Commit ea65fe98 authored by Georgios Dagkakis's avatar Georgios Dagkakis

progression to new LP

parent 08f6c5f7
...@@ -173,7 +173,7 @@ class SkilledRouter(Router): ...@@ -173,7 +173,7 @@ class SkilledRouter(Router):
#=================================================================== #===================================================================
self.availableStationsDict={} self.availableStationsDict={}
for station in self.availableStations: for station in self.availableStations:
self.availableStationsDict[str(station.id)]={'stationID':str(station.id),'WIP':station.wip} self.availableStationsDict[str(station.id)]={'stationID':str(station.id),'WIP':station.wip, 'lastAssignment':self.env.now}
#=================================================================== #===================================================================
# # operators and their skills set # # operators and their skills set
#=================================================================== #===================================================================
......
...@@ -4,7 +4,7 @@ Created on 2 Jul 2014 ...@@ -4,7 +4,7 @@ Created on 2 Jul 2014
@author: Anna @author: Anna
''' '''
def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}, weightFactors = [2, 1, 0.5, 2, 1, 1], Tool={}):
from pulp import LpProblem, LpMaximize, LpVariable, LpBinary, lpSum, LpStatus from pulp import LpProblem, LpMaximize, LpVariable, LpBinary, lpSum, LpStatus
import pulp import pulp
...@@ -14,25 +14,27 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): ...@@ -14,25 +14,27 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}):
machines = machineList.keys() machines = machineList.keys()
sumWIP = float(sum([machineList[mach]['WIP'] for mach in machines ])) sumWIP = float(sum([machineList[mach]['WIP'] for mach in machines ]))
weightFactors = [2, 1, 0.5, 1.5]
# define LP problem # define LP problem
prob = LpProblem("PBassignment", LpMaximize) prob = LpProblem("PBassignment", LpMaximize)
obj = []
# declare variables...binary assignment variables (operator i to machine j) # declare variables...binary assignment variables (operator i to machine j)
PB_ass = LpVariable.dicts('PB', [(oper,mach) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]] , 0, 1, cat=pulp.LpBinary) PB_ass = LpVariable.dicts('PB', [(oper,mach) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]] , 0, 1, cat=pulp.LpBinary)
# objective...assignment of PBs to stations with higher WIP...sum of WIP associated with stations where PB is assigned # objective...assignment of PBs to stations with higher WIP...sum of WIP associated with stations where PB is assigned
obj = [machineList[mach]['WIP']*PB_ass[(oper,mach)]*weightFactors[0]/float(sumWIP) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]] if weightFactors[0]>0 and sumWIP>0:
obj.append([machineList[mach]['WIP']*PB_ass[(oper,mach)]*weightFactors[0]/float(sumWIP) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]])
# second set of variables (delta assignment between stations) to facilitate the distribution of PBs across different stations # second set of variables (delta assignment between stations) to facilitate the distribution of PBs across different stations
if weightFactors[1]>0:
stationGroup = {} stationGroup = {}
for mach in machines: for mach in machines:
if machineList[mach]['stationID'] not in stationGroup: if machineList[mach]['stationID'] not in stationGroup:
stationGroup[machineList[mach]['stationID']] = [] stationGroup[machineList[mach]['stationID']] = []
stationGroup[machineList[mach]['stationID']].append(mach) stationGroup[machineList[mach]['stationID']].append(mach)
Delta_Station = LpVariable.dicts("D_station",[(st1,st2) for i1, st1 in enumerate(stationGroup.keys()) for st2 in stationGroup.keys()[i1+1:]]) Delta_Station = LpVariable.dicts("D_station", [(st1, st2) for i1, st1 in enumerate(stationGroup.keys()) for st2 in stationGroup.keys()[i1 + 1:]])
# calculate global max number of machines within a station that will be used as dividers for Delta_Station # calculate global max number of machines within a station that will be used as dividers for Delta_Station
maxNoMachines = 0 maxNoMachines = 0
...@@ -68,6 +70,7 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): ...@@ -68,6 +70,7 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}):
obj.append(Delta_Station[(st1,st2)]*weightFactors[1]/float(normalisingFactorDeltaStation) ) obj.append(Delta_Station[(st1,st2)]*weightFactors[1]/float(normalisingFactorDeltaStation) )
# min variation in PB assignment # min variation in PB assignment
if weightFactors[2]>0:
Delta_Assignment = [] Delta_Assignment = []
OldAss = {} OldAss = {}
for pb in previousAssignment: for pb in previousAssignment:
...@@ -98,6 +101,7 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): ...@@ -98,6 +101,7 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}):
# 4th obj = fill a subline # 4th obj = fill a subline
if weightFactors[3]>0:
# verify whether there are machines active in the sublines # verify whether there are machines active in the sublines
subline={0:{'noMach':0, 'WIP':0}, 1:{'noMach':0, 'WIP':0}} subline={0:{'noMach':0, 'WIP':0}, 1:{'noMach':0, 'WIP':0}}
for mach in machineList: for mach in machineList:
...@@ -127,7 +131,7 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): ...@@ -127,7 +131,7 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}):
subLine = LpVariable('SubL', lowBound=0) subLine = LpVariable('SubL', lowBound=0)
sub = [] sub = []
for station in range(3): for station in range(3):
mach = G.Tool[station][chosenSubLine].name #'St'+str(station)+'_M'+str(chosenSubLine) mach = Tool[station][chosenSubLine].name #'St'+str(station)+'_M'+str(chosenSubLine)
for oper in PBlist: for oper in PBlist:
if station in PBskills[oper]: if station in PBskills[oper]:
sub.append(PB_ass[(oper,mach)]) sub.append(PB_ass[(oper,mach)])
...@@ -138,6 +142,15 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): ...@@ -138,6 +142,15 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}):
obj.append(subLine*weightFactors[3]/3.0) obj.append(subLine*weightFactors[3]/3.0)
# 5th objective: prioritise machines with furthest in time last assignment
LastAssignmentSum = float(sum([machineList[mach]['lastAssignment'] for mach in machines ]))
if LastAssignmentSum > 0 and weightFactors[4]>0:
obj += [machineList[mach]['lastAssignment']*PB_ass[(oper,mach)]*weightFactors[4]/float(LastAssignmentSum) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]]
# 6th objective: max the number of pb assigned
if weightFactors[5]>0:
obj += [PB_ass[(oper,mach)]*weightFactors[5]/float(len(PBlist)) for oper in PBlist for mach in machines if machineList[mach]['stationID'] in PBskills[oper]]
prob += lpSum(obj) prob += lpSum(obj)
# constraint 1: # operators assigned to a station <= 1 # constraint 1: # operators assigned to a station <= 1
...@@ -148,6 +161,10 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): ...@@ -148,6 +161,10 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}):
for operator in PBlist: for operator in PBlist:
prob += lpSum([PB_ass[(operator,machine)] for machine in machines if machineList[machine]['stationID'] in PBskills[operator]]) <= 1 prob += lpSum([PB_ass[(operator,machine)] for machine in machines if machineList[machine]['stationID'] in PBskills[operator]]) <= 1
# write the problem data to an .lp file.
prob.writeLP("PBassignment.lp")
prob.solve() prob.solve()
if LpStatus[prob.status] != 'Optimal': if LpStatus[prob.status] != 'Optimal':
...@@ -173,4 +190,3 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}): ...@@ -173,4 +190,3 @@ def opAss_LP(machineList, PBlist, PBskills, previousAssignment={}):
\ No newline at end of file
\ No newline at end of file
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment