

3

1 Introduction and Scope

http://simpy.sourceforge.net/
http://simpy.sourceforge.net/old/
http://simpy.readthedocs.org/en/latest/
http://dream-simulation.eu/
http://dream-simulation.eu/
http://www.python.org/

4

2 How to get started

https://github.com/nexedi/dream

5

3 Architecture

ManPy objects are written exclusively in Python and they use methods of SimPy. Figure 1 shows
the current state of the architecture.

Figure 1: The ManPy class hierarchy

In Figure 1 four different layers are depicted:

x On the top we have SimPy classes

x The top layer of ManPy is a set of generic, abstract classes. There are not supposed to have
instances, nevertheless they are important because:

o they help in the grouping of objects

6

x ObjectResource

7

Note that next and previous lists may be empty. This can happen for several reasons:

o For certain objects it is not logical to have both lists. For example an Exit object should not
have any successors

8

3.1.1.3

9

In addition, there exist a number of supplementary control methods returning simple information on
the state of an object.

x activeQueueIsEmpty: returns t

10

x getGiverObjectQueue

11

1. Wait for an

12

loop that runs all through the simulated time. The logic followed in an ObjectInterruptionôs run
method is:

1. Hold until an interruption should happen or until it is signalled by the object to be
interrupted or any other object.

2. carry out the logic of the interruption:

a. Passivate (interruptVictim) the victim,

b. Hold until the interruption should be stopped or perform the requested actions

13

14

3.2 Expanding the Code

In the last subsection the architecture, generic methods and the logic of ManPy were described.
Understanding the above, it should be possible for someone to make a new object of any of the 5

15

4 Examples

4.1

16

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the total working ratio of the Machine is", working_ratio, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in oura()]1 39orkingTime/m42 Tm5(ow)6(i)5(ng)-.667 0 rg

0 0.66==

https://github.com/nexedi/dream/blob/master/dream/tests/testSimulationExamples.py

17

x Attributes like totalWorkingTime

http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml

18

#define the objects of the model

R=Repairman('R1', 'Bob')

S=Source('S1','Source',

interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Part')

M1=Machine('M1','Machine1',

processingTime={'distributionType':'Fixed','mean':0.25})

Q=Queue('Q1','Queue')

M2=Machine('M2'

'M2'

'distributionType':'distri[('Fixed')] TJ

ET

BT

/F7 9.96 Tf

1 0 0 1 322.97 680.38 Tm
2=4'distri[('Fixed')] J

ET

BT

/F7 9.96 Tf

1 0 0 1 364.99 680.38 Tm
2=4

0.25

'distributE80.38 Tm

 0 Tc[()] TJ

ET

 EMC /P <

'd
/F8 9.96 Tf

1 0 0 1 148.94 668.98 Tm

0 0.667 0 rg

0 0.667 0 RG

[('distributE80.38 Tm

 0 Tc[(

/F7 9.96 TTf

J

ET

 EMC /P <)] TJ

ET

BT

1 0 0
0 0.6o7 0 RG

[('d
/F8 9.9.97 0.024 Tc[(M2=4)2ocessing

 EMC E=ExitET

BTCID 5>> BDC B7

1 0 0 1 70.944 65787 Tm

35 g

0 G
[(0.25)] TJ23.74Tc[(#define the objects of the modec.96te failures.024 Tc[(M2=4)2ocessing

0 0.6623.74Tc[(#dMC /P <</MCID 2>> BDC BT

1 0 0 1 70.944 72597 Tm

35 g

0 G
[(0.25)] TJ
0 TJ

ET

BT

/F8 9F1=Failure(victim=M1 0.024 Tc[(M2=4)2ocessingTime={)]00 03ET

BT

/F7 9.96 T1 0 0 1 166.94 680.38 Tm
2=4)2ocess rg

0 0.6]00 03ET

B'distributionType')] TJ

ET

BT

/F7 9.96 Tf

1 0 0 1 274.97 680.38 Tm
2=4)2ocess r0 Tc[()]00 03ET

B'd
/F8 9.96 Tf

1 0 0 1 280.97 680.38 Tm
2=4

20

#define predecessors and successors for the objects

Sp.defineRouting([A])

Sf.defineRouting([A])

A.defineRouting([Sp,Sf],[M])

21

Figure 5: A server with a queue

Following is the code to model this system (dream\simulation\Examples\SettingWip1.py)

from dream.simulation.imports import

24

o Processing time is Fixed to 15 seconds

o MTTF is 1 hour

o

25

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio_M1=(M1.totalWorkingTime/maxSimTime)*100

 working_ratio_M2=(M2.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {

26

M1=Machine(

28

30

31

Some notes:

x Here runSimulation

33

 {"stationIdsList": ["Q3"]},

34

36

#define the Jobs

J1=Job(

37

We see that Job3 having the highest (lowest value) priority was the first to go to Machine1. The
other two Jobs had equal priorities, so FIFO was applied (observing the loop where the WIP is set
one can see the Job1 was added to Queue1 before Job2).

To test how the model works if Queue1 follows the Earliest Due Date rule we have only to change
the definition of Queue1 in our code (dream\simulation\Examples\

38

40

41

x the processing time of the Machine is 0.5

42

46

being currently processed in the station. The object LineClearance is introduced to model this
behaviour.

The flow described in Figure 9 is the same with the one used in the current example. The common
Queue2 between Machine1 and Machine2 is replaced with the LineClearance object though.

ManPy object repository contains the following objects in order to model the described behaviour:

x LineClearance

48

http://www.r-project.org/
http://rpy.sourceforge.net/rpy2.html

51

53

56

57

58

60

4.12 Non starving line

In the examples so far we either have a Source type that creates

61

