

3

1 Introduction and Scope

http://simpy.sourceforge.net/
http://simpy.sourceforge.net/old/
http://simpy.readthedocs.org/en/latest/
http://dream-simulation.eu/
http://dream-simulation.eu/
http://www.python.org/

4

2 How to get started

https://github.com/nexedi/dream

5

3 Architecture

ManPy objects are written exclusively in Python and they use methods of SimPy. Figure 1 shows
the current state of the architecture.

Figure 1: The ManPy class hierarchy

In Figure 1 four different layers are depicted:

¶ On the top we have SimPy classes

¶ The top layer of ManPy is a set of generic, abstract classes. There are not supposed to have
instances, nevertheless they are important because:

o they help in the grouping of objects

7

Note that next and previous lists may be empty. This can happen for several reasons:

9

In addition, there exist a number of supplementary control methods returning simple information on
the state of an object.

¶ activeQueueIsEmpty: returns t

12

loop that runs all through the simulated time. The logic followed in an ObjectInterruptionôs run
method is:

1. Hold until an interruption should happen or until it is signalled by the object to be
interrupted or any other object.

2. carry out the logic of the interruption:

a. Passivate (interruptVictim) the victim,

14

3.2 Expanding the Code

In the last subsection the architecture, generic methods and the logic of ManPy were described.
Understanding the above, it should be possible for someone to make a new object of any of the 5

16

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the total working ratio of the Machine is", working_ratio, "%"

if __name__ == '__main__'

https://github.com/nexedi/dream/blob/master/dream/tests/testSimulationExamples.py

http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml

18

#define the objects of the model

R=Repairman('R1', 'Bob')

S=Source('S1','Source',

interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Part')

M1=Machine('M1','Machine1',

processingTime={'distributionType':'Fixed','mean':0.25})

Q=Queue('Q1','Queue')

M2=Machine('M2'

'M2'

'distributionType':'distri[('Fixed')] TJ
ET
BT
/F7 9.96 Tf
1 0 0 1 322.97 680.38 Tm2=4'distri[('Fixed')] J
ET
BT
/F7 9.96 Tf
1 0 0 1 364.99 680.38 Tm2=4

0.25

'distributE80.38 Tm
 0 Tc[()] TJ
ET
 EMC /P <

20

#define predecessors and successors for the objects

Sp.defineRouting([A])

Sf.defineRouting([A])

A.defineRouting([Sp,Sf],[M])

21

Figure 5: A server with a queue

Following is the code to model this system (dream\simulation\Examples\SettingWip1.py)

from dream.simulation.imports import

24

o Processing time is Fixed to 15 seconds

o MTTF is 1 hour

25

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio_M1=(M1.totalWorkingTime/maxSimTime)*100

 working_ratio_M2=(M2.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return

31

Some notes:

33

 {"stationIdsList": ["Q3"]},

36

#define the Jobs

J1=Job(

37

We see that Job3 having the highest (lowest value) priority was the first to go to Machine1. The
other two Jobs had equal priorities, so FIFO was applied (observing the loop where the WIP is set
one can see the Job1 was added to Queue1 before Job2).

To test how the model works if Queue1 follows the Earliest Due Date rule we have only to change

38

41

¶ the processing time of the Machine is 0.5

46

being currently processed in the station. The object LineClearance is introduced to model this
behaviour.

The flow described in Figure 9 is the same with the one used in the current example. The common
Queue2 between Machine1 and Machine2 is replaced with the LineClearance object though.

M

48

http://www.r-project.org/
http://rpy.sourceforge.net/rpy2.html

53

60

4.12 Non starving line

In the examples so far we either have a Source type that creates

