

ManPy Documentation

2

Table of Contents

1 Introduction and Scope .. 3

2 How to get started .. 4

3 Architecture .. 5

3.1 ManPy Generic (Abstract Classes) ... 5

3.1.1 CoreObject ... 6

3.1.1.1 Definition methods ... 7

3.1.1.2 Transaction methods ... 8

3.1.1.3 Control methods .. 9

3.1.1.4 Supplementary methods .. 9

3.1.1.5 Output and calculation methods .. 10

3.1.1.6 Main simulation method ... 10
3.1.2 ObjectInterruption .. 11
3.1.3 Entity .. 12
3.1.4 ObjectResource ... 12
3.1.5 Auxiliary ... 13

3.2 Expanding the Code ... 14

4 Examples ... 15

4.1 A single server model ... 15

4.2 Two servers model with failures and repairman .. 17

4.3 An assembly line ... 19

4.4 Parallel stations and Queue customization ... 20

4.5 Parallel stations and counting the parts of each machine 27

4.6 Stochastic model .. 29

4.7 Job-Shop Examples .. 31

4.7.1 A simple Job-Shop ... 31
4.7.2 A Job-Shop with scheduling rules .. 33

4.8 Output trace to Excel .. Error! Bookmark not defined.

4.9 Batches and SubBatches .. 39

4.9.1 Batch decomposition .. 39
4.9.2 Serial Batch Processing ... 42
4.9.3 Clearing batch lines .. 44

4.10 Output Analysis ... 47

3

1 Introduction and Scope

ManPy stands for "Manufacturing in Python" and it is a layer of Discrete Event Simulation (DES)
objects built in SimPy (http://simpy.sourceforge.net/). The current version of ManPy is based on
SimPy2 (http://simpy.sourceforge.net/old/). This happens because at the time ManPy
implementation progressed, the newest version was not available. We plan to progress to SimPy3
(http://simpy.readthedocs.org/en/latest/) soon. This is not supposed to affect in a great extend this
documentation.

The scope of the project is to provide simulation modellers with a collection of open-source DES
objects that can be connected like "black boxes" in order to form a model. This collection is desired
to be expandable by giving means to developers for:

 customizing existing objects by overriding certain methods

 adding brand new objects to the list

ManPy is product of a research project funded from the European Union Seventh Framework
Programme (FP7-2012-NMP-ICT-FoF) under grant agreement n° 314364. The project name is
DREAM and stands for "Simulation based application Decision support in Real-time for Efficient
Agile Manufacturing". More information about the scope of DREAM can be found at http://dream-
simulation.eu/.

DREAM is a project which kicked off in October of 2012 and finishes in September of 2015. ManPy
is an ongoing project and we do not claim that it is complete or bug-free. The platform will be
expanded and validated through the industrial pilot cases of DREAM. Nevertheless, it is in a quite
mature state to attract the interest of simulation modellers and software developers.

The dream repository contains the following folders:

 platform: contains code for a browser based GUI that is being built as separate project
but can also be used to build and execute ManPy models.

 simulation: contains all the simulation ManPy code.

 KnowledgeExtraction: contains code of the Knowledge Extraction (KE) tool, which has
the scope of interfacing the platform with data repositories of the companies. KE tool
documentation also exists in the root of the git repository.

 plugins: Contains Python scripts that pre- or post-process simulation data model as it is
exchanged between different DREAM modules. Documentation of the JSON schema
used in order to exchange simulation and instance data will be added soon.

 test: contains unit-tests for the project.

This document regards ONLY the ManPy part of the project. Note that ManPy is independent
from the GUI and can be used separately as a library of simulation objects, which can be used to
form a model. Users can implement alternative methods to be able to construct models, run them
and get results.

The reader of this documentation needs to have basic, yet not deep knowledge of programming
in Python (http://www.python.org/). Also, the reader is expected to have a basic knowledge of the
Discrete Event Simulation (DES) technique.

http://simpy.sourceforge.net/
http://simpy.sourceforge.net/old/
http://simpy.readthedocs.org/en/latest/
http://dream-simulation.eu/
http://dream-simulation.eu/
http://www.python.org/

4

2 How to get started

To use the platform you need to:

 Have Python installed

 Clone our git repository (https://github.com/nexedi/dream) or download it into a folder in
your computer.

 Run the setup script that is in the root folder (python setup.py install). This will install ManPy
along with its dependencies (e.g. SimPy3)

 Then you can import ManPy objects as it is written in the examples, e.g.:

o from dream.simulation.Queue import Queue or

o from dream.simulation.imports import Machine, Source, Exit

https://github.com/nexedi/dream

5

3 Architecture

ManPy objects are written exclusively in Python and they use methods of SimPy. Figure 1 shows
the current state of the architecture.

Figure 1: The ManPy class hierarchy

In Figure 1 four different layers are depicted:

 On the top we have SimPy classes

 The top layer of ManPy is a set of generic, abstract classes. There are not supposed to have
instances, nevertheless they are important because:

o they help in the grouping of objects

o generic methods are defined for all those classes which the simulation objects inherit
and override

 Below the generic objects lies the basic core of ManPy objects. This is currently being
populated and expanded.

 On the bottom we have custom objects of ManPy. These inherit from one object of the basic
core and customize it according to the needs of the modeller

In the remaining of this chapter the generic classes of ManPy will be described.

3.1 ManPy Generic (Abstract Classes)

The layer of abstract classes is the “heart” of ManPy. These give the basic guidelines of how the
platform is structured. Note that since this is an ongoing work, the names of the classes may
change, since we currently think towards the best abstraction. Also new generic classes might be
added in future versions, even though the number should be kept reasonably short. The abstract
classes include:

 CoreObject: all the stations in a model that are permanent for the model. These can be
servers or buffers of any type.

 ObjectInterruption: all the objects that can affect the availability of another object. For
example failures, scheduled breaks, shifts etc.

 Entity: all objects that get processed by or wait in CoreObjects and they are not permanent in
a model. For example parts in a production line, customers in a shop, calls in a call centre etc.

6

 ObjectResource: all the resources that might be necessary for certain operation of a
CoreObject. For example repairman, operator, electric power etc. An ObjectResource is
necessary in modelling when two or more CoreObjects compete for the same resource (e.g.
two machines competing for the same operator).

 Auxiliary: These are auxiliary classes that are needed for different simulation functionalities.
Unlike the other categories described here, auxiliary classes do not inherit from one parent
class, even though it is depicted in such a way in Figure 1 for reasons of coherence.

In the following subsection each category of generic classes will be described in more depth.

3.1.1 CoreObject

As CoreObjects are categorized all the stations in a model that are permanent for the model.
These can be servers or buffers of any type. It is in the philosophy of ManPy that the CoreObjects
will handle most of the simulation logic, so that a more generic process oriented approach is
achieved.

CoreObjects should be able to communicate no matter what their type is. For example, a Machine
should be able to retrieve an Entity from another CoreObject, using the same code, no matter if
this CoreObject is a Queue or also a Machine. For this reason all the CoreObjects implement a set
of methods which have the same name, but different implementation for every object. This set of
methods includes:

i. Definition methods: are used for the instantiation of the object

ii. Signalling methods: Handle the communication between CoreObjects

iii. Transaction methods: are used to define how the objects exchange entities

iv. State Control methods: are used to retrieve the state of an object

v. Flow Control methods: used to control the flow of information and more specifically route the
entities through the network of objects

vi. Supplementary methods: are used to define certain objects in Transactions or Control
methods

vii. Output and calculation methods: are used either to output results or trace in different formats
or to make certain calculations

viii. Main simulation method: one or more methods that are used to control the progress of the
object in the simulated time. In Python terms this is a generator method. In SimPy2 there could
be only one generator method where the yield commands of SimPy can be invoked while in
SimPy3, there can be more than one generator method for each instance of a class.

Also, CoreObjects share some conventions for certain variables listed in the following subsection.

3.1.1.1 CoreObject Attributes

The most important attributes that all the objects share are given bellow:

 Res: this is an instance SimPy.resource type. It keeps the Entities that the CoreObject holds in
its users (SimPy naming) list, to which we also refer to as the “internal queue” of the core
object in this documentation (not to be confused with the Queue object).

 next: a list that holds all the successors of the CoreObject, i.e. the CoreObjects to which the
object can give an Entity.

 previous: a list that holds all the predecessors of the CoreObject, i.e. the CoreObjects from
which the object can receive an Entity.

 receiver: a variable that holds the successor object that the CoreObject gives an Entity at a
given moment off simulation time.

 giver: a variable that holds the predecessor object from which the CoreObject receives an
Entity at a given moment off simulation time

7

Note that next and previous lists may be empty. This can happen for several reasons:

o For certain objects it is not logical to have both lists. For example an Exit object should not
have any successors

o Sometimes the flow is completely dependent on Entities attributes (e.g. in a jobshop). In
such cases objects do not need to have predecessors or successors.

All objects also share variables that allow avoiding conflicts when signalling of a receiver or of a
giver may be performed at the same simulation time by multiple givers/receivers respectively:

 exitAssignedToReceiver: a variable that shows whether the exit of station is reserved for a
specific successor for the current simulation time. An instance of a buffer may be able to
perform more than one transaction at a certain simulation time. To avoid signalling a receiver
(or being signalled by a station) and disposing the entity in question to a different successor
station, the exit of a giver is reserved for the current simulation time till the transaction is
concluded.

 entryAssignedToGiver: Similarly to above, a variable that shows whether the entry of an object
is reserved for a specific giver for the current simulation time.

CoreObjects share also several other attributes that hold certain important values. For example
timeLastEntityEntered holds the simulation time that an Entity entered in the CoreObject. Also they
have counters that hold certain results. For example totalFailureTime holds the failure time for a
CoreObject, which can be divided by the length of the simulation run in order to give the
percentage of time that the CoreObject was in failure. An API list of such variables is currently
populated.

In addition, CoreObjects have a common arsenal of signals which allow them to communicate with
each other whenever needed. These set of signals include the following:

 isRequested: A signal that informs the object that it is requested from a predecessor to take
part in a transaction. After an object receives such a signal, it can proceed with getting an
entity.

 canDispose: A signal that shows an object that it can proceed with disposing an entity to the
receiver sending the signal. The object receiving that signal can try to signal a receiver.

 interruptionStart: A signal showing that an interruption on the object receiving it has started.

 interruptionEnd: A signal communicating the end of the interruption.

 entityRemoved: Whenever an object is in position to dispose of an entity signals a receiver.
This object should then wait until the receiver resumes control and removes the entity from it,
before it can wait to receive another entity. This applies to objects that perform certain
processing on the entities such as a station.

Apart from the signals described above, there are other object specific signals used to pass the
control among the objects according to a state change of another object. For example,
loadOperatorAvailable is used to signal a station that a resource needed for the loading of the
station became available. Furthermore, preemptQueue is used to inform a station that it must
preemptied.

Below we will discuss the methods of each of the 7 categories of generic methods.

3.1.1.2 Definition methods

These are used for the instantiation of the object. 3 such methods exist:

 __init__: this is the python constructor method. This method is ran when the instance is
created.

 initialize: this method initializes the object for a simulation replication. It should not be confused
with the constructor above. The constructor is ran only in the creation of the object, while
initialize must be ran in the beginning of every replication.

 defineRouting: it defines the next and previous lists, i.e. successor and predecessor objects.

8

3.1.1.3 Signalling methods

These methods handle the communications between CoreObjects. In every
communication/signalling two CoreObjects are involved. The giver and the receiver object of the
transaction (see 3.1.1.4) are decided before the signalling takes place. The giver object is the one
that gives the entity and the receiver object is the one that obtains it.

 signalReceiver: it is ran by a possible giver object whenever the state of the object changes to
being able to dispose an entity. Within the method the possible receivers are defined, and
among them one candidate receiver is chosen and finally signalled to perform the transaction.
Before the communication takes place, the entry of the receiver and the exit of the giver are
reserved to each other. Returns true only when the signal was successfully sent.

 signalGiver: it is ran by a possible receiver object whenever its state changes to being able to
receive an entity. The possible givers are pinpointed and one is selected for the transaction.
The chosen giver of the two-side transaction after resuming the control will perform the
signalReceiver method, checking again the possible receivers and locking the transaction as
described in the previous (signalReceiver method). Returns true only when the signal was
successfully sent.

3.1.1.4 Transaction methods

These handle the transactions of Entities between CoreObjects. In every transaction two
CoreObjects take part after the signalling is concluded. Two such methods exist:

 removeEntity: it is ran on the giver object and it removes an Entity from it. The objects sort the
Entities they hold in such a way, so that the object that will be removed is the first object of the
internal queue.

 getEntity: it is ran on the receiver object and it obtains an Entity from the giver. In essence it
calls the removeEntity method of the giver object and adds the Entity to its internal queue.
Within the getEntity method further controls are performed concluding the transaction that
started with the signalling between the receiver and the giver. The exit and the entry of the
giver and the receiver are unblocked respectively. The next list is updated if needed by the
updateNext method etc.

3.1.1.5 State Control methods

For every object they provide information about its state. They return true or false. 3 basic such
methods exist:

 canAccept: returns true if the object is in a state to receive an Entity. The logic depends on the
type of the object. For example in a Queue the capacity might need to be checked, while an
Exit object might always be in the state of receiving an Entity. Note that sometimes it is needed
that this method should return true only to the object that it can receive the Entity from. In this
case, the object that calls the method must be passed as an argument.

 haveToDispose: returns true if the object is in a state to give an Entity. The logic depends on
the type of the object. For example a Queue may need to check only if it does hold one or more
Entities, while a Machine might need to check also if the Entity that it holds has ended its
processing. Note that sometimes it is needed that this method should return true only to the
object that it can give the Entity to. In this case, the object that calls the method must be
passed as an argument.

 canAcceptAndIsRequested: returns true only when both conditions are satisfied: the object is in
the state to accept an Entity and also another object is requesting to give one Entity to it. As we
will see, only when this method returns true a transaction (and signalling) between two objects
can take place. Note that contrary to the other methods described in this section, this one is
expected to be called on a receiver object only by the signalling methods
signalReceiver/signalGiver after the giver-receiver pair is chosen. Thus, as it is always run on
the possible receiver object, the giver object must always be provided as an argument.

9

In addition, there exist a number of supplementary control methods returning simple information on
the state of an object.

 activeQueueIsEmpty: returns true if the internal queue of an object is empty.

 checkIfActive: returns true if the object is in active state. Note that an object can be in two
states, active or inactive due to a failure or a different kind of interruption, e.g. shift or
maintenance.

 isInActiveQueue: takes as argument an Entity and returns true if the Entity is in the internal
queue of the object.

3.1.1.6 Flow Control methods

The methods described here are used to control the flow of information and more specifically route
the entities through the network of objects:

 findGiversFor: is a static method that takes as argument the object requesting a list of objects
that can dispose an Entity to the Object requesting the list. After invoking the haveToDispose
method of the previous objects, it returns the list of objects that are in position to dispose
entities and have not already been signalled to give the current simulation time.

 selectGiver: is a static method that chooses from a list of possible givers provided as argument
to the method, and returns the object that has been waiting the most time. The logic can be
altered and return different object as giver according to the needs of a specific case.

 findReceiversFor: is a static method that takes as argument the object requesting a list of
objects that can receive the Entity the requesting Object holds. After invoking the canAccept
method of the next objects, it returns the list of objects that can accept and have not already
been signalled to receive the current simulation time.

 selectReceiver: static method which chooses from a list of possible receivers provided as
argument to the method, and returns the object that has been waiting the most time. The logic
can be altered and return different object as receiver according to the needs of a specific case.

Additional methods that are used to update the status of the objects and their attributes used to
identify the route of the entities that they hold, are described below:

 updateNext: updates the next list of an object according the route of the entity received last. If
the entity has no specified route then method performs nothing.

 assignExitTo/assignEntryTo: assigns the exit and the entry of an object according to the
description given in 3.1.1.11.

 unAssignExit/unAssignEntry: unblocks the exit and the entry respectively following the
convention of assignExit/EntryTo.

 exitIsAssignedTo/entryIsAssignedTo: returns the object the exit/entry of an object is assigned
to.

 preempt: whenever pre-emption needs to be performed, the next and previous lists need to be
updated as well as the route of the entity preemptied (if any). A signal preemptQueue is also
sent to the object that needs to perform the pre-emption.

3.1.1.7 Supplementary methods

These methods are used to obtain specific objects that are needed for the transaction and control
methods. Six such methods exist:

 getActiveObject: returns the active object in the transaction. This always returns self, and they
can be used interchangeably (though self should be faster since it does not call a method).

 getActiveObjectQueue: returns the internal queue of the active object. This always returns
self.Res.activeQ, but it may be preferred to use the method since it makes the code cleaner
and lesser need of knowledge of the internals of ManPy is achieved.

 getGiverObject: returns the giver object in a transaction.

10

 getGiverObjectQueue: returns the internal queue of the giver object in a transaction.

 getReceiverObject: returns the receiver object in a transaction.

 getReceiverObjectQueue: returns the internal queue of the receiver object in a transaction.

3.1.1.8 Output and calculation methods

Perform calculations or output data. Nine such methods exist:

 sortEntities: it sorts the Entities in the internal queue of the CoreObject. Many times this
method might not be needed. However, there are times when it is essential. E.g. when a
Queue needs to sort its Entities according to a predefined rule.

 calculateProcessingTime: Calculates the processing time every time one Entity gets into the
CoreObject for processing.

 interruptionActions: performs actions that are carried out whenever an object is interrupted
(applies mainly to Stations that perform processing on the entities).

 postInterruptionActions: performs actions that must be carried out after the interruptionEnd
signal is received.

 endProcessingActions: actions that are performed after the processing of an Entity ends.

 postProcessing: is called for every object in the end of a simulation replication, The purpose is
to perform certain calculations. For example, if a Machine is still processing an Entity when the
simulation ends, this processing time should be added so that the results are accurate. Note
that when an object is complex, sometimes it is difficult to debug such a method. On the other
hand, in a long simulation run a mistake in this method would most probably not introduce a
large error.

 outPutResultsJSON: outputs the results of the object in a JSON format. All the objects output
to the same JSON file. If we have more than one replications, the results are given in
confidence intervals.

 outPutResultsXL: outputs the results of the object in an Excel file. All the objects output to the
same Excel file. If we have more than one replications, the results are given in confidence
intervals. To save the excel file the user should add G.outputFile.save("filename.xls") in the
main script.

 outPutTrace: outputs trace in an Excel sheet when an important event happens (e.g. an Entity
gets into the CoreObject). All the objects output to the same Excel file and the events are
sorted in increasing timestamp. The trace is essential for debugging. To run a model that is
believed to be verified, it should be turned off since it slows the program significantly.

Note that contrary to the other methods described in this section, these methods are expected to
be called only internally from an object or from a main script (e.g. there is no need for a CoreObject
to call outPutResultsJSON of another). So it is not obligatory that the name is the same for all
CoreObjects. Nevertheless, for reasons of coherence these methods are mentioned here.

ManPy users are invited to write new methods for objects, in case they desire to output results in
different format (e.g. XML). Also it is logical that ManPy users would like to override these methods
to customize the results that they get.

3.1.1.9 Main simulation method

Here the logic that the CoreObject follows as it evolves through time. There is only one such
method:

 run: this is a generator method and it is the main method where the yield commands of SimPy
can be used. For this reason run requires that the user knows the internals of SimPy in order to
customize. It is common (but not obligatory) that in such a method there is a while loop that
runs all through the simulated time. The logic followed in every CoreObject’s run method is:

11

1. Wait for an isRequested or other type of signal that informs the object that it is now
permitted to proceed with getting an entity from a predecessor defined as its giver.

2. If the signal (other than isRequested) is not sent by the giver but another object, then a
possible giver must be signalled before any other action. Step 1 is then repeated again.

3. Call object's getEntity method so that it obtains the Entity from the giver object.

4. Carry on the logic of the object (unique for every different type).

5. When the process is ended the object tries signalling a receiver by the use of
signalReceiver method.

6. If the signalling was not successful, the object should wait till it receives a canDispose
signal.

a. After receiving a canDispose signal, the control tries to signal the receiver. In the case
of objects that perform certain processing on the entity it holds (e.g. Machine), the
object must wait till it receives an acknowledgement (entityRemoved signal) from the
receiver, before it proceeds with receiving a new entity.

7. Repeat step 1. The loop cannot start again if it should not, since step 1 takes care of it.
When at some point some receiver object sends an isRequested signal this may change
and the loop will restart.

In the case of objects that perform no processing on the entities they hold (e.g. Queue); steps 1
and 6 can be combined on the same yield command. Note that a buffer can wait for any of the two
canDispose or isRequested as long as it can simultaneously dispose and receive more than one
entity, given the capacity is not exceeded.

There can be object classes that have auxiliary generator methods. These methods perform
specific controls and make use of yield commands whenever they take control of program flow.
Though, run must always be considered the main generator method that is invoked from the main
script, while others are invoked by the object internally.

3.1.2 ObjectInterruption

As ObjectInterruptions are categorized all the objects that can affect the availability of another
object. For example failures, scheduled breaks, shifts etc.

The most important attribute of an ObjectInterruption is victim which is the CoreObject whose the
availability the ObjectInterruption handles. This CoreObject is also the one that creates and
activates the instance of the ObjectInterruption object.

Currently there are six generic methods for these objects:

 outPutTrace: outputs trace in an Excel sheet when an important event happens (e.g. a
Machine gets a failure). All the ObjectInterruptions output to the same Excel file as the
CoreObjects and the events are sorted in increasing timestamp. The trace is essential for
debugging. To run a model that is believed to be verified, it should be turned off since it slows
the program significantly.

 getVictimQueue: returns the internal queue of the victim CoreObject.

 invoke: signals the interruption object. After the receiving the signal isCalled the generator of
the interruption object performs the requested actions.

 interruptVictim: signals (interruptionStart) the victim of the interruption object that an
interruption is just started.

 reactivateVictim: informs the victim that all the interruption related commands are carried out
and that the control should now return to the victim.

 run: this is a generator method and it is the only one where the yield commands of SimPy can
be used. For this reason run requires that the user knows the internals of SimPy in order to
customize. Generally the victim CoreObject is the one that activates the ObjectInterruption, but
this is not obligatory. It is common (but not obligatory) that in such a method there is a while

12

loop that runs all through the simulated time. The logic followed in an ObjectInterruption’s run
method is:

1. Hold until an interruption should happen or until it is signalled by the object to be
interrupted or any other object.

2. carry out the logic of the interruption:

a. Passivate (interruptVictim) the victim,

b. Hold until the interruption should be stopped or perform the requested actions
(e.g. request a resource),

3. Reactivate (reactivateVictim) the victim

4. Restart the loop

3.1.3 Entity

As Entities are categorized all objects that get processed by or wait in CoreObjects and they are
not permanent in a model. For example parts in a production line, customers in a shop, calls in a
call centre etc.

Entities can get into the model from a Source type CoreObject or be set as Work In Progress (WIP)
at the start of the simulation run. They hold certain general attributes such as creationTime that
holds the time that the Entity entered the model.

In alignment with the philosophy of having the CoreObjects handling most of the simulation logic,
Entities are kept reasonably simple. This is also efficient for models that we may have few
CoreObjects (e.g. 3 Queues and 3 Machines) but thousands of Entities (e.g. the production Parts
of one month). So the CoreObjects handle how the Entities move and evolve through simulated
time. Of course it is possible that certain properties (such as routing or processing time needed)
may be kept in an Entity’s attributes, which the CoreObject will read.

Currently there are two generic methods for these objects:

 outPutResultsJSON: outputs the results of the object in a JSON format. All the Entities output
to the same JSON file as the CoreObjects.

 initialize: initializes the Entity at the start of each replication.

3.1.4 ObjectResource

As ObjectResource are categorized all the resources that might be necessary for certain operation
of a CoreObject. For example repairman, operator, electric power etc. An ObjectResource is
necessary in modelling when two or more CoreObjects compete for the same resource (e.g. two
machines competing for the same operator).

CoreObjects handle how the ObjectResources move and evolve through simulated time. Of course
it is possible that certain properties may be kept in an ObjectResource’s attributes, which the
CoreObject will read.

One important attribute if the ObjectResource is Res. Res is an instance SimPy.resource type and
it allows other objects to request or release the resource (SimPy yield.request and release
respectively).

ObjectResource implements the following methods:

 postProcessing: Same functionality with CoreObject method with the same name

 outPutResultsJSON: Same functionality with CoreObject method with the same name

 outPutResultsXL: Same functionality with CoreObject method with the same name

 outPutTrace: Same functionality with CoreObject method with the same name

 initialize: Same functionality with CoreObject method with the same name

 checkIfResourceIsAvailable: returns true if there is one or more available units of the
ObjectResource.

13

 getResource: returns the resource (self.Res)

 getResourceQueue: returns the activeQueue of the resource (self.Res.users)

workingStation is another important attribute of the Operator ObjectResource. It is the station
where the resource is currently occupied.

3.1.5 Auxiliary

These are auxiliary classes that are needed for different simulation functionalities. Unlike the other
categories described here, auxiliary classes do not inherit from one parent class, even though it is
considered a good practice that they are grouped and presented here for reasons of coherence.

Three categories of auxiliary classes exist currently in ManPy.

 G: contains global variables for the simulation such as the length of the simulation run, the
number of the simulation replications etc. G can be imported with the line from Globals import
G. Some important conventions:

o G.ObjList is a list that should hold all the CoreObjects.

o G.maxSimTime is a float that defines the length of the simulation run.

o G.seed is an integer that holds the seed for random number generation.

 RandomNumberGenerator: contains methods to create random variables that follow certain
distributions. In the current version of ManPy only a few distributions listed below are
supported, but this is to be expanded:

o Fixed

o Exponential

o Normal

o Erlang

 MainScript: as main script we name every script (it is not necessary a class) that reads a
ManPy simulation model, creates it, runs it and returns the results. The input and output can be
of whatever form. There are currently two different main scripts LineGenerationJSON and
LineGenerationCMSD that read the data using different formats. Also, all the examples
demonstrated in the next section are main scripts. Nevertheless, it is desired that users can
implement and use different main scripts according to their needs. A main script should
perform the following operations:

1. Read or define the objects

2. Create the objects

3. Define the structure and set the topology of the model (predecessors and successors) if
needed

4. In every replication:

i. initialize the simulation (SimPy.initialize)

ii. initialize CoreObjects, ObjectResources and Entities

iii. set the WIP if needed

iv. activate the objects

v. run the simulation (SimPy.simulate)

vi. call postProcessing method of the objects

5. After the simulation is over output the results in a desirable way

14

3.2 Expanding the Code

In the last subsection the architecture, generic methods and the logic of ManPy were described.
Understanding the above, it should be possible for someone to make a new object of any of the 5
categories described and incorporate it into the platform. New objects may be:

 Customized objects that inherit from an existing one and override certain methods

 Completely new objects, that implement their versions of the methods

In order to reduce the learning curve, it is desired that ManPy keeps the set of methods as short as
possible. However, adding a new generic method in a new object is also possible. Let’s suppose
for example that a CoreObject named newCoreObject requires having newCoreObjectMethod that
will also be called by other objects in the model. Then the developer can implement the version for
newCoreObjectMethod that he wishes for the newCoreObject, but he should also add an empty
version of the method to the parent object. So in CoreObject the following should be added:

def newCoreObjectMethod(self):

pass

In case newCoreObjectMethod requires arguments, they should be defined as optional. In this way
the method can be called for every CoreObject without causing the code to crash and the objects
can still interact as black boxes.

In the next section examples of how to construct, customize and run a ManPy model will be given.

15

4 Examples

4.1 A single server model

The first example shown here is a simple model of a production line that consists only from a point
of entry (Source) a buffer (Queue), a server (Machine) and a point of exit (Exit). A graphical
representation of the model is shown in Figure 2 (Note, Figure 2 and other figures in this section,
are printscreens from the DREAM GUI. They are presented here for convenience, in order to make
the text more understandable. This documentation is specific for ManPy and does NOT cover the
DREAM GUI).

Figure 2: Single server model

As values we have the following:

 The Source produces parts. One part is produced every 30 seconds

 The capacity of Queue is 1

 The Machine processes one part at a time. The processing time is 15 seconds

 We want to study the system for 24 hours

Below is the ManPy main script to run this model (dream\simulation\Examples\SingleServer.py):

from dream.simulation.imports import Source, Queue, Machine, Exit

from dream.simulation.Globals import runSimulation

#define the objects of the model

S=Source('S1','Source',interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

Q=Queue('Q1','Queue', capacity=1)

M=Machine('M1','Machine', processingTime={'Fixed':{'mean':0.25}})

E=Exit('E1','Exit')

#define predecessors and successors for the objects

S.defineRouting(successorList=[Q])

Q.defineRouting(predecessorList=[S],successorList=[M])

M.defineRouting(predecessorList=[Q],successorList=[E])

E.defineRouting(predecessorList=[M])

def main(test=0):

 # add all the objects in a list

 objectList=[S,Q,M,E]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

16

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the total working ratio of the Machine is", working_ratio, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

Some notes on the code:

 In the first line we import all the ManPy objects that will be used in the model. The user could
also use from dream.simulation.imports import *, but it is generally lighter to import only what is
needed

 In the second line we import Globals.runSimulation method. This is a supplementary method
that runs the simulation. Two needed arguments are a list with all the simulation objects and
the length of the experiment. As we see this is called as runSimulation(objectList,
maxSimTime). There are other optional arguments as we will see in other examples.

 In the examples of this tutorial we always define a function main() which is the “main” program
to be run. In the end we include the line if __name__ == ’__main__’: main() so that the program
executes.

 main takes a test flag that is set to 0 as default. In every example there is a return statement
after an if statement that checks the value of test. This is done for reasons of testing. We keep
the results under unit testing (check here ->
https://github.com/nexedi/dream/blob/master/dream/tests/testSimulationExamples.py), so that
we can ascertain changes in the code do not affect the execution of the examples. We also do
not want tests to print or create files (as we will see in examples where we create .xls files or
figures) so this return is done before such actions. The reader of this documentation should not
bother with anything that is inside if test: condition of the examples.

 ManPy needs an abstract time unit. The user defines what this is. In this model we picked
minutes. The length of the simulation is set to 1440.0 (so it is minutes it corresponds to 24
hours). We give this as a float to use it later in calculations.

 ManPy time units are decimals. So 30 and 15 seconds have been translated to 0.5 and 0.25
minutes respectively.

 defineRouting in most CoreObjects gets two lists as arguments (perdecessorList,
successorList) with this sequence. In special cases like the Source and the Exit only one list is
required. In this example the name of the argument is specified when the method is called, but
if the user gives the inputs with the same sequence (see next examples) the result shall be the
same.

 We see that distributions such as interarrival and processing times are defined for the objects
as Python dictionaries. This way there is more flexibility in the attributes a distribution needs.
The structure of a distribution is:

the system produced 2880 parts
the working ratio of the Machine is 50.0 %

https://github.com/nexedi/dream/blob/master/dream/tests/testSimulationExamples.py

17

 "DistributionType": {

 "Parameter1": value,

 "Parameter2": value,

 …

 }

Where DistributionType is a reserved keyword, e.g. Normal and the parameter keys may be
defined accordingly (e.g mean, stdev). The distributions supported and their parameters can be
found in dream/simulation/RandomNumberGenerator.

 Attributes like totalWorkingTime or numOfExits are part of the ManPy API. A full description of
this is going to be developed.

We see the results are logical:

 In 1440 minutes and a part coming every 0.5 minutes and staying in the system 0.25 minutes
(no blocking) it is normal to produce 2880 parts

 Since parts come every 30 seconds and the machine processes them for 15 seconds it is
logical

(Note: all the programs presented here, and generally ManPy objects are verified against a
commercial simulation package. We use Plant Simulation -
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation
.shtml)

4.2 Two servers model with failures and repairman

The second model is a bit more complex. The graphical representation is available in Figure 3

Figure 3: Two servers model with failures and repairman

In this model we have two Machines and a Queue between them. The Machines are vulnerable to
failures and when a failure happens then they need a repairman to get fixed. In our model there is
only one repairman named Bob available. We have the following data:

 The source produces parts. One part is produced every 30 seconds

 For Machine1

o Processing time is Fixed to 15 seconds

o MTTF is 1 hour

o MTTR is 5 minutes

 For Machine2

o Processing time is Fixed to 90 seconds

o MTTF is 40 minutes

http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/plant_design/plant_simulation.shtml

18

o MTTR is 10 minutes

 The capacity of the Queue is 1

 We want to study the system in a 24 hours period and identify the number of items that are
produced, the blockage ratio in Machine1 and the working ration of the repairman.

Below is the ManPy main script to run this model (dream\simulation\Examples\TwoServers.py):

from dream.simulation.imports import Machine, Source, Exit, Part, Repairman,

Queue, Failure

from dream.simulation.Globals import runSimulation

#define the objects of the model

R=Repairman('R1', 'Bob')

S=Source('S1','Source', interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

M1=Machine('M1','Machine1', processingTime={'Fixed':{'mean':0.25}})

Q=Queue('Q1','Queue')

M2=Machine('M2','Machine2', processingTime={'Fixed':{'mean':1.5}})

E=Exit('E1','Exit')

#create failures

F1=Failure(victim=M1,

distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}},

repairman=R)

F2=Failure(victim=M2,

distribution={'TTF':{'Fixed':{'mean':40.0}},'TTR':{'Fixed':{'mean':10.0}}},

repairman=R)

#define predecessors and successors for the objects

S.defineRouting([M1])

M1.defineRouting([S],[Q])

Q.defineRouting([M1],[M2])

M2.defineRouting([Q],[E])

E.defineRouting([M2])

def main(test=0):

 # add all the objects in a list

 objectList=[S,M1,M2,E,Q,R,F1,F2]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 blockage_ratio = (M1.totalBlockageTime/maxSimTime)*100

 working_ratio = (R.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "blockage_ratio": blockage_ratio,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the blockage ratio of", M1.objName, "is", blockage_ratio, "%"

 print "the working ratio of", R.objName,"is", working_ratio, "%"

if __name__ == '__main__':

19

 main()

Note that it is handy to declare the other objects first so that the failures take them as arguments
(in this example the Machine and Repairman types)

4.3 An assembly line

In this example we use another ManPy object. Assembly takes two types of Entities, parts and
frames. A frame can be loaded with a number of parts. The logic is that the Assembly waits first for
a frame and when it has one then it loads the parts to it when they arrive. Figure 4 gives a
graphical representation of the system.

Figure 4: An assembly line

 “Parts” produces parts. One part is produced every 30 seconds

 “Frames” produces parts. One frame is produced every 2 minutes

 A Frame has a fixed capacity of 4 parts

 The Assembly has a fixed processing time of 2 minutes

 For Machine

o Processing time is Fixed to 15 seconds

o MTTF is 1 hour

o MTTR is 5 minutes

 We want to study the system in 24 hours and identify the number of items that are produced
and the blockage ratio in Assembly.

Below is the ManPy main script to run this model (dream\simulation\Examples\AssemblyLine.py):

from dream.simulation.imports import Machine, Source, Exit, Part, Frame,

Assembly, Failure

from dream.simulation.Globals import runSimulation

#define the objects of the model

Frame.capacity=4

the system produced 732 parts
the blockage ratio of Machine1 is 78.1770833333 %

the working ratio of Bob is 26.7361111111 %

20

Sp=Source('SP','Parts', interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

Sf=Source('SF','Frames', interArrivalTime={'Fixed':{'mean':2}},

entity='Dream.Frame')

M=Machine('M','Machine', processingTime={'Fixed':{'mean':0.25}})

A=Assembly('A','Assembly', processingTime={'Fixed':{'mean':2}})

E=Exit('E1','Exit')

F=Failure(victim=M,

distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}})

#define predecessors and successors for the objects

Sp.defineRouting([A])

Sf.defineRouting([A])

A.defineRouting([Sp,Sf],[M])

M.defineRouting([A],[E])

E.defineRouting([M])

def main(test=0):

 # add all the objects in a list

 objectList=[Sp,Sf,M,A,E,F]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio=(A.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"frames": E.numOfExits,

 "working_ratio": working_ratio}

 # print the results

 print "the system produced", E.numOfExits, "frames"

 print "the working ratio of", A.objName, "is", working_ratio, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

Note that the capacity of the frames is set as an attribute of the class with Frame.capacity=4

4.4 Setting WIP

In the previous examples we had a Source object that created Entities in the system following a
distribution for inter-arrival times. This is classical DES modelling, but it is also common that
Entities are needed to be set as work in progress (WIP) in a model. In this section we will see 3
simple examples of this.

the system produced 664 frames

the working ratio of Assembly is 92.3611111111 %

21

4.4.1 WIP in a buffer

The system is the one of Figure 5. It looks like the SingleServer example, but instead of a Source
now we have a Queue preceding the Machine. The Machine is identical to the one og the
SingleServer example. Let’s say that we have one Part in this Queue as WIP.

Figure 5: A server with a queue

Following is the code to model this system (dream\simulation\Examples\SettingWip1.py)

from dream.simulation.imports import Machine, Queue, Exit, Part, ExcelHandler

from dream.simulation.Globals import runSimulation, G

#define the objects of the model

Q=Queue('Q1','Queue', capacity=1)

M=Machine('M1','Machine', processingTime={'Fixed':{'mean':0.25}})

E=Exit('E1','Exit')

P1=Part('P1', 'Part1', currentStation=Q)

#define predecessors and successors for the objects

Q.defineRouting(successorList=[M])

M.defineRouting(predecessorList=[Q],successorList=[E])

E.defineRouting(predecessorList=[M])

def main(test=0):

 # add all the objects in a list

 objectList=[Q,M,E,P1]

 # set the length of the experiment

 maxSimTime=float('inf')

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime, trace='Yes')

 # calculate metrics

 working_ratio = (M.totalWorkingTime/G.maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "simulationTime":E.timeLastEntityLeft,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts in", E.timeLastEntityLeft,

"minutes"

 print "the total working ratio of the Machine is", working_ratio, "%"

 ExcelHandler.outputTrace('Wip1')

if __name__ == '__main__':

 main()

22

Running the model we get the following in our console:

Some notes on the code:

 We created the Part as a part type and we set its currentStation attribute to Q which was
already defined.

 In this example we let the model run for infinite time (maxSimTime=float('inf')). The simulation
will stop when there are no more events, which in this case happens when the Part finishes in
the Exit. Notice that if a user applies infinite time in a simulation that does not stop to produce
events (like in the previous examples), then the execution of the model will never stop.

 In previous examples we used the maxSimTime we defined to calculate percentages. Now that
this was given as infinite this would not do. So we used the global attribute G.maxSimTime,
which is calculated by the simulation itself. To be able to do this, we imported G in the
beginning (from dream.simulation.Globals import G).

 timeLastEntityLeft is an attribute of ManPy CoreObjects that holds the simulation time that the
object last dsposed an Entity. In this example it E.timeLastEntityLeft coincides to
G.maxSimTime

 One asset that ManPy objects offer in order to enhance debugging it the feature of outputting
trace to Excel. All ManPy objects output to the same Excel file and the events are sorted in
increasing timestamp. The trace is essential for debugging. To run a model that is believed to
be verified, it should be turned off since it slows the program significantly. In order to enable
trace in this example:

o We imported ExcelHandler in the beginning. This is a ManPy script that holds Excel
related methods.

o We invoked runSimulation giving trace= ‘Yes’ (default value is ‘No’)

o We saved the trace in the end with (ExcelHandler.outputTrace('Wip1')), “Wip1” is the
name of the .xls file that will be saved.

The trace of this example is:

0 Part1 released Queue

0 Part1 got into Machine

0.25 Part1
ended processing in
Machine

0.25 Part1 released Machine

0.25 Part1 got into Exit

Note that every object has its own outputTrace method which a user can customize. Of course this
can also be omitted if it is not desirable for the object to output trace at all.

4.4.2 WIP in a server

Sometimes we need to define that the WIP is not in a buffer but in the middle of processing in a
Machine. In the previous example we will add a new Part that is in the Machine
(dream\simulation\Examples\SettingWip2.py):

P2=Part('P2', 'Part2', currentStation=M)

Running the model we get the following in our console:

the system produced 1 parts in 0.25 minutes

the total working ratio of the Machine is 100.0 %

the system produced 2 parts in 0.5 minutes

the total working ratio of the Machine is 100.0 %

23

The trace is:

0.25 Part2
ended processing in
Machine

0.25 Part2 released Machine

0.25 Part2 got into Exit

0.25 Part1 released Queue

0.25 Part1 got into Machine

0.5 Part1
ended processing in
Machine

0.5 Part1 released Machine

0.5 Part1 got into Exit

In the previous situation Part2 needed all the processing time of the Machine, so it finished in 0.25.
But sometimes the WIP is in the middle of processing. To define what processing time is remaining
in the current station we set the remainingProcessingTime attribute
(dream\simulation\Examples\SettingWip2.py):

P2=Part('P2', 'Part2', currentStation=M,

remainingProcessingTime={'Fixed':{'mean':0.1}})

The attribute is defined also as a dictionary since it may be stochastic.

Running the model we get the following in our console:

The trace certifies that P2 was processed for 0.1 minutes (assuming that it had already got
processed for 0.15).

0.1 Part2
ended processing in
Machine

0.1 Part2 released Machine

0.1 Part2 got into Exit

0.1 Part1 released Queue

0.1 Part1 got into Machine

0.35 Part1
ended processing in
Machine

0.35 Part1 released Machine

0.35 Part1 got into Exit

4.5 Parallel stations

In this section we will see some examples of object customization.

the system produced 2 parts in 0.35 minutes

the total working ratio of the Machine is 100.0 %

24

4.5.1 Default behaviour

Our model consists of a source, a buffer and two Milling machines that work in parallel. A graphical
representation is given in Figure 6. We have the following data:

 The source produces parts. One part is produced every 30 seconds

 For Machine1

o Processing time is Fixed to 15 seconds

o MTTF is 1 hour

o MTTR is 5 minutes

 For Machine2

o Processing time is Fixed to 15 seconds

o No failures

 The capacity of the Queue is infinite

 We want to study the system in 24 hours and identify the number of items that are produced,
the working ratio of both Machines

Figure 6: Parallel stations and Queue customization

To model this scenario we need nothing more than we already described. The code is given below
(dream\simulation\Examples\ParallelServers1.py)

from dream.simulation.imports import Machine, Source, Exit, Part, Queue, Failure

from dream.simulation.Globals import runSimulation

#define the objects of the model

S=Source('S','Source', interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

Q=Queue('Q','Queue', capacity=float("inf"))

M1=Machine('M1','Milling1', processingTime={'Fixed':{'mean':0.25}})

M2=Machine('M2','Milling2', processingTime={'Fixed':{'mean':0.25}})

E=Exit('E1','Exit')

F=Failure(victim=M1,

distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}})

#define predecessors and successors for the objects

S.defineRouting([Q])

Q.defineRouting([S],[M1,M2])

M1.defineRouting([Q],[E])

M2.defineRouting([Q],[E])

E.defineRouting([M1,M2])

25

def main(test=0):

 # add all the objects in a list

 objectList=[S,Q,M1,M2,E,F]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio_M1=(M1.totalWorkingTime/maxSimTime)*100

 working_ratio_M2=(M2.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio_M1": working_ratio_M1,

 "working_ratio_M2": working_ratio_M2}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the working ratio of", M1.objName, "is", working_ratio_M1, "%"

 print "the working ratio of", M2.objName, "is", working_ratio_M2, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

We see that Milling2 is slightly busier than Milling1. This is logical since Milling1 gets also failures.

4.5.2 Queue customization

Let’s assume now, that in our real system, Milling1 has a greater priority than Milling2, i.e. a part
will go to Milling1, unless it is not available so it will go to Milling2.

The default behaviour of Queue is to handle things in a cyclic way (if both successors available
select first Milling1 then Milling2 etc). To change this we have to override Queue’s selectReceiver
method.

The code is given below (dream\simulation\Examples\ParallelServers2.py).

from dream.simulation.imports import Machine, Source, Exit, Part, Queue, Failure

from dream.simulation.Globals import runSimulation

#the custom queue

class SelectiveQueue(Queue):

 # override so that it first chooses M1 and then M2

 def selectReceiver(self,possibleReceivers=[]):

 if M1.canAccept():

 return M1

 elif M2.canAccept():

 return M2

the system produced 2880 parts

the working ratio of Milling1 is 23.0902777778 %

the working ratio of Milling2 is 26.9097222222 %

26

 return None

#define the objects of the model

S=Source('S','Source', interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

Q=SelectiveQueue('Q','Queue', capacity=float("inf"))

M1=Machine('M1','Milling1', processingTime={'Fixed':{'mean':0.25}})

M2=Machine('M2','Milling2', processingTime={'Fixed':{'mean':0.25}})

E=Exit('E1','Exit')

F=Failure(victim=M1,

distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}})

#define predecessors and successors for the objects

S.defineRouting([Q])

Q.defineRouting([S],[M1,M2])

M1.defineRouting([Q],[E])

M2.defineRouting([Q],[E])

E.defineRouting([M1,M2])

def main(test=0):

 # add all the objects in a list

 objectList=[S,Q,M1,M2,E,F]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio_M1=(M1.totalWorkingTime/maxSimTime)*100

 working_ratio_M2=(M2.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio_M1": working_ratio_M1,

 "working_ratio_M2": working_ratio_M2}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the working ratio of", M1.objName, "is", working_ratio_M1, "%"

 print "the working ratio of", M2.objName, "is", working_ratio_M2, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

We see now that the working ration of Milling2 is drastically reduced that is natural since it takes
parts only when Milling1 is busy or failed.

Some notes on the code:

the system produced 2880 parts

the working ratio of Milling1 is 46.1805555556 %

the working ratio of Milling2 is 3.81944444444 %

27

 SelectiveQueue is a new custom object. It has its own version of selectReceiver, but in
everything else it is identical to Queue.

 Q is now of type SelectiveQueue

 The implementation of SelectiveQueue is highly customized. It works only in this model with
the given ids (‘M1’ and ‘M2’). A more generic approach is given in the next example.

4.5.3 More generic implementation of selective queue

Now we make a more generic implementation of SelectiveQueue, so that it sorts the receivers of
the object according to an attribute we name priority. The new object is
(dream\simulation\Examples\ParallelServers3.py):

#the custom queue

class SelectiveQueue(Queue):

 #override so that it chooses receiver according to priority

 def selectReceiver(self,possibleReceivers=[]):

 # sort the receivers according to their priority

 possibleReceivers.sort(key=lambda x: x.priority, reverse=True)

 if possibleReceivers[0].canAccept():

 return possibleReceivers[0]

 elif possibleReceivers[1].canAccept():

 return possibleReceivers[1]

 return None

In the main script we define also the priority of the Machines like below:

#create priority attribute in the Machines

M1.priority=10

M2.priority=0

As expected, the model gives the same result as the one of the previous example. However, this is
a cleaner implementation since it does not involve specific instances. This SelectiveQueue could
be used at any model that we need a Queue to prioritize its successors.

Generally, users are welcome to customize their objects at different levels:

 Objects for specific models like the SelectiveQueue shown in the first example

 More generic objects so that the user can re-use the in different models

 Even more generic objects so that the user can share them with other users. Here
documentation would be essential.

4.5.4 Counting the parts each machine produced

In the previous example, we assume that in the Exit we want to count how many parts were
processed by Milling1 and how many by Milling2. For this we need to make 3 modifications:

 Create two new global variables. Note that Globals.G is a class to store global variables for a
model:

o G.NumM1 as a counter that counts the parts that were processed by Milling1

o G.NumM2 as a counter that counts the parts that were processed by Milling2

 Create a new Machine type named Milling. This will override the getEntity method so that it
sets an attribute to the part that shows from which Milling it passed

 Create a new Exit type named CountingExit. This will override the getEntity method so that it
reads the attribute of the part and increments the global counters accordingly

The code is given below (dream\simulation\Examples\ParallelServers4.py).

28

from dream.simulation.imports import Machine, Source, Exit, Part, Queue,

Globals, Failure, G

from dream.simulation.Globals import runSimulation

#the custom queue

class SelectiveQueue(Queue):

 #override so that it chooses receiver according to priority

 def selectReceiver(self,possibleReceivers=[]):

 # sort the receivers according to their priority

 possibleReceivers.sort(key=lambda x: x.priority, reverse=True)

 if possibleReceivers[0].canAccept():

 return possibleReceivers[0]

 elif possibleReceivers[1].canAccept():

 return possibleReceivers[1]

 return None

#define the objects of the model

S=Source('S','Source', interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

Q=SelectiveQueue('Q','Queue', capacity=float("inf"))

M1=Machine('M1','Milling1', processingTime={'Fixed':{'mean':0.25}})

M2=Machine('M2','Milling2', processingTime={'Fixed':{'mean':0.25}})

E=Exit('E1','Exit')

F=Failure(victim=M1,

distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}})

#create priority attribute in the Machines

M1.priority=10

M2.priority=0

#define predecessors and successors for the objects

S.defineRouting([Q])

Q.defineRouting([S],[M1,M2])

M1.defineRouting([Q],[E])

M2.defineRouting([Q],[E])

E.defineRouting([M1,M2])

def main(test=0):

 # add all the objects in a list

 objectList=[S,Q,M1,M2,E,F]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio_M1=(M1.totalWorkingTime/maxSimTime)*100

 working_ratio_M2=(M2.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio_M1": working_ratio_M1,

 "working_ratio_M2": working_ratio_M2}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the working ratio of", M1.objName, "is", working_ratio_M1, "%"

 print "the working ratio of", M2.objName, "is", working_ratio_M2, "%"

29

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

4.6 Stochastic model

All the models so far have been deterministic. Real systems tend to be random with different
reasons of stochasticity. In stochastic models we have to run many replications with different
random seeds and give the results in confidence intervals.

We take our second example (dream\simulation\Examples\TwoServers.py) and we extend it into a
stochastic situation. The model is the same, the only change is that the machines have stochastic
processing times. More specifically:

 Machine1 processing time follows the normal distribution with mean=0.25, stdev=0.1, min=0.1,
max=1 (all in minutes)

 Machine2 processing time follows the normal distribution with mean=1.5, stdev=0.3, min=0.5,
max=5 (all in minutes)

The failures and the interarrival times remain deterministic as before.

Below is the ManPy main script to run this model
(dream\simulation\Examples\TwoServersStochastic.py):

from dream.simulation.imports import Machine, Source, Exit, Part, Repairman,

Queue, Failure

from dream.simulation.Globals import runSimulation

#define the objects of the model

R=Repairman('R1', 'Bob')

S=Source('S1','Source', interarrivalTime={'Exp':{'mean':0.5}},

entity='Dream.Part')

M1=Machine('M1','Machine1',

processingTime={'Normal':{'mean':0.25,'stdev':0.1,'min':0.1,'max':1}})

M2=Machine('M2','Machine2',

processingTime={'Normal':{'mean':1.5,'stdev':0.3,'min':0.5,'max':5}})

Q=Queue('Q1','Queue')

E=Exit('E1','Exit')

#create failures

F1=Failure(victim=M1,

distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}},

repairman=R)

F2=Failure(victim=M2,

distribution={'TTF':{'Fixed':{'mean':40.0}},'TTR':{'Fixed':{'mean':10.0}}},

repairman=R)

#define predecessors and successors for the objects

S.defineRouting([M1])

M1.defineRouting([S],[Q])

Q.defineRouting([M1],[M2])

M2.defineRouting([Q],[E])

the system produced 2880 parts
the working ratio of Milling1 is 46.1805555556 %
the working ratio of Milling2 is 3.81944444444 %
Milling1 produced 2660 parts
Milling2 produced 220 parts

30

E.defineRouting([M2])

def main():

 # add all the objects in a list

 objectList=[S,M1,M2,E,Q,R,F1,F2]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime, numberOfReplications=10, seed=1)

 print 'The exit of each replication is:'

 print E.Exits

 # calculate confidence interval using the Knowledge Extraction tool

 from dream.KnowledgeExtraction.ConfidenceIntervals import Intervals

 from dream.KnowledgeExtraction.StatisticalMeasures import

BasicStatisticalMeasures

 BSM=BasicStatisticalMeasures()

 lb, ub = Intervals().ConfidIntervals(E.Exits, 0.95)

 print 'the 95% confidence interval for the throughput is:'

 print 'lower bound:', lb

 print 'mean:', BSM.mean(E.Exits)

 print 'upper bound:', ub

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

Some notes:

 Here runSimulation got two additional parameters:

o numberOfReplications: this is how many times we want the simulation to be run. Default
value is 1, but in stochastic cases we need many replications to be able to statistically
evaluate the results.

o seed: this is the seed of random number generation. This will be used in the first
replication and then the seed will be incremented by 1 for each replication

 In order to calculate confidence intervals ManPy uses again DREAM Knowledge extraction
tool.

 In the normal distribution it is on the developer’s responsibility not to give irrational values. For
example, if a processing time is negative ManPy will crash. Another example, if min is larger
than max in normal distribution, ManPy would also raise an error.

The exit of each replication is:

[729, 728, 732, 739, 729, 732, 727, 724, 721, 728]

the 95% confidence interval for the throughput is:

lower bound: 725.420720244

mean: 728.9

upper bound: 732.379279756

31

4.7 Job-Shop Examples

4.7.1 A simple Job-Shop

So far all the CoreObjects had dedicated predecessors and successors. There are situations
where it is desirable to model a job shop system where CoreObjects can give/receive to/from
whichever other CoreObject in the model. The information of which CoreObject is the next station
is an attribute of the Entity. As an example we give the model of Figure 7. In this model there are 3
Queues, 3 Machines and an Exit. Every entity will have to start from a CoreObject and have its
route and processing times assigned to its attributes.

Figure 7: a job shop model

To model such situations ManPy object repository has the following objects:

 MachineJobShop: inherits from Machine and overrides the logic of methods such as
updateNext in order to be able to give to every CoreObject in the model. The next CoreObject
is read by the Entity’s attributes and the method updateNext is invoked within getEntity. Also,
the methods canAccept and canAcceptAndIsRequested are overridden in order to render the
MachineJobShop objects able to receive from every CoreObject in the model. For this purpose,
an extra method isInRoute is created in order check if the object receiving an entity is in the
route of the entity to be disposed. The next CoreObject is read by the Entity’s attributes and
this is done in getEntity. Finally, it overrides calculateProcessingTime in order to calculate the
processing time according to the Entity’s attributes.

 QueueJobShop: inherits from Queue and overrides the logic of methods such as or
updateNext in order to be able to give to every CoreObject in the model. Also, it overrides
canAccept and canAcceptAndIsRequested in order to be able to receive from every
CoreObject in the model. Again, isInRoute is used in order check if the object receiving an
entity is in the route of the entity to be disposed.

 ExitJobShop: inherits from Exit but overrides the logic of methods such as isInRoute in order
to be able to receive from every CoreObject.

 Job: inherits from Entity. One of its attributes is a list named route. This list has the following
form [[id1,processingTime1], [id2,processingTime2], …, [idN,processingTimeN]]. Every item in
route corresponds to the id of a CoreObject and the processing time in this CoreObject.

32

Another attribute called remainingRoute is also a list that holds the future stops of a Job at any
moment of simulation time. In the beginning of the simulation these lists are equal. Current
implementation of Job can be used only for Fixed processing times. Job has also a list named
schedule, which is updated by the CoreObject every time it receives the Job. This holds the
output for the Job, i.e. which stations it entered and when.

In our first simple example we assume that we have only one Job in the model shown in Figure 7.
Our data for this Job is:

 It starts in Queue1 and it has to visit Machine1, Machine3 and Machine2 (in this sequence)
before it exits the system

 Its processing time in M1 is 1

 Its processing time in M3 is 3

 Its processing time in M2 is 2

Below is the ManPy main script to run this model (dream\simulation\Examples\JobShop1.py):

from dream.simulation.imports import MachineJobShop, QueueJobShop, ExitJobShop,

Job

from dream.simulation.Globals import runSimulation

#define the objects of the model

Q1=QueueJobShop('Q1','Queue1', capacity=float("inf"))

Q2=QueueJobShop('Q2','Queue2', capacity=float("inf"))

Q3=QueueJobShop('Q3','Queue3', capacity=float("inf"))

M1=MachineJobShop('M1','Machine1')

M2=MachineJobShop('M2','Machine2')

M3=MachineJobShop('M3','Machine3')

E=ExitJobShop('E','Exit')

#define the route of the Job in the system

route=[{"stationIdsList": ["Q1"]},

 {"stationIdsList": ["M1"],"processingTime":{'Fixed':{'mean':1}}},

 {"stationIdsList": ["Q3"]},

 {"stationIdsList": ["M3"],"processingTime":{'Fixed':{'mean':3}}},

 {"stationIdsList": ["Q2"]},

 {"stationIdsList": ["M2"],"processingTime":{'Fixed':{'mean':2}}},

 {"stationIdsList": ["E"],}]

#define the Jobs

J=Job('J1','Job1',route=route)

def main(test=0):

 # add all the objects in a list

 objectList=[M1,M2,M3,Q1,Q2,Q3,E,J]

 # set the length of the experiment

 maxSimTime=float('inf')

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # return results for the test

 if test:

 returnSchedule=[]

 for record in J.schedule:

 returnSchedule.append([record[0].objName,record[1]])

 return returnSchedule

 # print the results

 for record in J.schedule:

 print J.name, "got into", record[0].objName, "at", record[1]

if __name__ == '__main__':

33

 main()

Running the model we get the following in our console:

Having only one Job it is very easy to confirm that we got the correct result.

Some notes on the code:

 We see that the route of the Job is given as a list of dictionaries. In every step the user has to
give a list with the ids of the possible CoreObjects that the step can happen and also the data
for the processing time if this is needed.

4.7.2 A Job-Shop with scheduling rules

For the model described in the previous example and in Figure 7 we assume now that we have 3
Jobs. For these Jobs we know:

 Job1:

o It starts in Queue1 and it has to visit Machine1, Queue3, Machine3, Queue2 and
Machine2 (in this sequence) before it exits the system

o Its processing time in M1 is 1

o Its processing time in M3 is 3

o Its processing time in M2 is 2

o Its priority is 1

o Its due date is 100

 Job2:

o It starts in Queue1 and it has to visit Machine1, Queue2, Machine2, Queue3 and
Machine3 (in this sequence) before it exits the system

o Its processing time in M1 is 2

o Its processing time in M2 is 4

o Its processing time in M3 is 6

o Its priority is 1

o Its due date is 90

 Job3

o It starts in Queue1 and it has to visit Machine1, Queue1 and Machine3 (in this
sequence) before it exits the system

o Its processing time in M1 is 10

o Its processing time in M3 is 3

o Its priority is 0

o Its due date is 110

We see above two new attributes of the Job class. These are in reality optional arguments of the
parent class (Entity).

Job1 got into Queue1 at 0

Job1 got into Machine1 at 0

Job1 got into Queue3 at 1.0

Job1 got into Machine3 at 1.0

Job1 got into Queue2 at 4.0

Job1 got into Machine2 at 4.0

Job1 got into Exit at 6.0

34

 priority is an integer. The higher the value the higher the priority assigned to the Entity.

 dueDate is a float. It shows the time that the Entity should be out of the system (in case the
Entity represents an order or something similar). If our simulation units are minutes and the due
date is in exactly one week after the start of the simulation run, then dueDate=10080 (60*24*7).

As we see, all the Jobs start from Queue1. The default scheduling rule of a Queue object is FIFO,
i.e. the Entity to arrive first in the Queue will be the first to be given in another CoreObject.
Nevertheless, there are several more scheduling rules supported.

 Priority: the Entities are sorted in order of ascending predefined priority (the lowest priority is
to leave the Queue first)

 EDD: the Entities are sorted in order of ascending predefined due date (Earliest Due Date)

 EOD: the Entities are sorted in order of ascending predefined order date (Earliest Order Date)

 NumStages: the Entities are sorted in order of descending number of stages that they have to
pass.

 RPC: the Entities are sorted in order of descending total processing time of stages that they
have to pass (Remaining Processing Time).

 SPT: the Entities are sorted in order of ascending processing time of the next Machine they
have to pass (Shortest Processing Time).

 LPT: the Entities are sorted in order of descending processing time of the next Machine they
have to pass (Logest Processing Time).

 MS: the Entities are sorted in order of ascending slack time. Slack time is defined as due date
minus the remaining processing time

 WINQ: the Entities are sorted in order of ascending number of Entities in the next stage that
the Entity has to pass through (Work In Next Queue).

 MC: This stands for Multiple Criteria and it is applied when we have many scheduling rules
used. For example we may need to use Priority, but for the Entities that have equal priorities
EDD will be applied.

(Note: An advanced user can add new scheduling rules by creating a CoreObject that inherits from
Queue and overrides the activeQSorter method)

We start our model with the assumption that Priority is applied as scheduling rule in Queue1. The
other 2 Queues will remain FIFO.

Below is the ManPy main script to run this model
(dream\simulation\Examples\JobShop2Priority.py):

from dream.simulation.imports import MachineJobShop, QueueJobShop, ExitJobShop,

Job

from dream.simulation.Globals import runSimulation

#define the objects of the model

Q1=QueueJobShop('Q1','Queue1', capacity=float("inf"), schedulingRule="Priority")

Q2=QueueJobShop('Q2','Queue2', capacity=float("inf"))

Q3=QueueJobShop('Q3','Queue3', capacity=float("inf"))

M1=MachineJobShop('M1','Machine1')

M2=MachineJobShop('M2','Machine2')

M3=MachineJobShop('M3','Machine3')

E=ExitJobShop('E','Exit')

#define predecessors and successors for the objects

Q1.defineRouting(successorList=[M1])

Q2.defineRouting(successorList=[M2])

Q3.defineRouting(successorList=[M3])

M1.defineRouting(predecessorList=[Q1])

M2.defineRouting(predecessorList=[Q2])

35

M3.defineRouting(predecessorList=[Q3])

#define the routes of the Jobs in the system

J1Route=[{"stationIdsList": ["Q1"]},

 {"stationIdsList": ["M1"],"processingTime":{'Fixed':{'mean':1}}},

 {"stationIdsList": ["Q3"]},

 {"stationIdsList": ["M3"],"processingTime":{'Fixed':{'mean':3}}},

 {"stationIdsList": ["Q2"]},

 {"stationIdsList": ["M2"],"processingTime":{'Fixed':{'mean':2}}},

 {"stationIdsList": ["E"],}]

J2Route=[{"stationIdsList": ["Q1"]},

 {"stationIdsList": ["M1"],"processingTime":{'Fixed':{'mean':2}}},

 {"stationIdsList": ["Q2"]},

 {"stationIdsList": ["M2"],"processingTime":{'Fixed':{'mean':4}}},

 {"stationIdsList": ["Q3"]},

 {"stationIdsList": ["M3"],"processingTime":{'Fixed':{'mean':6}}},

 {"stationIdsList": ["E"],}]

J3Route=[{"stationIdsList": ["Q1"]},

 {"stationIdsList": ["M1"],"processingTime":{'Fixed':{'mean':10}}},

 {"stationIdsList": ["Q3"]},

 {"stationIdsList": ["M3"],"processingTime":{'Fixed':{'mean':3}}},

 {"stationIdsList": ["E"],}]

#define the Jobs

J1=Job('J1','Job1',route=J1Route, priority=1, dueDate=100)

J2=Job('J2','Job2',route=J2Route, priority=1, dueDate=90)

J3=Job('J3','Job3',route=J3Route, priority=0, dueDate=110)

def main(test=0):

 # add all the objects in a list

 objectList=[M1,M2,M3,Q1,Q2,Q3,E,J1,J2,J3]

 # set the length of the experiment

 maxSimTime=float('inf')

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # return results for the test

 if test:

 returnSchedule=[]

 for job in [J1,J2,J3]:

 for record in job.schedule:

 returnSchedule.append([record[0].objName,record[1]])

 return returnSchedule

 # print the results

 for job in [J1,J2,J3]:

 for record in job.schedule:

 print job.name, "got into", record[0].objName, "at", record[1]

 print "-"*30

if __name__ == '__main__':

 main()

36

Running the model we get the following in our console:

We see that Job3 having the highest (lowest value) priority was the first to go to Machine1. The
other two Jobs had equal priorities, so FIFO was applied (observing the loop where the WIP is set
one can see the Job1 was added to Queue1 before Job2).

To test how the model works if Queue1 follows the Earliest Due Date rule we have only to change
the definition of Queue1 in our code (dream\simulation\Examples\JobShop2EDD.py):

Q1=QueueJobShop('Q1','Queue1', capacity=infinity, schedulingRule="EDD")

Running the model we get the following in our console:

Job1 got into Queue1 at 0

Job1 got into Machine1 at 10.0

Job1 got into Queue3 at 11.0

Job1 got into Machine3 at 13.0

Job1 got into Queue2 at 16.0

Job1 got into Machine2 at 17.0

Job1 got into Exit at 19.0

Job2 got into Queue1 at 0

Job2 got into Machine1 at 11.0

Job2 got into Queue2 at 13.0

Job2 got into Machine2 at 13.0

Job2 got into Queue3 at 17.0

Job2 got into Machine3 at 17.0

Job2 got into Exit at 23.0

Job3 got into Queue1 at 0

Job3 got into Machine1 at 0

Job3 got into Queue3 at 10.0

Job3 got into Machine3 at 10.0

Job3 got into Exit at 13.0

Job1 got into Queue1 at 0

Job1 got into Machine1 at 2.0

Job1 got into Queue3 at 3.0

Job1 got into Machine3 at 3.0

Job1 got into Queue2 at 6.0

Job1 got into Machine2 at 6.0

Job1 got into Exit at 8.0

Job2 got into Queue1 at 0

Job2 got into Machine1 at 0

Job2 got into Queue2 at 2.0

Job2 got into Machine2 at 2.0

Job2 got into Queue3 at 6.0

Job2 got into Machine3 at 6.0

Job2 got into Exit at 12.0

Job3 got into Queue1 at 0

Job3 got into Machine1 at 3.0

Job3 got into Queue3 at 13.0

Job3 got into Machine3 at 13.0

Job3 got into Exit at 16.0

37

We see that Job2 having the earliest dueDate was the first to go to Machine1. Then Job1 followed
and Job3 was the last.

To test how the model works if Queue1 follows the Remaining Process Time rule we have only to
change the definition of Queue1 in our code (dream\simulation\Examples\JobShop2RPC.py):

Q1=QueueJobShop('Q1','Queue1', capacity=infinity, schedulingRule="RPC")

Running the model we get the following in our console:

We see that Job3 having the greatest remaining processing time was the first to go to Machine1.
Then Job2 followed and Job1 was the last.

Finally, we want to test how the model works if Queue1 follows a multi criteria rule. First Priority is
applied, and if Jobs have equal priorities, then EDD is applied we have only to change the
definition of Queue1 in our code (dream\simulation\Examples\JobShop2MC.py):

Q1=QueueJobShop('Q1','Queue1', capacity=infinity, schedulingRule="MC-Priority-EDD")

We see that to define a multi criteria rule, we use MC and then the scheduling rules according to
their sequence. All the scheduling rules are separated with “-”.

Running the model we get the following in our console:

Job1 got into Queue1 at 0

Job1 got into Machine1 at 12.0

Job1 got into Queue3 at 13.0

Job1 got into Machine3 at 13.0

Job1 got into Queue2 at 16.0

Job1 got into Machine2 at 16.0

Job1 got into Exit at 18.0

Job2 got into Queue1 at 0

Job2 got into Machine1 at 10.0

Job2 got into Queue2 at 12.0

Job2 got into Machine2 at 12.0

Job2 got into Queue3 at 16.0

Job2 got into Machine3 at 16.0

Job2 got into Exit at 22.0

Job3 got into Queue1 at 0

Job3 got into Machine1 at 0

Job3 got into Queue3 at 10.0

Job3 got into Machine3 at 10.0

Job3 got into Exit at 13.0

38

We see that having the highest (lowest value) priority, Job3 was the first to get into Machine1.
Contrary to the first example of this subsection though (JobShop2Priority.py), now Job2 is the
second Job to go to the Machine. This happens because it has an earlier due date (dueDate) than
Job1.

Job1 got into Queue1 at 0

Job1 got into Machine1 at 12.0

Job1 got into Queue3 at 13.0

Job1 got into Machine3 at 13.0

Job1 got into Queue2 at 16.0

Job1 got into Machine2 at 16.0

Job1 got into Exit at 18.0

Job2 got into Queue1 at 0

Job2 got into Machine1 at 10.0

Job2 got into Queue2 at 12.0

Job2 got into Machine2 at 12.0

Job2 got into Queue3 at 16.0

Job2 got into Machine3 at 16.0

Job2 got into Exit at 22.0

Job3 got into Queue1 at 0

Job3 got into Machine1 at 0

Job3 got into Queue3 at 10.0

Job3 got into Machine3 at 10.0

Job3 got into Exit at 13.0

39

4.8 Batches and SubBatches

4.8.1 Batch decomposition

There are cases in production lines where units are grouped in batches. The units belonging to the
same batch carry the same identification parameters. For further processing in different stations
the batches are segregated in sub-batches. Sub-batches or batches cannot be mixed during the
processing throughout the line. In order to model this behaviour, a number of new objects are
introduced. In this example, a source creating butches and an object breaking the batches into
sub-batches are presented.

Figure 8 depicts the model discussed in this example. A source creates batches with a specified
number of units which then enter an input buffer of a machine. The machine can only operate on
sub-batches. Thus, just before the entry of the machine the batches have to be broken into a
specified number of sub-batches depending on a predefined number of units per sub-batches. For
this purpose, a batch decomposition object is placed between the buffer unit and the machine. The
exit acts as a drain for the already processed sub-batches.

Figure 8: a simple batch decomposition example

ManPy object repository contains the following objects in order to model the described behaviour:

 BatchSource: inherits from Source and overrides the logic of the methods __init__ and
createEntity so as to create entities of type Batch with a specified number of units.

 BatchDecomposition: inherits from the CoreObject and introduces a new method decompose
in order to provide the functionality of splitting a batch into sub-batches. It also overrides the
logic of the methods canAccept, haveToDispose, canAcceptAndIsRequested, and run in order
to prohibit the mixing up of the sub-batches (should not be able to able to accept a new Batch if
there are already SubBatches in the object). run method should also be able to hold a track of
the batches already decomposed which may later on reassembled.

 Batch: inherits from Entity but introduces the attributes numberOfUnits that holds,
numberOfSubBatches that it is broken into, and subBatchList that holds the sub-batches that it
is broken into.

 SubBatch: inherits from Entity also. It holds in one of its attributes an identifier parameter of
the Batch it derived from.

In our first simple example we assume that we have only one Machine operating on SubBatches
and its corresponding BatchDecomposition object. Our data for this example is:

 The BatchSource Source creates Batches with a certain numberOfUnits,

 The newly created Batches enter the buffer of the machine (StartQueue),

 The Batches are decomposed into SubBatches in the BatchDecomposition with a processing
time of 1,

40

 the processing time of the Machine is 0.5

Below is the ManPy main script to run this model
(dream\simulation\Examples\DecompositionOfBatches.py):

from dream.simulation.imports import Machine, BatchSource, Exit, Batch,

BatchDecomposition, Queue

from dream.simulation.Globals import runSimulation

define the objects of the model

S=BatchSource('S','Source',interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Batch', batchNumberOfUnits=4)

Q=Queue('Q','StartQueue',capacity=100000)

BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4,

processingTime={'Fixed':{'mean':1}})

M=Machine('M','Machine',processingTime={'Fixed':{'mean':0.5}})

E=Exit('E','Exit')

define the predecessors and successors for the objects

S.defineRouting([Q])

Q.defineRouting([S],[BD])

BD.defineRouting([Q],[M])

M.defineRouting([BD],[E])

E.defineRouting([M])

def main(test=0):

 # add all the objects in a list

 objectList=[S,Q,BD,M,E]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

 blockage_ratio = (M.totalBlockageTime/maxSimTime)*100

 waiting_ratio = (M.totalWaitingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"subbatches": E.numOfExits,

 "working_ratio": working_ratio,

 "blockage_ratio": blockage_ratio,

 "waiting_ratio": waiting_ratio}

 # print the results

 print "the system produced", E.numOfExits, "subbatches"

 print "the working ratio of", M.objName, "is", working_ratio

 print "the blockage ratio of", M.objName, "is", blockage_ratio

 print "the waiting ratio of", M.objName, "is", waiting_ratio

if __name__ == '__main__':

 main()

 Running the model we get the following in our console:

the system produced 2302 parts

the working ratio of Machine is 79.9652777778

the blockage ratio of Machine is 0.0

the waiting ratio of Machine is 20.0347222222

41

Some notes on the code:

 Batch and SubBatch are normal Entities with some additional attributes. No individual units for
each Batch or SubBatch are taken into consideration for the modelling of the behaviour of
these lines.

 BatchSource is in all aspects a normal Source creating Entities of type Batch.

 The newly introduced method decompose of the BatchDecomposition object is complementary
to the method reassemble which will be presented later on.

 These operations (decomposing or processing on a station) are performed by operators. Such
functionality will be later on introduced.

42

4.8.2 Serial Batch Processing

In this example we will introduce one more object developed in order to model the behaviour of a
manufacturing line operating on Batches and SubBatches. As mentioned earlier, the decompose
method of BatchDecomposition object should have a complementary method in order to output full
Batches at the exit of the manufacturing line. The object implementing this functionality is named
BatchReassembly.

The example presenting the use of this object is depicted in Figure 9. A source creates batches
with a specified number of units which then enter an input buffer of a machine. The newly created
Batches enter first a buffer Queue1 of Machine1. Machine1 can process only a smaller number of
units, thus a group of units named sub-batch. A BatchDecomposition unit is placed before the
Machine1. The SubBatch after being processed by Machine1 enters Queue2 which act as a buffer
for Machine2. After being processed by Machine2 the SubBatches must be reassembled into
Batches before being processed by Machine3 which operates only on Batches. For this purpose a
BatchReassembly object is placed after Machine2 and before Machine3. BatchReassembly can
only assemble SubBatches which are derived from the same Batch. Finally, the exit acts as a drain
for the already processed sub-batches.

Figure 9: a simple batch decomposition and batch reassembly example

ManPy object repository contains the following object in order to model the described behaviour:

 BatchReassembly: inherits from the CoreObject and introduces a new method reassemble
which reassembles a number of SubBatches derived from the same Batch. It also overrides the
logic of the methods canAccept, haveToDispose, canAcceptAndIsRequested, and run in order
to prohibit the mixing up of the sub-batches. The BatchReassembly should not be able to able
to accept new SubBatches if they are not derived from the same Batch or if it holds an Entity of
type Batch. The Batches reassembled should be removed from the list of Batches that wait to
be reassembled. In addition it should be able to hand in an Entity to its successors only if the
Entity is of type Batch.

In the current example, we consider 3 Machines of two different types, two Machines operating on
SubBatches and one Machine operating on Batches. The Machine operating on Batches follows
the processing done on Machine1 and Machine2. Therefore, a need for the use of a
BatchReassembly object is introduced. Our data for this example is:

43

 BatchSource Source creates Batches with a certain numberOfUnits,

 The newly created Batches enter the buffer of the Machine1 (StartQueue),

 The Batch is then decomposed into SubBatches in the the BatchDecomposition. The
processing time of the BatchDecomposition has a value of 1.

 The SubBatches are then processed by Machine1 and Machine2. Between a buffer Queue1
with capacity of 2 is placed. The processing times for these machines is 0.5 and 1 respectively.

 The Batches are reassembled into Batches in BatchReassembly. The reassembly is performed
instantly while the processing time of Machine3, which lies just after BatchReassembly, is 1.

Below is the ManPy main script to run this model
(dream\simulation\Examples\SerialBatchProcessing.py):

from dream.simulation.imports import Machine, BatchSource, Exit, Batch,

BatchDecomposition, BatchReassembly, Queue

from dream.simulation.Globals import runSimulation

define the objects of the model

S=BatchSource('S','Source',interArrivalTime={'Fixed':{'mean':1.5}},

entity='Dream.Batch', batchNumberOfUnits=100)

Q=Queue('Q','StartQueue',capacity=100000)

BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4,

processingTime={'Fixed':{'mean':1}})

M1=Machine('M1','Machine1',processingTime={'Fixed':{'mean':0.5}})

Q1=Queue('Q1','Queue1',capacity=2)

M2=Machine('M2','Machine2',processingTime={'Fixed':{'mean':1}})

BRA=BatchReassembly('BRA', 'BatchReassembly', numberOfSubBatches=4,

processingTime={'Fixed':{'mean':0}})

M3=Machine('M3','Machine3',processingTime={'Fixed':{'mean':1}})

E=Exit('E','Exit')

define the predecessors and successors for the objects

S.defineRouting([Q])

Q.defineRouting([S],[BD])

BD.defineRouting([Q],[M1])

M1.defineRouting([BD],[Q1])

Q1.defineRouting([M1],[M2])

M2.defineRouting([Q1],[BRA])

BRA.defineRouting([M2],[M3])

M3.defineRouting([BRA],[E])

E.defineRouting([M3])

def main(test=0):

 # add all the objects in a list

 objectList=[S,Q,BD,M1,Q1,M2,BRA,M3,E]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio_M1 = (M1.totalWorkingTime/maxSimTime)*100

 blockage_ratio_M1 = (M1.totalBlockageTime/maxSimTime)*100

 waiting_ratio_M1 = (M1.totalWaitingTime/maxSimTime)*100

 working_ratio_M2 = (M2.totalWorkingTime/maxSimTime)*100

 blockage_ratio_M2 = (M2.totalBlockageTime/maxSimTime)*100

 waiting_ratio_M2 = (M2.totalWaitingTime/maxSimTime)*100

 working_ratio_M3 = (M3.totalWorkingTime/maxSimTime)*100

 blockage_ratio_M3 = (M3.totalBlockageTime/maxSimTime)*100

 waiting_ratio_M3 = (M3.totalWaitingTime/maxSimTime)*100

44

 # return results for the test

 if test:

 return {"batches": E.numOfExits,

 "working_ratio_M1": working_ratio_M1,

 "blockage_ratio_M1": blockage_ratio_M1,

 "waiting_ratio_M1": waiting_ratio_M1,

 "working_ratio_M2": working_ratio_M2,

 "blockage_ratio_M2": blockage_ratio_M2,

 "waiting_ratio_M2": waiting_ratio_M2,

 "working_ratio_M3": working_ratio_M3,

 "blockage_ratio_M3": blockage_ratio_M3,

 "waiting_ratio_M3": waiting_ratio_M3,

 }

 # print the results

 print "the system produced", E.numOfExits, "batches"

 print "the working ratio of", M1.objName, "is", working_ratio_M1

 print "the blockage ratio of", M1.objName, 'is', blockage_ratio_M1

 print "the waiting ratio of", M1.objName, 'is', waiting_ratio_M1

 print "the working ratio of", M2.objName, "is", working_ratio_M2

 print "the blockage ratio of", M2.objName, 'is', blockage_ratio_M2

 print "the waiting ratio of", M2.objName, 'is', waiting_ratio_M2

 print "the working ratio of", M3.objName, "is", working_ratio_M3

 print "the blockage ratio of", M3.objName, 'is', blockage_ratio_M3

 print "the waiting ratio of", M3.objName, 'is', waiting_ratio_M3

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

4.8.3 Clearing batch lines

In the previous example, there exists a buffer between the two consequent stations that are
processing the SubBatches. In such stations, there may be a case were the units constituting the
SubBatches are processed separately. For reasons of simplicity we assume that the SubBatches
are processed as a bulk group of units which cannot be further segregated. Contrary to the
modelling practice though, operators perform work on each individual unit of the SubBatch. For
fear that the units may get mixed up and thus “dirty” the SubBatches, it is a common practice to try
keeping the Buffer before each Machine/station clear from other SubBatches other than the one
being currently processed in the station. The object LineClearance is introduced to model this
behaviour.

the system produced 359 parts

the working ratio of Machine1 is 50.0694444444

the blockage ratio of Machine1 is 49.8263888889

the waiting ratio of Machine1 is 0.104166666667

the working ratio of Machine2 is 99.8958333333

the blockage ratio of Machine2 is 0.0

the waiting ratio of Machine2 is 0.104166666667

the working ratio of Machine3 is 24.9305555556

the blockage ratio of Machine3 is 0.0

the waiting ratio of Machine3 is 75.0694444444

45

The flow described in Figure 9 is the same with the one used in the current example. The common
Queue2 between Machine1 and Machine2 is replaced with the LineClearance object though.

ManPy object repository contains the following objects in order to model the described behaviour:

 LineClearance: inherits from the Queue generic object and overrides the canAccept and
canAcceptAndIsRequested methods. These methods should now return true if the buffer is
empty or if the predecessor requests to hand in a SubBatch with the same batchId as the ones
that the buffer holds.

The data of this example are similar to example 4.10. The Queue2 Queue object is replaced by a
LineClearance Queue with capacity of 2 SubBatches. In addition, the processing time of Machine2
is increased to 4 time units. This will eventually lead to an increased waiting time for Machine3.

Below is the ManPy main script to run this model
(dream\simulation\Examples\ClearBatchLines.py):

from dream.simulation.imports import Machine, Source, Exit, Batch,

BatchDecomposition,\

 BatchSource, BatchReassembly, Queue, LineClearance,

ExcelHandler, ExcelHandler

from dream.simulation.Globals import runSimulation

define the objects of the model

S=BatchSource('S','Source',interArrivalTime={'Fixed':{'mean':1.5}},

entity='Dream.Batch', batchNumberOfUnits=100)

Q=Queue('Q','StartQueue',capacity=100000)

BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4,

processingTime={'Fixed':{'mean':1}})

M1=Machine('M1','Machine1',processingTime={'Fixed':{'mean':0.5}})

Q1=LineClearance('Q1','Queue1',capacity=2)

M2=Machine('M2','Machine2',processingTime={'Fixed':{'mean':4}})

BRA=BatchReassembly('BRA', 'BatchReassembly', numberOfSubBatches=4,

processingTime={'Fixed':{'mean':0}})

M3=Machine('M3','Machine3',processingTime={'Fixed':{'mean':1}})

E=Exit('E','Exit')

define the predecessors and successors for the objects

S.defineRouting([Q])

Q.defineRouting([S],[BD])

BD.defineRouting([Q],[M1])

M1.defineRouting([BD],[Q1])

Q1.defineRouting([M1],[M2])

M2.defineRouting([Q1],[BRA])

BRA.defineRouting([M2],[M3])

M3.defineRouting([BRA],[E])

E.defineRouting([M3])

def main(test=0):

 # add all the objects in a list

 objectList=[S,Q,BD,M1,Q1,M2,BRA,M3,E]

 # set the length of the experiment

 maxSimTime=1440.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime, trace='Yes')

 # calculate metrics

 working_ratio_M1 = (M1.totalWorkingTime/maxSimTime)*100

 blockage_ratio_M1 = (M1.totalBlockageTime/maxSimTime)*100

 waiting_ratio_M1 = (M1.totalWaitingTime/maxSimTime)*100

46

 working_ratio_M2 = (M2.totalWorkingTime/maxSimTime)*100

 blockage_ratio_M2 = (M2.totalBlockageTime/maxSimTime)*100

 waiting_ratio_M2 = (M2.totalWaitingTime/maxSimTime)*100

 working_ratio_M3 = (M3.totalWorkingTime/maxSimTime)*100

 blockage_ratio_M3 = (M3.totalBlockageTime/maxSimTime)*100

 waiting_ratio_M3 = (M3.totalWaitingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"batches": E.numOfExits,

 "working_ratio_M1": working_ratio_M1,

 "blockage_ratio_M1": blockage_ratio_M1,

 "waiting_ratio_M1": waiting_ratio_M1,

 "working_ratio_M2": working_ratio_M2,

 "blockage_ratio_M2": blockage_ratio_M2,

 "waiting_ratio_M2": waiting_ratio_M2,

 "working_ratio_M3": working_ratio_M3,

 "blockage_ratio_M3": blockage_ratio_M3,

 "waiting_ratio_M3": waiting_ratio_M3,

 }

 # print the results

 print "the system produced", E.numOfExits, "batches"

 print "the working ratio of", M1.objName, "is", working_ratio_M1

 print "the blockage ratio of", M1.objName, 'is', blockage_ratio_M1

 print "the waiting ratio of", M1.objName, 'is', waiting_ratio_M1

 print "the working ratio of", M2.objName, "is", working_ratio_M2

 print "the blockage ratio of", M2.objName, 'is', blockage_ratio_M2

 print "the waiting ratio of", M2.objName, 'is', waiting_ratio_M2

 print "the working ratio of", M3.objName, "is", working_ratio_M3

 print "the blockage ratio of", M3.objName, 'is', blockage_ratio_M3

 print "the waiting ratio of", M3.objName, 'is', waiting_ratio_M3

 ExcelHandler.outputTrace('TRACE')

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

The blockage ratio of Machine1 is drastically increased as LineClearance buffer of Machine2 has
to be cleared from the the currently processed Batch first before it is loaded with SubBatches from
a different Batch. ClearBatchLines.xls is also generated and has the following contents:

0 Batch0 generated

the system produced 89 parts

the working ratio of Machine1 is 12.6041666667

the blockage ratio of Machine1 is 87.3263888889

the waiting ratio of Machine1 is 0.0694444444444

the working ratio of Machine2 is 99.8958333333

the blockage ratio of Machine2 is 0.0

the waiting ratio of Machine2 is 0.104166666667

the working ratio of Machine3 is 6.18055555556

the blockage ratio of Machine3 is 0.0

the waiting ratio of Machine3 is 93.8194444444

47

0 Batch0 released Source

0 Batch0 got into StartQueue

0 Batch0 released StartQueue

0 Batch0 got into BatchDecomposition

1 Batch0_SB_0 released BatchDecomposition

1 Batch0_SB_0 got into Machine1

1.5 Batch1 generated

1.5 Batch0_SB_0 ended processing in Machine1

1.5 Batch1 released Source

1.5 Batch1 got into StartQueue

1.5 Batch0_SB_0 released Machine1

1.5 Batch0_SB_0 got into Queue1

1.5 Batch0_SB_0 released Queue1

1.5 Batch0_SB_0 got into Machine2

1.5 Batch0_SB_1 released BatchDecomposition

1.5 Batch0_SB_1 got into Machine1

2.0 Batch0_SB_1 ended processing in Machine1

2.0 Batch0_SB_1 released Machine1

2.0 Batch0_SB_1 got into Queue1

2.0 Batch0_SB_2 released BatchDecomposition

2.0 Batch0_SB_2 got into Machine1

2.5 Batch0_SB_2 ended processing in Machine1

2.5 Batch0_SB_2 released Machine1

2.5 Batch0_SB_2 got into Queue1

2.5 Batch0_SB_3 released BatchDecomposition

2.5 Batch0_SB_3 got into Machine1

2.5 Batch1 released StartQueue

2.5 Batch1 got into BatchDecomposition

3.0 Batch2 generated

The notation Batch1, 2, etc. denote the Batches generated by the BatchSource Source.
Respectively, the suffixes _SB_0, 2, etc. of the names in the second column denote each separate
SubBatch belonging to Batch Batch0, 1, etc.

4.9 Output Analysis

Dream aims to offer methods for output analysis of the simulation results. This is currently work in
progress existing in dream/simulation/outputanalysis. In order to be able to use this modules, R
(http://www.r-project.org/) and Rpy2 (http://rpy.sourceforge.net/rpy2.html) should be installed.

As an example we demonstrate dream\simulation\Examples\TwoServersPlots.py that is similar to
the TwoServers example but it also outputs a pie that presents graphically the percentage of time
that the repairman is busy or idle.

The new entries on the code are:

 In the beginning the Graphs module is imported:

from dream.KnowledgeExtraction.Plots import Graphs

 After the simulation run the values for the pie are calculated:
#calculate the percentages for the pie

working_ratio = (R.totalWorkingTime/maxSimTime)*100

 waiting_ratio = (R.totalWaitingTime/maxSimTime)*100

 Then a Graph object is created and the Pie method is called in order to create the output file

http://www.r-project.org/
http://rpy.sourceforge.net/rpy2.html

48

#create a graph object

graph=Graphs()

#create the pie

graph.Pie([working_ratio,waiting_ratio], "repairmanPie.jpg")

Running the script the user gets in addition to the console output repairmanPie.jpg that contains
the following graph:

Figure 10: the pie chart of repairman utilisation

49

4.10 Shifts

4.10.1 A simple shift pattern

It is typical in production lines to have shifts in our stations. We consider a system like the one of
the single server example (Figure 2), but now our server will also have off-shift time. Shifts are
handled in ManPy with the ShiftScheduler object which is of ObjectInterruption type.

To make the first example simple, we will run the simulation for 20 time units. We suppose that the
machine starts on shift, its shift lasts 5 units and then it is on shift for 5 units and so on. The
interarrival time is 0.5 and the processing time of the machine 3.

Below is the ManPy main script to run this model
(dream\simulation\Examples\ServerWithShift1.py):

from dream.simulation.imports import Machine, Source, Exit, Part, ShiftScheduler

from dream.simulation.Globals import runSimulation

#define the objects of the model

S=Source('S1','Source',interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

M=Machine('M1','Machine', processingTime={'Fixed':{'mean':3}})

E=Exit('E1','Exit')

SS=ShiftScheduler(victim=M, shiftPattern=[[0,5],[10,15]])

#define predecessors and successors for the objects

S.defineRouting(successorList=[M])

M.defineRouting(predecessorList=[S],successorList=[E])

E.defineRouting(predecessorList=[M])

def main(test=0):

 # add all the objects in a list

 objectList=[S,M,E,SS]

 # set the length of the experiment

 maxSimTime=20.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

 off_shift_ratio=(M.totalOffShiftTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the total working ratio of the Machine is", working_ratio, "%"

 print "the total off-shift ratio of the Machine is", off_shift_ratio, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

the system produced 3 parts

the total working ratio of the Machine is 50.0 %

the total off-shift ratio of the Machine is 50.0 %

50

We see that the shift pattern is defined as a list of lists with the following structure [[start_of_shift1,
end_of_shift1], [start_of_shift2, end_of_shift2], … [start_of_shiftN, end_of_shiftN]]. ShiftScheduler
does not accept stochastic shift patterns.

If the Machine was always available, it would be always working, since parts arrive at higher rate
than its processing. It would also process 6 parts. However, now it is 50% off shift and it produced
only 3 parts that could finish in these 10 on shift units.

4.10.2 A repeated shift pattern

The previous example it would be cumbersome to model the system for a greater running time. It is
common to have shift patterns that repeat in time. Current ShiftScheduler needs all the information
on the pattern, so the whole list described above. Nonetheless, the user can easily develop the list
programmatically as in the below model (dream\simulation\Examples\ServerWithShift2.py):

from dream.simulation.imports import Machine, Source, Exit, Part, ShiftScheduler

from dream.simulation.Globals import runSimulation

#define the objects of the model

S=Source('S1','Source',interArrivalTime={'Fixed':{'mean':0.5}},

entity='Dream.Part')

M=Machine('M1','Machine', processingTime={'Fixed':{'mean':3}})

E=Exit('E1','Exit')

create a repeated shift pattern

shiftPattern=[]

i = 0

while i<100:

 shiftPattern.append([i,i+5])

 i+=10

print shiftPattern

#create the shift

SS=ShiftScheduler(victim=M, shiftPattern=shiftPattern)

#define predecessors and successors for the objects

S.defineRouting(successorList=[M])

M.defineRouting(predecessorList=[S],successorList=[E])

E.defineRouting(predecessorList=[M])

def main(test=0):

 # add all the objects in a list

 objectList=[S,M,E,SS]

 # set the length of the experiment

 maxSimTime=100.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

 off_shift_ratio=(M.totalOffShiftTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts"

51

 print "the total working ratio of the Machine is", working_ratio, "%"

 print "the total off-shift ratio of the Machine is", off_shift_ratio, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

The shift pattern was externally defined in a loop. This way there is flexibility to define whatever
pattern for the simulation time.

4.10.3 Ending unfinished work at the end of the shift

It is common that if a server is processing at the end of the shift it would end this processing and
then go off-shift. To model this behaviour ShiftSheduler has the endUnfinished flag. Default value
is False. If in the model of the first example of this section we want to define that the ShiftSheduler
we just change its definition to the below (dream\simulation\Examples\ServerWithShift3.py):

SS=ShiftScheduler(victim=M, shiftPattern=[[0,5],[10,15]], endUnfinished=True)

Running the model we get the following in our console:

Comparing with the first example we see that now the Machine is off-shift only 40% of the time.
This is because at the time it was to go off-shift (e.g. at 5) it was processing a Part. So it went off-
shift after it ended (at 6). Also we see that 4 Parts were now produced.

4.10.4 Not accepting work if the shift is ending

It is also common that servers will not accept new work near the end of shift. This does not mean
that they go off-shift, since if they are processing something they will not stop (even if
endUnfinished is set to False), just that they will not commence a new processing. To model this
behaviour the ShiftScheduler has the receiveBeforeEndThreshold attribute, which has default
value of 0. Setting this to 3 it means that the Machine will not accept new parts 3 units or closer to
the end of the shift. The definition is (dream\simulation\Examples\ServerWithShift4.py):

SS=ShiftScheduler(victim=M, shiftPattern=[[0,5],[10,15]],

receiveBeforeEndThreshold=3)

Running the model we get the following in our console:

[[0, 5], [10, 15], [20, 25], [30, 35], [40, 45], [50, 55], [60, 65],

[70, 75], [80, 85], [90, 95]]

the system produced 16 parts

the total working ratio of the Machine is 50.0 %

the total off-shift ratio of the Machine is 50.0 %

the system produced 4 parts

the total working ratio of the Machine is 60.0 %

the total off-shift ratio of the Machine is 40.0 %

the system produced 2 parts

the total working ratio of the Machine is 30.0 %

the total off-shift ratio of the Machine is 50.0 %

52

We see now that only 2 parts were produced. The Machine ended processing of a part at 3 and did
not accept the next one because of the threshold. The same happened at 13.

53

4.11 Generation of events at specific moments

In discrete event simulation, events happen at specific moments in time based on distributions. For
example, if a Machine has a defined distribution for its processing time, then each time it receives
a Part at time t it will create a number dt out of this distribution. So the event of the end of
processing will be scheduled for t+dt.

Nevertheless, there are certain models that require events to be triggered at specific time intervals.
For these situations ManPy employs the EventGenerator object. The functionality of the object is
the following:

 It sleeps for a specific interval

 When it is activated it invokes a method

In the following example we will demonstrate the EventGenerator.

4.11.1 Balancing a buffer

Let’s assume that we have the simple buffer-server system we seen in the examples of setting
WIP (Figure 5). In our system a supervisor comes exactly every 10 minutes and checks the
Queue. If the Queue is empty he adds 5 parts in it. Otherwise he does nothing.

The easiest way to model this behaviour is to make use of the EventGenerator object. The full
example is given below (dream\simulation\Examples\BalancingABuffer.py):

from dream.simulation.imports import Machine, Queue, Exit, Part, EventGenerator

from dream.simulation.Globals import runSimulation, setWIP, G

method to check if the buffer is starving and refill it

def balanceQueue(buffer, refillLevel=1):

 # get the internal queue of the buffer

 objectQueue=buffer.getActiveObjectQueue()

 numInQueue=len(objectQueue)

 print '-'*50

 print 'at time=', G.env.now

 # check if the buffer is empty and if yes fill it with 5 parts

 if numInQueue==0:

 print 'buffer is starving, I will bring 5 parts'

 for i in range(refillLevel):

 # calculate the id and name of the new part

 partId='P'+str(G.numOfParts)

 partName='Part'+str(G.numOfParts)

 # create the Part

 P=Part(partId, partName, currentStation=buffer)

 # set the part as WIP

 setWIP([P])

 G.numOfParts+=1

 # else do nothing

 else:

 print 'buffer has', numInQueue, 'parts. No need to bring more'

#define the objects of the model

Q=Queue('Q1','Queue', capacity=float('inf'))

M=Machine('M1','Machine', processingTime={'Fixed':{'mean':6}})

E=Exit('E1','Exit')

EV=EventGenerator('EV', 'EntityCreator', start=0, stop=float('inf'),

interval=20,method=balanceQueue,

 argumentDict={'buffer':Q, 'refillLevel':5})

counter used in order to give parts meaningful ids (e.g P1, P2...) and names

(e.g. Part1, Part2...)

54

G.numOfParts=0

#define predecessors and successors for the objects

Q.defineRouting(successorList=[M])

M.defineRouting(predecessorList=[Q],successorList=[E])

E.defineRouting(predecessorList=[M])

def main(test=0):

 # add all the objects in a list

 objectList=[Q,M,E,EV]

 # set the length of the experiment

 maxSimTime=100.0

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio": working_ratio}

 #print the results

 print '='*50

 print "the system produced", E.numOfExits, "parts"

 print "the total working ratio of the Machine is", working_ratio, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

Notes on the code:

 Additionally to id and name, we gave the EventGenerator the following attribute:

o start: the simulation time that the EventGenerator will be activated first

o stop: the simulation time that the EventGenerator will stop. We gave this infinite so that
it is active all through the simulation time. This is also the default value

--

at time= 0.0

buffer is starving, I will bring 5 parts

--

at time= 20.0

buffer has 1 parts. No need to bring more

--

at time= 40.0

buffer is starving, I will bring 5 parts

--

at time= 60.0

buffer has 1 parts. No need to bring more

--

at time= 80.0

buffer is starving, I will bring 5 parts

==

the system produced 13 parts

the total working ratio of the Machine is 80.0 %

55

o interval: the interval for which the EventGenerator sleeps before invoking the method
again

o method: the method that the EventGenerator invokes.

o argumentDict: the arguments of the method. This should be provided in a dictionary
(keyword:value)

 balanceQueue is the method we wrote in order to implement the behaviour that is conducted
every 20 minutes. The logic is simple enough. A couple of notes:

o The method gets the buffer as argument. Then it obtains the internal queue using the
getActiveObjectQueue method.

o In order to add the parts in the Queue, Globals.setWIP method is utilized (also imported
in the beginning). This method needs a list of Entities as argument, so even if every
time we give one Entity, we give it in a list. Note that appending the object in the internal
Queue would not be enough, since setWIP sends also the canDispose signal to the
Queue. So if the Part was appended manually then the user should also send the
signal.

 To be able to print the simulation time (and generally to use it), the user has to use the
G.env.now attribute. This is a SimPy attribute that ManPy holds it as global for the model.

4.11.2 Changing the predecessors

This example uses the system of Figure 11. Here we have one server with two preceding buffers.
The logic of the system is that the Machine will change from which buffer it will take the next work
every 10 minutes. We assume that in the beginning we have 5 parts waiting in Queue1 and five in
Queue2 and the first to be served is Queue1.

Figure 11: A server with 2 buffers

Again, we use the EventGenerator object. The full example is given below
(dream\simulation\Examples\ChangingPredecessors.py):

from dream.simulation.imports import Machine, Queue, Exit, Part, EventGenerator,

ExcelHandler

from dream.simulation.Globals import runSimulation, G

56

method that is to be invoked by the generator.

it changes the predecessor of the Machine

def changeMachinePredecessor(machine, possiblePredecessors):

 # if the machine has no predecessors (at the start of the simulation)

 # pick the first of the list

 if not len(machine.previous):

 machine.previous.append(possiblePredecessors[0])

 # else loop through the possible predecessors and if one is not the current

 # set this as predecessor and break

 else:

 for buffer in possiblePredecessors:

 if not buffer==machine.previous[0]:

 machine.previous[0]=buffer

 break

 # if canDispose is not triggered in the predecessor send it

 if not machine.previous[0].canDispose.triggered:

 # a succeed function on an event must always take attributes the

transmitter and the time of the event

 succeedTuple=(machine, G.env.now)

 machine.previous[0].canDispose.succeed(succeedTuple)

 print G.env.now, 'from now on the machine will take from',

machine.previous[0].id

#define the objects of the model

Q1=Queue('Q1','Queue1', capacity=float('inf'))

Q2=Queue('Q2','Queue2', capacity=float('inf'))

M=Machine('M1','Machine', processingTime={'Fixed':{'mean':3}})

E=Exit('E1','Exit')

P1=Part('P1', 'Part1', currentStation=Q1)

entityList=[]

for i in range(5): # create the WIP in a loop

 Q1PartId='Q1_P'+str(i)

 Q1PartName='Q1_Part'+str(i)

 PQ1=Part(Q1PartId, Q1PartName, currentStation=Q1)

 entityList.append(PQ1)

 Q2PartId='Q2_P'+str(i)

 Q2PartName='Q2_Part'+str(i)

 PQ2=Part(Q2PartId, Q2PartName, currentStation=Q2)

 entityList.append(PQ2)

#define predecessors and successors for the objects

Q1.defineRouting(successorList=[M])

Q2.defineRouting(successorList=[M])

M.defineRouting(successorList=[E])

E.defineRouting(predecessorList=[M])

EV=EventGenerator('EV', 'PredecessorChanger', start=0, stop=50,

interval=10,method=changeMachinePredecessor,

 argumentDict={'machine':M, 'possiblePredecessors':[Q1,Q2]})

def main(test=0):

 # add all the objects in a list

 objectList=[Q1,Q2,M,E,EV]+entityList

 # set the length of the experiment

 maxSimTime=float('inf')

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime, trace='Yes')

 # calculate metrics

 working_ratio = (M.totalWorkingTime/E.timeLastEntityLeft)*100

57

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "simulationTime":E.timeLastEntityLeft,

 "working_ratio": working_ratio}

 #print the results

 print '='*50

 print "the system produced", E.numOfExits, "parts in", E.timeLastEntityLeft,

"minutes"

 print "the total working ratio of the Machine is", working_ratio, "%"

 ExcelHandler.outputTrace('ChangingPredecessors')

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

Notes on the code:

 We now created the WIP in a loop, since this was more prompt. Nevertheless the full WIP
should be given in runSimulation.

 changeMachinePredecessor is an application level method, i.e. quite specific for the specific
system. It is important to notice that the method checks if the buffer that is defined as
predecessor has gotten the canDispose message and if not it sends it. This makes the code
consistent so that the Queue can begin its loop exactly when it is assigned as predecessor.

 Again we wanted to run the model until all Parts reach the Exit. Nevertheless, the
EventGenerator would still create events, so if we did not define a stop time it would run
forever. We defined 50 as stop (just a time we assumed all Parts would be finished). To
calculate the processing percentage of the machine we used E.timeLastEntityLeft, so that we
can calculate exactly how much it was used until all the Parts finished.

The trace below ascertains that the model runs as expected:

0 Q1_Part0 released Queue1

0 Q1_Part0 got into Machine

3.0 Q1_Part0 ended processing in Machine

3.0 Q1_Part0 released Machine

3.0 Q1_Part0 got into Exit

3.0 Q1_Part1 released Queue1

3.0 Q1_Part1 got into Machine

6.0 Q1_Part1 ended processing in Machine

6.0 Q1_Part1 released Machine

6.0 Q1_Part1 got into Exit

6.0 Q1_Part2 released Queue1

0.0 from now on the machine will take from Q1

10.0 from now on the machine will take from Q2

20.0 from now on the machine will take from Q1

30.0 from now on the machine will take from Q2

40.0 from now on the machine will take from Q1

50.0 from now on the machine will take from Q2

==

the system produced 10 parts in 36.0 minutes

the total working ratio of the Machine is 83.3333333333 %

58

6.0 Q1_Part2 got into Machine

9.0 Q1_Part2 ended processing in Machine

9.0 Q1_Part2 released Machine

9.0 Q1_Part2 got into Exit

9.0 Q1_Part3 released Queue1

9.0 Q1_Part3 got into Machine

12.0 Q1_Part3 ended processing in Machine

12.0 Q1_Part3 released Machine

12.0 Q1_Part3 got into Exit

12.0 Q2_Part0 released Queue2

12.0 Q2_Part0 got into Machine

15.0 Q2_Part0 ended processing in Machine

15.0 Q2_Part0 released Machine

15.0 Q2_Part0 got into Exit

15.0 Q2_Part1 released Queue2

15.0 Q2_Part1 got into Machine

18.0 Q2_Part1 ended processing in Machine

18.0 Q2_Part1 released Machine

18.0 Q2_Part1 got into Exit

18.0 Q2_Part2 released Queue2

18.0 Q2_Part2 got into Machine

21.0 Q2_Part2 ended processing in Machine

21.0 Q2_Part2 released Machine

21.0 Q2_Part2 got into Exit

21.0 Q1_Part4 released Queue1

21.0 Q1_Part4 got into Machine

24.0 Q1_Part4 ended processing in Machine

24.0 Q1_Part4 released Machine

24.0 Q1_Part4 got into Exit

30.0 Q2_Part3 released Queue2

30.0 Q2_Part3 got into Machine

33.0 Q2_Part3 ended processing in Machine

33.0 Q2_Part3 released Machine

33.0 Q2_Part3 got into Exit

33.0 Q2_Part4 released Queue2

33.0 Q2_Part4 got into Machine

36.0 Q2_Part4 ended processing in Machine

36.0 Q2_Part4 released Machine

36.0 Q2_Part4 got into Exit

59

4.12 Non starving line

In the examples so far we either have a Source type that creates Entities given a specified
interarrival time or we set Entities as WIP. It is also common that we have systems that are
considered never to starve. This can be achieved with a Source of minimal interarrival time, but
this would cause unnecessary overhead. The best way to perform this is to make use of
NonStarvingEntry object. This creates some WIP in the beginning (default=2, user can change)
and every time it disposes an Entity in removeEntity, it creates a new one. We will see this in two
simple examples

4.12.1 Non starving Machine that processes parts

Our model is like the one of the SingleServer example (Figure 2). Difference is that now we
consider the Machine is never starved, but there is always something to process. The code is
given below (dream\simulation\Examples\NonStarvingLine.py):

from dream.simulation.imports import Machine, NonStarvingEntry, Exit, Part

from dream.simulation.Globals import runSimulation

#define the objects of the model

NS=NonStarvingEntry('NS1','Entry',entityData={'_class':'Dream.Part'})

M=Machine('M1','Machine', processingTime={'Fixed':{'mean':1}})

E=Exit('E1','Exit')

#define predecessors and successors for the objects

NS.defineRouting(successorList=[M])

M.defineRouting(predecessorList=[NS],successorList=[E])

E.defineRouting(predecessorList=[M])

def main(test=0):

 # add all the objects in a list

 objectList=[NS,M,E]

 # set the length of the experiment

 maxSimTime=10

 # call the runSimulation giving the objects and the length of the experiment

 runSimulation(objectList, maxSimTime)

 # calculate metrics

 working_ratio = (M.totalWorkingTime/maxSimTime)*100

 # return results for the test

 if test:

 return {"parts": E.numOfExits,

 "working_ratio": working_ratio}

 #print the results

 print "the system produced", E.numOfExits, "parts"

 print "the total working ratio of the Machine is", working_ratio, "%"

if __name__ == '__main__':

 main()

Running the model we get the following in our console:

the system produced 9 parts

the total working ratio of the Machine is 100.0 %

60

Machine produces one part per minute. In 10 minutes it is producing 9, because as we said events
that are scheduled for exactly the end of simulation, do not happen. As expected, the Machine is
always busy.

Note that the NonStarvingEntry has to receive the data for the Entity it produces in a dictionary
format.

4.12.2 Non starving Machine that processes batches

Now we will see the same example, but the Machine is processing Batches. For this reason we
use BatchScrapMachine object, which is similar to Machine, but it processes Batches and the
processing time is given per units.

Full code is in (dream\simulation\Examples\NonStarvingLineBatches.py). Changes are:

 We imported BatchScrapMachine instead of Machine and defined M as
M=BatchScrapMachine('M1','Machine', processingTime={'Fixed':{'mean':0.02}}

 In the NonStarvingEntry we given the Batch type in the entityData dict and also defined the
number of units to 100. This is an argument that NonStarvingEntrt will give to each Batch it
creates.

NS=NonStarvingEntry('NS1','Entry',entityData={'_class':'Dream.Batch','numberOfUn

its':100})

Running the model we get the following in our console:

Since the machine processes a unit every 0.02 and each Batch has 100 units, it takes 2 minutes to
process a Batch. So it is logical that 4 were produced (the fifth would exit at exactly t=10)

If we changed the numberOfUnits to 50 we would get:

the system produced 4 batches

the total working ratio of the Machine is 100.0 %

the system produced 9 parts

the total working ratio of the Machine is 100.0 %

