; unsigned a; int ok, ook; scanhex(&mdest); if (termch != '\n') termch = 0; scanhex(&mskip); if (termch != '\n') termch = 0; scanhex(&mlim); ook = 0; for (a = mdest; a < mlim; a += mskip) { ok = mread(a, &v, 1); if (ok && !ook) { printf("%.8x .. ", a); fflush(stdout); } else if (!ok && ook) printf("%.8x\n", a - mskip); ook = ok; if (a + mskip < a) break; } if (ook) printf("%.8x\n", a - mskip); } /* Input scanning routines */ int skipbl() { int c; if( termch != 0 ){ c = termch; termch = 0; } else c = inchar(); while( c == ' ' || c == '\t' ) c = inchar(); return c; } #define N_PTREGS 44 static char *regnames[N_PTREGS] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "pc", "msr", "or3", "ctr", "lr", "xer", "ccr", "softe", "trap", "dar", "dsisr", "res" }; int scanhex(vp) unsigned long *vp; { int c, d; unsigned long v; c = skipbl(); if (c == '%') { /* parse register name */ char regname[8]; int i; for (i = 0; i < sizeof(regname) - 1; ++i) { c = inchar(); if (!isalnum(c)) { termch = c; break; } regname[i] = c; } regname[i] = 0; for (i = 0; i < N_PTREGS; ++i) { if (strcmp(regnames[i], regname) == 0) { if (xmon_regs == NULL) { printf("regs not available\n"); return 0; } *vp = ((unsigned long *)xmon_regs)[i]; return 1; } } printf("invalid register name '%%%s'\n", regname); return 0; } /* skip leading "0x" if any */ if (c == '0') { c = inchar(); if (c == 'x') { c = inchar(); } else { d = hexdigit(c); if (d == EOF) { termch = c; *vp = 0; return 1; } } } else if (c == '$') { int i; for (i=0; i<63; i++) { c = inchar(); if (isspace(c)) { termch = c; break; } tmpstr[i] = c; } tmpstr[i++] = 0; *vp = kallsyms_lookup_name(tmpstr); if (!(*vp)) { printf("unknown symbol '%s'\n", tmpstr); return 0; } return 1; } d = hexdigit(c); if (d == EOF) { termch = c; return 0; } v = 0; do { v = (v << 4) + d; c = inchar(); d = hexdigit(c); } while (d != EOF); termch = c; *vp = v; return 1; } void scannl() { int c; c = termch; termch = 0; while( c != '\n' ) c = inchar(); } int hexdigit(int c) { if( '0' <= c && c <= '9' ) return c - '0'; if( 'A' <= c && c <= 'F' ) return c - ('A' - 10); if( 'a' <= c && c <= 'f' ) return c - ('a' - 10); return EOF; } void getstring(char *s, int size) { int c; c = skipbl(); do { if( size > 1 ){ *s++ = c; --size; } c = inchar(); } while( c != ' ' && c != '\t' && c != '\n' ); termch = c; *s = 0; } static char line[256]; static char *lineptr; void flush_input() { lineptr = NULL; } int inchar() { if (lineptr == NULL || *lineptr == 0) { if (fgets(line, sizeof(line), stdin) == NULL) { lineptr = NULL; return EOF; } lineptr = line; } return *lineptr++; } void take_input(str) char *str; { lineptr = str; } static void symbol_lookup(void) { int type = inchar(); unsigned long addr; static char tmp[64]; switch (type) { case 'a': if (scanhex(&addr)) xmon_print_symbol(addr, ": ", "\n"); termch = 0; break; case 's': getstring(tmp, 64); if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); addr = kallsyms_lookup_name(tmp); if (addr) printf("%s: %lx\n", tmp, addr); else printf("Symbol '%s' not found.\n", tmp); sync(); } catch_memory_errors = 0; termch = 0; break; } } /* Print an address in numeric and symbolic form (if possible) */ static void xmon_print_symbol(unsigned long address, const char *mid, const char *after) { char *modname; const char *name = NULL; unsigned long offset, size; printf("%.16lx", address); if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); name = kallsyms_lookup(address, &size, &offset, &modname, tmpstr); sync(); /* wait a little while to see if we get a machine check */ __delay(200); } catch_memory_errors = 0; if (name) { printf("%s%s+%#lx/%#lx", mid, name, offset, size); if (modname) printf(" [%s]", modname); } printf("%s", after); } static void debug_trace(void) { unsigned long val, cmd, on; cmd = skipbl(); if (cmd == '\n') { /* show current state */ unsigned long i; printf("naca->debug_switch = 0x%lx\n", naca->debug_switch); for (i = 0; i < PPCDBG_NUM_FLAGS ;i++) { on = PPCDBG_BITVAL(i) & naca->debug_switch; printf("%02x %s %12s ", i, on ? "on " : "off", trace_names[i] ? trace_names[i] : ""); if (((i+1) % 3) == 0) printf("\n"); } printf("\n"); return; } while (cmd != '\n') { on = 1; /* default if no sign given */ while (cmd == '+' || cmd == '-') { on = (cmd == '+'); cmd = inchar(); if (cmd == ' ' || cmd == '\n') { /* Turn on or off based on + or - */ naca->debug_switch = on ? PPCDBG_ALL:PPCDBG_NONE; printf("Setting all values to %s...\n", on ? "on" : "off"); if (cmd == '\n') return; else cmd = skipbl(); } else termch = cmd; } termch = cmd; /* not +/- ... let scanhex see it */ scanhex((void *)&val); if (val >= 64) { printf("Value %x out of range:\n", val); return; } if (on) { naca->debug_switch |= PPCDBG_BITVAL(val); printf("enable debug %x %s\n", val, trace_names[val] ? trace_names[val] : ""); } else { naca->debug_switch &= ~PPCDBG_BITVAL(val); printf("disable debug %x %s\n", val, trace_names[val] ? trace_names[val] : ""); } cmd = skipbl(); } } static void dump_slb(void) { int i; unsigned long tmp; printf("SLB contents of cpu %x\n", smp_processor_id()); for (i = 0; i < SLB_NUM_ENTRIES; i++) { asm volatile("slbmfee %0,%1" : "=r" (tmp) : "r" (i)); printf("%02d %016lx ", i, tmp); asm volatile("slbmfev %0,%1" : "=r" (tmp) : "r" (i)); printf("%016lx\n", tmp); } } static void dump_stab(void) { int i; unsigned long *tmp = (unsigned long *)get_paca()->stab_addr; printf("Segment table contents of cpu %x\n", smp_processor_id()); for (i = 0; i < PAGE_SIZE/16; i++) { unsigned long a, b; a = *tmp++; b = *tmp++; if (a || b) { printf("%03d %016lx ", i, a); printf("%016lx\n", b); } } } void xmon_init(void) { __debugger = xmon; __debugger_ipi = xmon_ipi; __debugger_bpt = xmon_bpt; __debugger_sstep = xmon_sstep; __debugger_iabr_match = xmon_iabr_match; __debugger_dabr_match = xmon_dabr_match; __debugger_fault_handler = xmon_fault_handler; } void dump_segments(void) { if (cur_cpu_spec->cpu_features & CPU_FTR_SLB) dump_slb(); else dump_stab(); }