Commit 60902a2c authored by Sudhakar Rajashekhara's avatar Sudhakar Rajashekhara Committed by Kevin Hilman

davinci: EDMA: multiple CCs, channel mapping and API changes

- restructure to support multiple channel controllers by using
  additional struct resources for each CC

- interface changes visible to EDMA clients

  Introduce macros to build IDs from controller and channel number,
  and to extract them. Modify the edma_alloc_slot function to take an
  extra argument for the controller.

  Also update ASoC drivers to use API.  ASoC changes
Acked-by: default avatarMark Brown <broonie@opensource.wolfsonmicro.com>

- Move queue related mappings to dm<soc>.c

  EDMA in DM355 and DM644x has two transfer controllers while DM646x
  has four transfer controllers. Moving the queue to tc mapping and
  queue priority mapping to dm<soc>.c will be helpful to probe these
  mappings from platform device so that the machine_is_* testing will
  be avoided.

- add channel mapping logic

  Channel mapping logic is introduced in dm646x EDMA. This implies
  that there is no fixed association for a channel number to a
  parameter entry number. In other words, using the DMA channel
  mapping registers (DCHMAPn), a PaRAM entry can be mapped to any
  channel. While in the case of dm644x and dm355 there is a fixed
  mapping between the EDMA channel and Param entry number.
Signed-off-by: default avatarNaresh Medisetty <naresh@ti.com>
Signed-off-by: default avatarSudhakar Rajashekhara <sudhakar.raj@ti.com>
Reviewed-by: default avatarDavid Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: default avatarKevin Hilman <khilman@deeprootsystems.com>
parent 4c5adde7
...@@ -82,10 +82,10 @@ static struct resource mmcsd0_resources[] = { ...@@ -82,10 +82,10 @@ static struct resource mmcsd0_resources[] = {
}, },
/* DMA channels: RX, then TX */ /* DMA channels: RX, then TX */
{ {
.start = DAVINCI_DMA_MMCRXEVT, .start = EDMA_CTLR_CHAN(0, DAVINCI_DMA_MMCRXEVT),
.flags = IORESOURCE_DMA, .flags = IORESOURCE_DMA,
}, { }, {
.start = DAVINCI_DMA_MMCTXEVT, .start = EDMA_CTLR_CHAN(0, DAVINCI_DMA_MMCTXEVT),
.flags = IORESOURCE_DMA, .flags = IORESOURCE_DMA,
}, },
}; };
...@@ -119,10 +119,10 @@ static struct resource mmcsd1_resources[] = { ...@@ -119,10 +119,10 @@ static struct resource mmcsd1_resources[] = {
}, },
/* DMA channels: RX, then TX */ /* DMA channels: RX, then TX */
{ {
.start = 30, /* rx */ .start = EDMA_CTLR_CHAN(0, 30), /* rx */
.flags = IORESOURCE_DMA, .flags = IORESOURCE_DMA,
}, { }, {
.start = 31, /* tx */ .start = EDMA_CTLR_CHAN(0, 31), /* tx */
.flags = IORESOURCE_DMA, .flags = IORESOURCE_DMA,
}, },
}; };
......
...@@ -558,17 +558,38 @@ static const s8 dma_chan_dm355_no_event[] = { ...@@ -558,17 +558,38 @@ static const s8 dma_chan_dm355_no_event[] = {
-1 -1
}; };
static struct edma_soc_info dm355_edma_info = { static const s8
queue_tc_mapping[][2] = {
/* {event queue no, TC no} */
{0, 0},
{1, 1},
{-1, -1},
};
static const s8
queue_priority_mapping[][2] = {
/* {event queue no, Priority} */
{0, 3},
{1, 7},
{-1, -1},
};
static struct edma_soc_info dm355_edma_info[] = {
{
.n_channel = 64, .n_channel = 64,
.n_region = 4, .n_region = 4,
.n_slot = 128, .n_slot = 128,
.n_tc = 2, .n_tc = 2,
.n_cc = 1,
.noevent = dma_chan_dm355_no_event, .noevent = dma_chan_dm355_no_event,
.queue_tc_mapping = queue_tc_mapping,
.queue_priority_mapping = queue_priority_mapping,
},
}; };
static struct resource edma_resources[] = { static struct resource edma_resources[] = {
{ {
.name = "edma_cc", .name = "edma_cc0",
.start = 0x01c00000, .start = 0x01c00000,
.end = 0x01c00000 + SZ_64K - 1, .end = 0x01c00000 + SZ_64K - 1,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
...@@ -586,10 +607,12 @@ static struct resource edma_resources[] = { ...@@ -586,10 +607,12 @@ static struct resource edma_resources[] = {
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
}, },
{ {
.name = "edma0",
.start = IRQ_CCINT0, .start = IRQ_CCINT0,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
{ {
.name = "edma0_err",
.start = IRQ_CCERRINT, .start = IRQ_CCERRINT,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
...@@ -598,8 +621,8 @@ static struct resource edma_resources[] = { ...@@ -598,8 +621,8 @@ static struct resource edma_resources[] = {
static struct platform_device dm355_edma_device = { static struct platform_device dm355_edma_device = {
.name = "edma", .name = "edma",
.id = -1, .id = 0,
.dev.platform_data = &dm355_edma_info, .dev.platform_data = dm355_edma_info,
.num_resources = ARRAY_SIZE(edma_resources), .num_resources = ARRAY_SIZE(edma_resources),
.resource = edma_resources, .resource = edma_resources,
}; };
......
...@@ -484,17 +484,38 @@ static const s8 dma_chan_dm644x_no_event[] = { ...@@ -484,17 +484,38 @@ static const s8 dma_chan_dm644x_no_event[] = {
-1 -1
}; };
static struct edma_soc_info dm644x_edma_info = { static const s8
queue_tc_mapping[][2] = {
/* {event queue no, TC no} */
{0, 0},
{1, 1},
{-1, -1},
};
static const s8
queue_priority_mapping[][2] = {
/* {event queue no, Priority} */
{0, 3},
{1, 7},
{-1, -1},
};
static struct edma_soc_info dm644x_edma_info[] = {
{
.n_channel = 64, .n_channel = 64,
.n_region = 4, .n_region = 4,
.n_slot = 128, .n_slot = 128,
.n_tc = 2, .n_tc = 2,
.n_cc = 1,
.noevent = dma_chan_dm644x_no_event, .noevent = dma_chan_dm644x_no_event,
.queue_tc_mapping = queue_tc_mapping,
.queue_priority_mapping = queue_priority_mapping,
},
}; };
static struct resource edma_resources[] = { static struct resource edma_resources[] = {
{ {
.name = "edma_cc", .name = "edma_cc0",
.start = 0x01c00000, .start = 0x01c00000,
.end = 0x01c00000 + SZ_64K - 1, .end = 0x01c00000 + SZ_64K - 1,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
...@@ -512,10 +533,12 @@ static struct resource edma_resources[] = { ...@@ -512,10 +533,12 @@ static struct resource edma_resources[] = {
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
}, },
{ {
.name = "edma0",
.start = IRQ_CCINT0, .start = IRQ_CCINT0,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
{ {
.name = "edma0_err",
.start = IRQ_CCERRINT, .start = IRQ_CCERRINT,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
...@@ -524,8 +547,8 @@ static struct resource edma_resources[] = { ...@@ -524,8 +547,8 @@ static struct resource edma_resources[] = {
static struct platform_device dm644x_edma_device = { static struct platform_device dm644x_edma_device = {
.name = "edma", .name = "edma",
.id = -1, .id = 0,
.dev.platform_data = &dm644x_edma_info, .dev.platform_data = dm644x_edma_info,
.num_resources = ARRAY_SIZE(edma_resources), .num_resources = ARRAY_SIZE(edma_resources),
.resource = edma_resources, .resource = edma_resources,
}; };
......
...@@ -451,17 +451,43 @@ static const s8 dma_chan_dm646x_no_event[] = { ...@@ -451,17 +451,43 @@ static const s8 dma_chan_dm646x_no_event[] = {
-1 -1
}; };
static struct edma_soc_info dm646x_edma_info = { /* Four Transfer Controllers on DM646x */
static const s8
dm646x_queue_tc_mapping[][2] = {
/* {event queue no, TC no} */
{0, 0},
{1, 1},
{2, 2},
{3, 3},
{-1, -1},
};
static const s8
dm646x_queue_priority_mapping[][2] = {
/* {event queue no, Priority} */
{0, 4},
{1, 0},
{2, 5},
{3, 1},
{-1, -1},
};
static struct edma_soc_info dm646x_edma_info[] = {
{
.n_channel = 64, .n_channel = 64,
.n_region = 6, /* 0-1, 4-7 */ .n_region = 6, /* 0-1, 4-7 */
.n_slot = 512, .n_slot = 512,
.n_tc = 4, .n_tc = 4,
.n_cc = 1,
.noevent = dma_chan_dm646x_no_event, .noevent = dma_chan_dm646x_no_event,
.queue_tc_mapping = dm646x_queue_tc_mapping,
.queue_priority_mapping = dm646x_queue_priority_mapping,
},
}; };
static struct resource edma_resources[] = { static struct resource edma_resources[] = {
{ {
.name = "edma_cc", .name = "edma_cc0",
.start = 0x01c00000, .start = 0x01c00000,
.end = 0x01c00000 + SZ_64K - 1, .end = 0x01c00000 + SZ_64K - 1,
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
...@@ -491,10 +517,12 @@ static struct resource edma_resources[] = { ...@@ -491,10 +517,12 @@ static struct resource edma_resources[] = {
.flags = IORESOURCE_MEM, .flags = IORESOURCE_MEM,
}, },
{ {
.name = "edma0",
.start = IRQ_CCINT0, .start = IRQ_CCINT0,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
{ {
.name = "edma0_err",
.start = IRQ_CCERRINT, .start = IRQ_CCERRINT,
.flags = IORESOURCE_IRQ, .flags = IORESOURCE_IRQ,
}, },
...@@ -503,8 +531,8 @@ static struct resource edma_resources[] = { ...@@ -503,8 +531,8 @@ static struct resource edma_resources[] = {
static struct platform_device dm646x_edma_device = { static struct platform_device dm646x_edma_device = {
.name = "edma", .name = "edma",
.id = -1, .id = 0,
.dev.platform_data = &dm646x_edma_info, .dev.platform_data = dm646x_edma_info,
.num_resources = ARRAY_SIZE(edma_resources), .num_resources = ARRAY_SIZE(edma_resources),
.resource = edma_resources, .resource = edma_resources,
}; };
......
...@@ -100,132 +100,157 @@ ...@@ -100,132 +100,157 @@
#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */ #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
#define EDMA_PARM 0x4000 /* 128 param entries */ #define EDMA_PARM 0x4000 /* 128 param entries */
#define DAVINCI_DMA_3PCC_BASE 0x01C00000
#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5)) #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
#define EDMA_DCHMAP 0x0100 /* 64 registers */
#define CHMAP_EXIST BIT(24)
#define EDMA_MAX_DMACH 64 #define EDMA_MAX_DMACH 64
#define EDMA_MAX_PARAMENTRY 512 #define EDMA_MAX_PARAMENTRY 512
#define EDMA_MAX_EVQUE 2 /* FIXME too small */ #define EDMA_MAX_CC 2
/*****************************************************************************/ /*****************************************************************************/
static void __iomem *edmacc_regs_base; static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
static inline unsigned int edma_read(int offset) static inline unsigned int edma_read(unsigned ctlr, int offset)
{ {
return (unsigned int)__raw_readl(edmacc_regs_base + offset); return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
} }
static inline void edma_write(int offset, int val) static inline void edma_write(unsigned ctlr, int offset, int val)
{ {
__raw_writel(val, edmacc_regs_base + offset); __raw_writel(val, edmacc_regs_base[ctlr] + offset);
} }
static inline void edma_modify(int offset, unsigned and, unsigned or) static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
unsigned or)
{ {
unsigned val = edma_read(offset); unsigned val = edma_read(ctlr, offset);
val &= and; val &= and;
val |= or; val |= or;
edma_write(offset, val); edma_write(ctlr, offset, val);
} }
static inline void edma_and(int offset, unsigned and) static inline void edma_and(unsigned ctlr, int offset, unsigned and)
{ {
unsigned val = edma_read(offset); unsigned val = edma_read(ctlr, offset);
val &= and; val &= and;
edma_write(offset, val); edma_write(ctlr, offset, val);
} }
static inline void edma_or(int offset, unsigned or) static inline void edma_or(unsigned ctlr, int offset, unsigned or)
{ {
unsigned val = edma_read(offset); unsigned val = edma_read(ctlr, offset);
val |= or; val |= or;
edma_write(offset, val); edma_write(ctlr, offset, val);
} }
static inline unsigned int edma_read_array(int offset, int i) static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
{ {
return edma_read(offset + (i << 2)); return edma_read(ctlr, offset + (i << 2));
} }
static inline void edma_write_array(int offset, int i, unsigned val) static inline void edma_write_array(unsigned ctlr, int offset, int i,
unsigned val)
{ {
edma_write(offset + (i << 2), val); edma_write(ctlr, offset + (i << 2), val);
} }
static inline void edma_modify_array(int offset, int i, static inline void edma_modify_array(unsigned ctlr, int offset, int i,
unsigned and, unsigned or) unsigned and, unsigned or)
{ {
edma_modify(offset + (i << 2), and, or); edma_modify(ctlr, offset + (i << 2), and, or);
} }
static inline void edma_or_array(int offset, int i, unsigned or) static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
{ {
edma_or(offset + (i << 2), or); edma_or(ctlr, offset + (i << 2), or);
} }
static inline void edma_or_array2(int offset, int i, int j, unsigned or) static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
unsigned or)
{ {
edma_or(offset + ((i*2 + j) << 2), or); edma_or(ctlr, offset + ((i*2 + j) << 2), or);
} }
static inline void edma_write_array2(int offset, int i, int j, unsigned val) static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
unsigned val)
{ {
edma_write(offset + ((i*2 + j) << 2), val); edma_write(ctlr, offset + ((i*2 + j) << 2), val);
} }
static inline unsigned int edma_shadow0_read(int offset) static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
{ {
return edma_read(EDMA_SHADOW0 + offset); return edma_read(ctlr, EDMA_SHADOW0 + offset);
} }
static inline unsigned int edma_shadow0_read_array(int offset, int i) static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
int i)
{ {
return edma_read(EDMA_SHADOW0 + offset + (i << 2)); return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
} }
static inline void edma_shadow0_write(int offset, unsigned val) static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
{ {
edma_write(EDMA_SHADOW0 + offset, val); edma_write(ctlr, EDMA_SHADOW0 + offset, val);
} }
static inline void edma_shadow0_write_array(int offset, int i, unsigned val) static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
unsigned val)
{ {
edma_write(EDMA_SHADOW0 + offset + (i << 2), val); edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
} }
static inline unsigned int edma_parm_read(int offset, int param_no) static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
int param_no)
{ {
return edma_read(EDMA_PARM + offset + (param_no << 5)); return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
} }
static inline void edma_parm_write(int offset, int param_no, unsigned val) static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
unsigned val)
{ {
edma_write(EDMA_PARM + offset + (param_no << 5), val); edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
} }
static inline void edma_parm_modify(int offset, int param_no, static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
unsigned and, unsigned or) unsigned and, unsigned or)
{ {
edma_modify(EDMA_PARM + offset + (param_no << 5), and, or); edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
} }
static inline void edma_parm_and(int offset, int param_no, unsigned and) static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
unsigned and)
{ {
edma_and(EDMA_PARM + offset + (param_no << 5), and); edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
} }
static inline void edma_parm_or(int offset, int param_no, unsigned or) static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
unsigned or)
{ {
edma_or(EDMA_PARM + offset + (param_no << 5), or); edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
} }
/*****************************************************************************/ /*****************************************************************************/
/* actual number of DMA channels and slots on this silicon */ /* actual number of DMA channels and slots on this silicon */
static unsigned num_channels; struct edma {
static unsigned num_slots; /* how many dma resources of each type */
unsigned num_channels;
static struct dma_interrupt_data { unsigned num_region;
void (*callback)(unsigned channel, unsigned short ch_status, unsigned num_slots;
void *data); unsigned num_tc;
void *data; unsigned num_cc;
} intr_data[EDMA_MAX_DMACH];
/* list of channels with no even trigger; terminated by "-1" */
const s8 *noevent;
/* The edma_inuse bit for each PaRAM slot is clear unless the /* The edma_inuse bit for each PaRAM slot is clear unless the
* channel is in use ... by ARM or DSP, for QDMA, or whatever. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
*/ */
static DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY); DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
/* The edma_noevent bit for each channel is clear unless /* The edma_noevent bit for each channel is clear unless
* it doesn't trigger DMA events on this platform. It uses a * it doesn't trigger DMA events on this platform. It uses a
* bit of SOC-specific initialization code. * bit of SOC-specific initialization code.
*/ */
static DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH); DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH);
unsigned irq_res_start;
unsigned irq_res_end;
struct dma_interrupt_data {
void (*callback)(unsigned channel, unsigned short ch_status,
void *data);
void *data;
} intr_data[EDMA_MAX_DMACH];
};
static struct edma *edma_info[EDMA_MAX_CC];
/* dummy param set used to (re)initialize parameter RAM slots */ /* dummy param set used to (re)initialize parameter RAM slots */
static const struct edmacc_param dummy_paramset = { static const struct edmacc_param dummy_paramset = {
...@@ -233,25 +258,10 @@ static const struct edmacc_param dummy_paramset = { ...@@ -233,25 +258,10 @@ static const struct edmacc_param dummy_paramset = {
.ccnt = 1, .ccnt = 1,
}; };
static const int __initconst
queue_tc_mapping[EDMA_MAX_EVQUE + 1][2] = {
/* {event queue no, TC no} */
{0, 0},
{1, 1},
{-1, -1}
};
static const int __initconst
queue_priority_mapping[EDMA_MAX_EVQUE + 1][2] = {
/* {event queue no, Priority} */
{0, 3},
{1, 7},
{-1, -1}
};
/*****************************************************************************/ /*****************************************************************************/
static void map_dmach_queue(unsigned ch_no, enum dma_event_q queue_no) static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
enum dma_event_q queue_no)
{ {
int bit = (ch_no & 0x7) * 4; int bit = (ch_no & 0x7) * 4;
...@@ -260,20 +270,40 @@ static void map_dmach_queue(unsigned ch_no, enum dma_event_q queue_no) ...@@ -260,20 +270,40 @@ static void map_dmach_queue(unsigned ch_no, enum dma_event_q queue_no)
queue_no = EVENTQ_1; queue_no = EVENTQ_1;
queue_no &= 7; queue_no &= 7;
edma_modify_array(EDMA_DMAQNUM, (ch_no >> 3), edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
~(0x7 << bit), queue_no << bit); ~(0x7 << bit), queue_no << bit);
} }
static void __init map_queue_tc(int queue_no, int tc_no) static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
{ {
int bit = queue_no * 4; int bit = queue_no * 4;
edma_modify(EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit)); edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
} }
static void __init assign_priority_to_queue(int queue_no, int priority) static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
int priority)
{ {
int bit = queue_no * 4; int bit = queue_no * 4;
edma_modify(EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
((priority & 0x7) << bit));
}
/**
* map_dmach_param - Maps channel number to param entry number
*
* This maps the dma channel number to param entry numberter. In
* other words using the DMA channel mapping registers a param entry
* can be mapped to any channel
*
* Callers are responsible for ensuring the channel mapping logic is
* included in that particular EDMA variant (Eg : dm646x)
*
*/
static void __init map_dmach_param(unsigned ctlr)
{
int i;
for (i = 0; i < EDMA_MAX_DMACH; i++)
edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
} }
static inline void static inline void
...@@ -281,22 +311,39 @@ setup_dma_interrupt(unsigned lch, ...@@ -281,22 +311,39 @@ setup_dma_interrupt(unsigned lch,
void (*callback)(unsigned channel, u16 ch_status, void *data), void (*callback)(unsigned channel, u16 ch_status, void *data),
void *data) void *data)
{ {
unsigned ctlr;
ctlr = EDMA_CTLR(lch);
lch = EDMA_CHAN_SLOT(lch);
if (!callback) { if (!callback) {
edma_shadow0_write_array(SH_IECR, lch >> 5, edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
(1 << (lch & 0x1f))); (1 << (lch & 0x1f)));
} }
intr_data[lch].callback = callback; edma_info[ctlr]->intr_data[lch].callback = callback;
intr_data[lch].data = data; edma_info[ctlr]->intr_data[lch].data = data;
if (callback) { if (callback) {
edma_shadow0_write_array(SH_ICR, lch >> 5, edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
(1 << (lch & 0x1f))); (1 << (lch & 0x1f)));
edma_shadow0_write_array(SH_IESR, lch >> 5, edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
(1 << (lch & 0x1f))); (1 << (lch & 0x1f)));
} }
} }
static int irq2ctlr(int irq)
{
if (irq >= edma_info[0]->irq_res_start &&
irq <= edma_info[0]->irq_res_end)
return 0;
else if (irq >= edma_info[1]->irq_res_start &&
irq <= edma_info[1]->irq_res_end)
return 1;
return -1;
}
/****************************************************************************** /******************************************************************************
* *
* DMA interrupt handler * DMA interrupt handler
...@@ -305,32 +352,39 @@ setup_dma_interrupt(unsigned lch, ...@@ -305,32 +352,39 @@ setup_dma_interrupt(unsigned lch,
static irqreturn_t dma_irq_handler(int irq, void *data) static irqreturn_t dma_irq_handler(int irq, void *data)
{ {
int i; int i;
unsigned ctlr;
unsigned int cnt = 0; unsigned int cnt = 0;
ctlr = irq2ctlr(irq);
dev_dbg(data, "dma_irq_handler\n"); dev_dbg(data, "dma_irq_handler\n");
if ((edma_shadow0_read_array(SH_IPR, 0) == 0) if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
&& (edma_shadow0_read_array(SH_IPR, 1) == 0)) && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
return IRQ_NONE; return IRQ_NONE;
while (1) { while (1) {
int j; int j;
if (edma_shadow0_read_array(SH_IPR, 0)) if (edma_shadow0_read_array(ctlr, SH_IPR, 0))
j = 0; j = 0;
else if (edma_shadow0_read_array(SH_IPR, 1)) else if (edma_shadow0_read_array(ctlr, SH_IPR, 1))
j = 1; j = 1;
else else
break; break;
dev_dbg(data, "IPR%d %08x\n", j, dev_dbg(data, "IPR%d %08x\n", j,
edma_shadow0_read_array(SH_IPR, j)); edma_shadow0_read_array(ctlr, SH_IPR, j));
for (i = 0; i < 32; i++) { for (i = 0; i < 32; i++) {
int k = (j << 5) + i; int k = (j << 5) + i;
if (edma_shadow0_read_array(SH_IPR, j) & (1 << i)) { if (edma_shadow0_read_array(ctlr, SH_IPR, j) &
(1 << i)) {
/* Clear the corresponding IPR bits */ /* Clear the corresponding IPR bits */
edma_shadow0_write_array(SH_ICR, j, (1 << i)); edma_shadow0_write_array(ctlr, SH_ICR, j,
if (intr_data[k].callback) { (1 << i));
intr_data[k].callback(k, DMA_COMPLETE, if (edma_info[ctlr]->intr_data[k].callback) {
intr_data[k].data); edma_info[ctlr]->intr_data[k].callback(
k, DMA_COMPLETE,
edma_info[ctlr]->intr_data[k].
data);
} }
} }
} }
...@@ -338,7 +392,7 @@ static irqreturn_t dma_irq_handler(int irq, void *data) ...@@ -338,7 +392,7 @@ static irqreturn_t dma_irq_handler(int irq, void *data)
if (cnt > 10) if (cnt > 10)
break; break;
} }
edma_shadow0_write(SH_IEVAL, 1); edma_shadow0_write(ctlr, SH_IEVAL, 1);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -350,78 +404,87 @@ static irqreturn_t dma_irq_handler(int irq, void *data) ...@@ -350,78 +404,87 @@ static irqreturn_t dma_irq_handler(int irq, void *data)
static irqreturn_t dma_ccerr_handler(int irq, void *data) static irqreturn_t dma_ccerr_handler(int irq, void *data)
{ {
int i; int i;
unsigned ctlr;
unsigned int cnt = 0; unsigned int cnt = 0;
ctlr = irq2ctlr(irq);
dev_dbg(data, "dma_ccerr_handler\n"); dev_dbg(data, "dma_ccerr_handler\n");
if ((edma_read_array(EDMA_EMR, 0) == 0) && if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
(edma_read_array(EDMA_EMR, 1) == 0) && (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
(edma_read(EDMA_QEMR) == 0) && (edma_read(EDMA_CCERR) == 0)) (edma_read(ctlr, EDMA_QEMR) == 0) &&
(edma_read(ctlr, EDMA_CCERR) == 0))
return IRQ_NONE; return IRQ_NONE;
while (1) { while (1) {
int j = -1; int j = -1;
if (edma_read_array(EDMA_EMR, 0)) if (edma_read_array(ctlr, EDMA_EMR, 0))
j = 0; j = 0;
else if (edma_read_array(EDMA_EMR, 1)) else if (edma_read_array(ctlr, EDMA_EMR, 1))
j = 1; j = 1;
if (j >= 0) { if (j >= 0) {
dev_dbg(data, "EMR%d %08x\n", j, dev_dbg(data, "EMR%d %08x\n", j,
edma_read_array(EDMA_EMR, j)); edma_read_array(ctlr, EDMA_EMR, j));
for (i = 0; i < 32; i++) { for (i = 0; i < 32; i++) {
int k = (j << 5) + i; int k = (j << 5) + i;
if (edma_read_array(EDMA_EMR, j) & (1 << i)) { if (edma_read_array(ctlr, EDMA_EMR, j) &
(1 << i)) {
/* Clear the corresponding EMR bits */ /* Clear the corresponding EMR bits */
edma_write_array(EDMA_EMCR, j, 1 << i); edma_write_array(ctlr, EDMA_EMCR, j,
1 << i);
/* Clear any SER */ /* Clear any SER */
edma_shadow0_write_array(SH_SECR, j, edma_shadow0_write_array(ctlr, SH_SECR,
(1 << i)); j, (1 << i));
if (intr_data[k].callback) { if (edma_info[ctlr]->intr_data[k].
intr_data[k].callback(k, callback) {
edma_info[ctlr]->intr_data[k].
callback(k,
DMA_CC_ERROR, DMA_CC_ERROR,
intr_data edma_info[ctlr]->intr_data
[k].data); [k].data);
} }
} }
} }
} else if (edma_read(EDMA_QEMR)) { } else if (edma_read(ctlr, EDMA_QEMR)) {
dev_dbg(data, "QEMR %02x\n", dev_dbg(data, "QEMR %02x\n",
edma_read(EDMA_QEMR)); edma_read(ctlr, EDMA_QEMR));
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
if (edma_read(EDMA_QEMR) & (1 << i)) { if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
/* Clear the corresponding IPR bits */ /* Clear the corresponding IPR bits */
edma_write(EDMA_QEMCR, 1 << i); edma_write(ctlr, EDMA_QEMCR, 1 << i);
edma_shadow0_write(SH_QSECR, (1 << i)); edma_shadow0_write(ctlr, SH_QSECR,
(1 << i));
/* NOTE: not reported!! */ /* NOTE: not reported!! */
} }
} }
} else if (edma_read(EDMA_CCERR)) { } else if (edma_read(ctlr, EDMA_CCERR)) {
dev_dbg(data, "CCERR %08x\n", dev_dbg(data, "CCERR %08x\n",
edma_read(EDMA_CCERR)); edma_read(ctlr, EDMA_CCERR));
/* FIXME: CCERR.BIT(16) ignored! much better /* FIXME: CCERR.BIT(16) ignored! much better
* to just write CCERRCLR with CCERR value... * to just write CCERRCLR with CCERR value...
*/ */
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
if (edma_read(EDMA_CCERR) & (1 << i)) { if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
/* Clear the corresponding IPR bits */ /* Clear the corresponding IPR bits */
edma_write(EDMA_CCERRCLR, 1 << i); edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
/* NOTE: not reported!! */ /* NOTE: not reported!! */
} }
} }
} }
if ((edma_read_array(EDMA_EMR, 0) == 0) if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
&& (edma_read_array(EDMA_EMR, 1) == 0) && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
&& (edma_read(EDMA_QEMR) == 0) && (edma_read(ctlr, EDMA_QEMR) == 0)
&& (edma_read(EDMA_CCERR) == 0)) { && (edma_read(ctlr, EDMA_CCERR) == 0)) {
break; break;
} }
cnt++; cnt++;
if (cnt > 10) if (cnt > 10)
break; break;
} }
edma_write(EDMA_EEVAL, 1); edma_write(ctlr, EDMA_EEVAL, 1);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -484,35 +547,53 @@ int edma_alloc_channel(int channel, ...@@ -484,35 +547,53 @@ int edma_alloc_channel(int channel,
void *data, void *data,
enum dma_event_q eventq_no) enum dma_event_q eventq_no)
{ {
unsigned i, done, ctlr = 0;
if (channel >= 0) {
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
}
if (channel < 0) { if (channel < 0) {
for (i = 0; i < EDMA_MAX_CC; i++) {
channel = 0; channel = 0;
for (;;) { for (;;) {
channel = find_next_bit(edma_noevent, channel = find_next_bit(edma_info[i]->
num_channels, channel); edma_noevent,
if (channel == num_channels) edma_info[i]->num_channels,
channel);
if (channel == edma_info[i]->num_channels)
return -ENOMEM; return -ENOMEM;
if (!test_and_set_bit(channel, edma_inuse)) if (!test_and_set_bit(channel,
edma_info[i]->edma_inuse)) {
done = 1;
ctlr = i;
break; break;
}
channel++; channel++;
} }
} else if (channel >= num_channels) { if (done)
break;
}
} else if (channel >= edma_info[ctlr]->num_channels) {
return -EINVAL; return -EINVAL;
} else if (test_and_set_bit(channel, edma_inuse)) { } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
return -EBUSY; return -EBUSY;
} }
/* ensure access through shadow region 0 */ /* ensure access through shadow region 0 */
edma_or_array2(EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f)); edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
/* ensure no events are pending */ /* ensure no events are pending */
edma_stop(channel); edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
memcpy_toio(edmacc_regs_base + PARM_OFFSET(channel), memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
&dummy_paramset, PARM_SIZE); &dummy_paramset, PARM_SIZE);
if (callback) if (callback)
setup_dma_interrupt(channel, callback, data); setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
callback, data);
map_dmach_queue(channel, eventq_no); map_dmach_queue(ctlr, channel, eventq_no);
return channel; return channel;
} }
...@@ -532,15 +613,20 @@ EXPORT_SYMBOL(edma_alloc_channel); ...@@ -532,15 +613,20 @@ EXPORT_SYMBOL(edma_alloc_channel);
*/ */
void edma_free_channel(unsigned channel) void edma_free_channel(unsigned channel)
{ {
if (channel >= num_channels) unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel >= edma_info[ctlr]->num_channels)
return; return;
setup_dma_interrupt(channel, NULL, NULL); setup_dma_interrupt(channel, NULL, NULL);
/* REVISIT should probably take out of shadow region 0 */ /* REVISIT should probably take out of shadow region 0 */
memcpy_toio(edmacc_regs_base + PARM_OFFSET(channel), memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
&dummy_paramset, PARM_SIZE); &dummy_paramset, PARM_SIZE);
clear_bit(channel, edma_inuse); clear_bit(channel, edma_info[ctlr]->edma_inuse);
} }
EXPORT_SYMBOL(edma_free_channel); EXPORT_SYMBOL(edma_free_channel);
...@@ -558,28 +644,33 @@ EXPORT_SYMBOL(edma_free_channel); ...@@ -558,28 +644,33 @@ EXPORT_SYMBOL(edma_free_channel);
* *
* Returns the number of the slot, else negative errno. * Returns the number of the slot, else negative errno.
*/ */
int edma_alloc_slot(int slot) int edma_alloc_slot(unsigned ctlr, int slot)
{ {
if (slot >= 0)
slot = EDMA_CHAN_SLOT(slot);
if (slot < 0) { if (slot < 0) {
slot = num_channels; slot = edma_info[ctlr]->num_channels;
for (;;) { for (;;) {
slot = find_next_zero_bit(edma_inuse, slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
num_slots, slot); edma_info[ctlr]->num_slots, slot);
if (slot == num_slots) if (slot == edma_info[ctlr]->num_slots)
return -ENOMEM; return -ENOMEM;
if (!test_and_set_bit(slot, edma_inuse)) if (!test_and_set_bit(slot,
edma_info[ctlr]->edma_inuse))
break; break;
} }
} else if (slot < num_channels || slot >= num_slots) { } else if (slot < edma_info[ctlr]->num_channels ||
slot >= edma_info[ctlr]->num_slots) {
return -EINVAL; return -EINVAL;
} else if (test_and_set_bit(slot, edma_inuse)) { } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
return -EBUSY; return -EBUSY;
} }
memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot), memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
&dummy_paramset, PARM_SIZE); &dummy_paramset, PARM_SIZE);
return slot; return EDMA_CTLR_CHAN(ctlr, slot);
} }
EXPORT_SYMBOL(edma_alloc_slot); EXPORT_SYMBOL(edma_alloc_slot);
...@@ -593,12 +684,18 @@ EXPORT_SYMBOL(edma_alloc_slot); ...@@ -593,12 +684,18 @@ EXPORT_SYMBOL(edma_alloc_slot);
*/ */
void edma_free_slot(unsigned slot) void edma_free_slot(unsigned slot)
{ {
if (slot < num_channels || slot >= num_slots) unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_info[ctlr]->num_channels ||
slot >= edma_info[ctlr]->num_slots)
return; return;
memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot), memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
&dummy_paramset, PARM_SIZE); &dummy_paramset, PARM_SIZE);
clear_bit(slot, edma_inuse); clear_bit(slot, edma_info[ctlr]->edma_inuse);
} }
EXPORT_SYMBOL(edma_free_slot); EXPORT_SYMBOL(edma_free_slot);
...@@ -620,8 +717,13 @@ EXPORT_SYMBOL(edma_free_slot); ...@@ -620,8 +717,13 @@ EXPORT_SYMBOL(edma_free_slot);
void edma_set_src(unsigned slot, dma_addr_t src_port, void edma_set_src(unsigned slot, dma_addr_t src_port,
enum address_mode mode, enum fifo_width width) enum address_mode mode, enum fifo_width width)
{ {
if (slot < num_slots) { unsigned ctlr;
unsigned int i = edma_parm_read(PARM_OPT, slot);
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_info[ctlr]->num_slots) {
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
if (mode) { if (mode) {
/* set SAM and program FWID */ /* set SAM and program FWID */
...@@ -630,11 +732,11 @@ void edma_set_src(unsigned slot, dma_addr_t src_port, ...@@ -630,11 +732,11 @@ void edma_set_src(unsigned slot, dma_addr_t src_port,
/* clear SAM */ /* clear SAM */
i &= ~SAM; i &= ~SAM;
} }
edma_parm_write(PARM_OPT, slot, i); edma_parm_write(ctlr, PARM_OPT, slot, i);
/* set the source port address /* set the source port address
in source register of param structure */ in source register of param structure */
edma_parm_write(PARM_SRC, slot, src_port); edma_parm_write(ctlr, PARM_SRC, slot, src_port);
} }
} }
EXPORT_SYMBOL(edma_set_src); EXPORT_SYMBOL(edma_set_src);
...@@ -653,8 +755,13 @@ EXPORT_SYMBOL(edma_set_src); ...@@ -653,8 +755,13 @@ EXPORT_SYMBOL(edma_set_src);
void edma_set_dest(unsigned slot, dma_addr_t dest_port, void edma_set_dest(unsigned slot, dma_addr_t dest_port,
enum address_mode mode, enum fifo_width width) enum address_mode mode, enum fifo_width width)
{ {
if (slot < num_slots) { unsigned ctlr;
unsigned int i = edma_parm_read(PARM_OPT, slot);
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_info[ctlr]->num_slots) {
unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
if (mode) { if (mode) {
/* set DAM and program FWID */ /* set DAM and program FWID */
...@@ -663,10 +770,10 @@ void edma_set_dest(unsigned slot, dma_addr_t dest_port, ...@@ -663,10 +770,10 @@ void edma_set_dest(unsigned slot, dma_addr_t dest_port,
/* clear DAM */ /* clear DAM */
i &= ~DAM; i &= ~DAM;
} }
edma_parm_write(PARM_OPT, slot, i); edma_parm_write(ctlr, PARM_OPT, slot, i);
/* set the destination port address /* set the destination port address
in dest register of param structure */ in dest register of param structure */
edma_parm_write(PARM_DST, slot, dest_port); edma_parm_write(ctlr, PARM_DST, slot, dest_port);
} }
} }
EXPORT_SYMBOL(edma_set_dest); EXPORT_SYMBOL(edma_set_dest);
...@@ -683,8 +790,12 @@ EXPORT_SYMBOL(edma_set_dest); ...@@ -683,8 +790,12 @@ EXPORT_SYMBOL(edma_set_dest);
void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst) void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
{ {
struct edmacc_param temp; struct edmacc_param temp;
unsigned ctlr;
edma_read_slot(slot, &temp); ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
if (src != NULL) if (src != NULL)
*src = temp.src; *src = temp.src;
if (dst != NULL) if (dst != NULL)
...@@ -704,10 +815,15 @@ EXPORT_SYMBOL(edma_get_position); ...@@ -704,10 +815,15 @@ EXPORT_SYMBOL(edma_get_position);
*/ */
void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx) void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
{ {
if (slot < num_slots) { unsigned ctlr;
edma_parm_modify(PARM_SRC_DST_BIDX, slot,
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_info[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
0xffff0000, src_bidx); 0xffff0000, src_bidx);
edma_parm_modify(PARM_SRC_DST_CIDX, slot, edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
0xffff0000, src_cidx); 0xffff0000, src_cidx);
} }
} }
...@@ -725,10 +841,15 @@ EXPORT_SYMBOL(edma_set_src_index); ...@@ -725,10 +841,15 @@ EXPORT_SYMBOL(edma_set_src_index);
*/ */
void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx) void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
{ {
if (slot < num_slots) { unsigned ctlr;
edma_parm_modify(PARM_SRC_DST_BIDX, slot,
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_info[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
0x0000ffff, dest_bidx << 16); 0x0000ffff, dest_bidx << 16);
edma_parm_modify(PARM_SRC_DST_CIDX, slot, edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
0x0000ffff, dest_cidx << 16); 0x0000ffff, dest_cidx << 16);
} }
} }
...@@ -767,16 +888,21 @@ void edma_set_transfer_params(unsigned slot, ...@@ -767,16 +888,21 @@ void edma_set_transfer_params(unsigned slot,
u16 acnt, u16 bcnt, u16 ccnt, u16 acnt, u16 bcnt, u16 ccnt,
u16 bcnt_rld, enum sync_dimension sync_mode) u16 bcnt_rld, enum sync_dimension sync_mode)
{ {
if (slot < num_slots) { unsigned ctlr;
edma_parm_modify(PARM_LINK_BCNTRLD, slot,
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot < edma_info[ctlr]->num_slots) {
edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
0x0000ffff, bcnt_rld << 16); 0x0000ffff, bcnt_rld << 16);
if (sync_mode == ASYNC) if (sync_mode == ASYNC)
edma_parm_and(PARM_OPT, slot, ~SYNCDIM); edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
else else
edma_parm_or(PARM_OPT, slot, SYNCDIM); edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
/* Set the acount, bcount, ccount registers */ /* Set the acount, bcount, ccount registers */
edma_parm_write(PARM_A_B_CNT, slot, (bcnt << 16) | acnt); edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
edma_parm_write(PARM_CCNT, slot, ccnt); edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
} }
} }
EXPORT_SYMBOL(edma_set_transfer_params); EXPORT_SYMBOL(edma_set_transfer_params);
...@@ -790,11 +916,19 @@ EXPORT_SYMBOL(edma_set_transfer_params); ...@@ -790,11 +916,19 @@ EXPORT_SYMBOL(edma_set_transfer_params);
*/ */
void edma_link(unsigned from, unsigned to) void edma_link(unsigned from, unsigned to)
{ {
if (from >= num_slots) unsigned ctlr_from, ctlr_to;
ctlr_from = EDMA_CTLR(from);
from = EDMA_CHAN_SLOT(from);
ctlr_to = EDMA_CTLR(to);
to = EDMA_CHAN_SLOT(to);
if (from >= edma_info[ctlr_from]->num_slots)
return; return;
if (to >= num_slots) if (to >= edma_info[ctlr_to]->num_slots)
return; return;
edma_parm_modify(PARM_LINK_BCNTRLD, from, 0xffff0000, PARM_OFFSET(to)); edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
PARM_OFFSET(to));
} }
EXPORT_SYMBOL(edma_link); EXPORT_SYMBOL(edma_link);
...@@ -807,9 +941,14 @@ EXPORT_SYMBOL(edma_link); ...@@ -807,9 +941,14 @@ EXPORT_SYMBOL(edma_link);
*/ */
void edma_unlink(unsigned from) void edma_unlink(unsigned from)
{ {
if (from >= num_slots) unsigned ctlr;
ctlr = EDMA_CTLR(from);
from = EDMA_CHAN_SLOT(from);
if (from >= edma_info[ctlr]->num_slots)
return; return;
edma_parm_or(PARM_LINK_BCNTRLD, from, 0xffff); edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
} }
EXPORT_SYMBOL(edma_unlink); EXPORT_SYMBOL(edma_unlink);
...@@ -829,9 +968,15 @@ EXPORT_SYMBOL(edma_unlink); ...@@ -829,9 +968,15 @@ EXPORT_SYMBOL(edma_unlink);
*/ */
void edma_write_slot(unsigned slot, const struct edmacc_param *param) void edma_write_slot(unsigned slot, const struct edmacc_param *param)
{ {
if (slot >= num_slots) unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot >= edma_info[ctlr]->num_slots)
return; return;
memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot), param, PARM_SIZE); memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
PARM_SIZE);
} }
EXPORT_SYMBOL(edma_write_slot); EXPORT_SYMBOL(edma_write_slot);
...@@ -845,9 +990,15 @@ EXPORT_SYMBOL(edma_write_slot); ...@@ -845,9 +990,15 @@ EXPORT_SYMBOL(edma_write_slot);
*/ */
void edma_read_slot(unsigned slot, struct edmacc_param *param) void edma_read_slot(unsigned slot, struct edmacc_param *param)
{ {
if (slot >= num_slots) unsigned ctlr;
ctlr = EDMA_CTLR(slot);
slot = EDMA_CHAN_SLOT(slot);
if (slot >= edma_info[ctlr]->num_slots)
return; return;
memcpy_fromio(param, edmacc_regs_base + PARM_OFFSET(slot), PARM_SIZE); memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
PARM_SIZE);
} }
EXPORT_SYMBOL(edma_read_slot); EXPORT_SYMBOL(edma_read_slot);
...@@ -864,10 +1015,15 @@ EXPORT_SYMBOL(edma_read_slot); ...@@ -864,10 +1015,15 @@ EXPORT_SYMBOL(edma_read_slot);
*/ */
void edma_pause(unsigned channel) void edma_pause(unsigned channel)
{ {
if (channel < num_channels) { unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_info[ctlr]->num_channels) {
unsigned int mask = (1 << (channel & 0x1f)); unsigned int mask = (1 << (channel & 0x1f));
edma_shadow0_write_array(SH_EECR, channel >> 5, mask); edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
} }
} }
EXPORT_SYMBOL(edma_pause); EXPORT_SYMBOL(edma_pause);
...@@ -880,10 +1036,15 @@ EXPORT_SYMBOL(edma_pause); ...@@ -880,10 +1036,15 @@ EXPORT_SYMBOL(edma_pause);
*/ */
void edma_resume(unsigned channel) void edma_resume(unsigned channel)
{ {
if (channel < num_channels) { unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_info[ctlr]->num_channels) {
unsigned int mask = (1 << (channel & 0x1f)); unsigned int mask = (1 << (channel & 0x1f));
edma_shadow0_write_array(SH_EESR, channel >> 5, mask); edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
} }
} }
EXPORT_SYMBOL(edma_resume); EXPORT_SYMBOL(edma_resume);
...@@ -901,28 +1062,33 @@ EXPORT_SYMBOL(edma_resume); ...@@ -901,28 +1062,33 @@ EXPORT_SYMBOL(edma_resume);
*/ */
int edma_start(unsigned channel) int edma_start(unsigned channel)
{ {
if (channel < num_channels) { unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_info[ctlr]->num_channels) {
int j = channel >> 5; int j = channel >> 5;
unsigned int mask = (1 << (channel & 0x1f)); unsigned int mask = (1 << (channel & 0x1f));
/* EDMA channels without event association */ /* EDMA channels without event association */
if (test_bit(channel, edma_noevent)) { if (test_bit(channel, edma_info[ctlr]->edma_noevent)) {
pr_debug("EDMA: ESR%d %08x\n", j, pr_debug("EDMA: ESR%d %08x\n", j,
edma_shadow0_read_array(SH_ESR, j)); edma_shadow0_read_array(ctlr, SH_ESR, j));
edma_shadow0_write_array(SH_ESR, j, mask); edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
return 0; return 0;
} }
/* EDMA channel with event association */ /* EDMA channel with event association */
pr_debug("EDMA: ER%d %08x\n", j, pr_debug("EDMA: ER%d %08x\n", j,
edma_shadow0_read_array(SH_ER, j)); edma_shadow0_read_array(ctlr, SH_ER, j));
/* Clear any pending error */ /* Clear any pending error */
edma_write_array(EDMA_EMCR, j, mask); edma_write_array(ctlr, EDMA_EMCR, j, mask);
/* Clear any SER */ /* Clear any SER */
edma_shadow0_write_array(SH_SECR, j, mask); edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_shadow0_write_array(SH_EESR, j, mask); edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
pr_debug("EDMA: EER%d %08x\n", j, pr_debug("EDMA: EER%d %08x\n", j,
edma_shadow0_read_array(SH_EER, j)); edma_shadow0_read_array(ctlr, SH_EER, j));
return 0; return 0;
} }
...@@ -941,17 +1107,22 @@ EXPORT_SYMBOL(edma_start); ...@@ -941,17 +1107,22 @@ EXPORT_SYMBOL(edma_start);
*/ */
void edma_stop(unsigned channel) void edma_stop(unsigned channel)
{ {
if (channel < num_channels) { unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_info[ctlr]->num_channels) {
int j = channel >> 5; int j = channel >> 5;
unsigned int mask = (1 << (channel & 0x1f)); unsigned int mask = (1 << (channel & 0x1f));
edma_shadow0_write_array(SH_EECR, j, mask); edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
edma_shadow0_write_array(SH_ECR, j, mask); edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
edma_shadow0_write_array(SH_SECR, j, mask); edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_write_array(EDMA_EMCR, j, mask); edma_write_array(ctlr, EDMA_EMCR, j, mask);
pr_debug("EDMA: EER%d %08x\n", j, pr_debug("EDMA: EER%d %08x\n", j,
edma_shadow0_read_array(SH_EER, j)); edma_shadow0_read_array(ctlr, SH_EER, j));
/* REVISIT: consider guarding against inappropriate event /* REVISIT: consider guarding against inappropriate event
* chaining by overwriting with dummy_paramset. * chaining by overwriting with dummy_paramset.
...@@ -975,18 +1146,23 @@ EXPORT_SYMBOL(edma_stop); ...@@ -975,18 +1146,23 @@ EXPORT_SYMBOL(edma_stop);
void edma_clean_channel(unsigned channel) void edma_clean_channel(unsigned channel)
{ {
if (channel < num_channels) { unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel < edma_info[ctlr]->num_channels) {
int j = (channel >> 5); int j = (channel >> 5);
unsigned int mask = 1 << (channel & 0x1f); unsigned int mask = 1 << (channel & 0x1f);
pr_debug("EDMA: EMR%d %08x\n", j, pr_debug("EDMA: EMR%d %08x\n", j,
edma_read_array(EDMA_EMR, j)); edma_read_array(ctlr, EDMA_EMR, j));
edma_shadow0_write_array(SH_ECR, j, mask); edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
/* Clear the corresponding EMR bits */ /* Clear the corresponding EMR bits */
edma_write_array(EDMA_EMCR, j, mask); edma_write_array(ctlr, EDMA_EMCR, j, mask);
/* Clear any SER */ /* Clear any SER */
edma_shadow0_write_array(SH_SECR, j, mask); edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
edma_write(EDMA_CCERRCLR, (1 << 16) | 0x3); edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
} }
} }
EXPORT_SYMBOL(edma_clean_channel); EXPORT_SYMBOL(edma_clean_channel);
...@@ -998,12 +1174,17 @@ EXPORT_SYMBOL(edma_clean_channel); ...@@ -998,12 +1174,17 @@ EXPORT_SYMBOL(edma_clean_channel);
*/ */
void edma_clear_event(unsigned channel) void edma_clear_event(unsigned channel)
{ {
if (channel >= num_channels) unsigned ctlr;
ctlr = EDMA_CTLR(channel);
channel = EDMA_CHAN_SLOT(channel);
if (channel >= edma_info[ctlr]->num_channels)
return; return;
if (channel < 32) if (channel < 32)
edma_write(EDMA_ECR, 1 << channel); edma_write(ctlr, EDMA_ECR, 1 << channel);
else else
edma_write(EDMA_ECRH, 1 << (channel - 32)); edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
} }
EXPORT_SYMBOL(edma_clear_event); EXPORT_SYMBOL(edma_clear_event);
...@@ -1012,64 +1193,131 @@ EXPORT_SYMBOL(edma_clear_event); ...@@ -1012,64 +1193,131 @@ EXPORT_SYMBOL(edma_clear_event);
static int __init edma_probe(struct platform_device *pdev) static int __init edma_probe(struct platform_device *pdev)
{ {
struct edma_soc_info *info = pdev->dev.platform_data; struct edma_soc_info *info = pdev->dev.platform_data;
int i; const s8 (*queue_priority_mapping)[2];
int status; const s8 (*queue_tc_mapping)[2];
int i, j, found = 0;
int status = -1;
const s8 *noevent; const s8 *noevent;
int irq = 0, err_irq = 0; int irq[EDMA_MAX_CC] = {0, 0};
struct resource *r; int err_irq[EDMA_MAX_CC] = {0, 0};
resource_size_t len; struct resource *r[EDMA_MAX_CC] = {NULL};
resource_size_t len[EDMA_MAX_CC];
char res_name[10];
char irq_name[10];
if (!info) if (!info)
return -ENODEV; return -ENODEV;
r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma_cc"); for (j = 0; j < EDMA_MAX_CC; j++) {
if (!r) sprintf(res_name, "edma_cc%d", j);
r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
res_name);
if (!r[j]) {
if (found)
break;
else
return -ENODEV; return -ENODEV;
} else
found = 1;
len = r->end - r->start + 1; len[j] = resource_size(r[j]);
r = request_mem_region(r->start, len, r->name); r[j] = request_mem_region(r[j]->start, len[j],
if (!r) dev_name(&pdev->dev));
return -EBUSY; if (!r[j]) {
status = -EBUSY;
goto fail1;
}
edmacc_regs_base = ioremap(r->start, len); edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
if (!edmacc_regs_base) { if (!edmacc_regs_base[j]) {
status = -EBUSY; status = -EBUSY;
goto fail1; goto fail1;
} }
num_channels = min_t(unsigned, info->n_channel, EDMA_MAX_DMACH); edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
num_slots = min_t(unsigned, info->n_slot, EDMA_MAX_PARAMENTRY); if (!edma_info[j]) {
status = -ENOMEM;
goto fail1;
}
memset(edma_info[j], 0, sizeof(struct edma));
edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
EDMA_MAX_DMACH);
edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
EDMA_MAX_PARAMENTRY);
edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
EDMA_MAX_CC);
dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n", edmacc_regs_base); dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
edmacc_regs_base[j]);
for (i = 0; i < num_slots; i++) for (i = 0; i < edma_info[j]->num_slots; i++)
memcpy_toio(edmacc_regs_base + PARM_OFFSET(i), memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
&dummy_paramset, PARM_SIZE); &dummy_paramset, PARM_SIZE);
noevent = info->noevent; noevent = info[j].noevent;
if (noevent) { if (noevent) {
while (*noevent != -1) while (*noevent != -1)
set_bit(*noevent++, edma_noevent); set_bit(*noevent++, edma_info[j]->edma_noevent);
} }
irq = platform_get_irq(pdev, 0); sprintf(irq_name, "edma%d", j);
status = request_irq(irq, dma_irq_handler, 0, "edma", &pdev->dev); irq[j] = platform_get_irq_byname(pdev, irq_name);
edma_info[j]->irq_res_start = irq[j];
status = request_irq(irq[j], dma_irq_handler, 0, "edma",
&pdev->dev);
if (status < 0) { if (status < 0) {
dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
irq, status); irq[j], status);
goto fail; goto fail;
} }
err_irq = platform_get_irq(pdev, 1); sprintf(irq_name, "edma%d_err", j);
status = request_irq(err_irq, dma_ccerr_handler, 0, err_irq[j] = platform_get_irq_byname(pdev, irq_name);
edma_info[j]->irq_res_end = err_irq[j];
status = request_irq(err_irq[j], dma_ccerr_handler, 0,
"edma_error", &pdev->dev); "edma_error", &pdev->dev);
if (status < 0) { if (status < 0) {
dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
err_irq, status); err_irq[j], status);
goto fail; goto fail;
} }
/* Everything lives on transfer controller 1 until otherwise
* specified. This way, long transfers on the low priority queue
* started by the codec engine will not cause audio defects.
*/
for (i = 0; i < edma_info[j]->num_channels; i++)
map_dmach_queue(j, i, EVENTQ_1);
queue_tc_mapping = info[j].queue_tc_mapping;
queue_priority_mapping = info[j].queue_priority_mapping;
/* Event queue to TC mapping */
for (i = 0; queue_tc_mapping[i][0] != -1; i++)
map_queue_tc(j, queue_tc_mapping[i][0],
queue_tc_mapping[i][1]);
/* Event queue priority mapping */
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
assign_priority_to_queue(j,
queue_priority_mapping[i][0],
queue_priority_mapping[i][1]);
/* Map the channel to param entry if channel mapping logic
* exist
*/
if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
map_dmach_param(j);
for (i = 0; i < info[j].n_region; i++) {
edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
edma_write_array(j, EDMA_QRAE, i, 0x0);
}
}
if (tc_errs_handled) { if (tc_errs_handled) {
status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0, status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
"edma_tc0", &pdev->dev); "edma_tc0", &pdev->dev);
...@@ -1087,38 +1335,23 @@ static int __init edma_probe(struct platform_device *pdev) ...@@ -1087,38 +1335,23 @@ static int __init edma_probe(struct platform_device *pdev)
} }
} }
/* Everything lives on transfer controller 1 until otherwise specified.
* This way, long transfers on the low priority queue
* started by the codec engine will not cause audio defects.
*/
for (i = 0; i < num_channels; i++)
map_dmach_queue(i, EVENTQ_1);
/* Event queue to TC mapping */
for (i = 0; queue_tc_mapping[i][0] != -1; i++)
map_queue_tc(queue_tc_mapping[i][0], queue_tc_mapping[i][1]);
/* Event queue priority mapping */
for (i = 0; queue_priority_mapping[i][0] != -1; i++)
assign_priority_to_queue(queue_priority_mapping[i][0],
queue_priority_mapping[i][1]);
for (i = 0; i < info->n_region; i++) {
edma_write_array2(EDMA_DRAE, i, 0, 0x0);
edma_write_array2(EDMA_DRAE, i, 1, 0x0);
edma_write_array(EDMA_QRAE, i, 0x0);
}
return 0; return 0;
fail: fail:
if (err_irq) for (i = 0; i < EDMA_MAX_CC; i++) {
free_irq(err_irq, NULL); if (err_irq[i])
if (irq) free_irq(err_irq[i], &pdev->dev);
free_irq(irq, NULL); if (irq[i])
iounmap(edmacc_regs_base); free_irq(irq[i], &pdev->dev);
}
fail1: fail1:
release_mem_region(r->start, len); for (i = 0; i < EDMA_MAX_CC; i++) {
if (r[i])
release_mem_region(r[i]->start, len[i]);
if (edmacc_regs_base[i])
iounmap(edmacc_regs_base[i]);
kfree(edma_info[i]);
}
return status; return status;
} }
......
...@@ -170,6 +170,10 @@ enum sync_dimension { ...@@ -170,6 +170,10 @@ enum sync_dimension {
ABSYNC = 1 ABSYNC = 1
}; };
#define EDMA_CTLR_CHAN(ctlr, chan) (((ctlr) << 16) | (chan))
#define EDMA_CTLR(i) ((i) >> 16)
#define EDMA_CHAN_SLOT(i) ((i) & 0xffff)
#define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
#define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
...@@ -180,7 +184,7 @@ int edma_alloc_channel(int channel, ...@@ -180,7 +184,7 @@ int edma_alloc_channel(int channel,
void edma_free_channel(unsigned channel); void edma_free_channel(unsigned channel);
/* alloc/free parameter RAM slots */ /* alloc/free parameter RAM slots */
int edma_alloc_slot(int slot); int edma_alloc_slot(unsigned ctlr, int slot);
void edma_free_slot(unsigned slot); void edma_free_slot(unsigned slot);
/* calls that operate on part of a parameter RAM slot */ /* calls that operate on part of a parameter RAM slot */
...@@ -216,9 +220,12 @@ struct edma_soc_info { ...@@ -216,9 +220,12 @@ struct edma_soc_info {
unsigned n_region; unsigned n_region;
unsigned n_slot; unsigned n_slot;
unsigned n_tc; unsigned n_tc;
unsigned n_cc;
/* list of channels with no even trigger; terminated by "-1" */ /* list of channels with no even trigger; terminated by "-1" */
const s8 *noevent; const s8 *noevent;
const s8 (*queue_tc_mapping)[2];
const s8 (*queue_priority_mapping)[2];
}; };
#endif #endif
...@@ -143,7 +143,7 @@ static int davinci_pcm_dma_request(struct snd_pcm_substream *substream) ...@@ -143,7 +143,7 @@ static int davinci_pcm_dma_request(struct snd_pcm_substream *substream)
prtd->master_lch = ret; prtd->master_lch = ret;
/* Request parameter RAM reload slot */ /* Request parameter RAM reload slot */
ret = edma_alloc_slot(EDMA_SLOT_ANY); ret = edma_alloc_slot(EDMA_CTLR(prtd->master_lch), EDMA_SLOT_ANY);
if (ret < 0) { if (ret < 0) {
edma_free_channel(prtd->master_lch); edma_free_channel(prtd->master_lch);
return ret; return ret;
...@@ -160,8 +160,8 @@ static int davinci_pcm_dma_request(struct snd_pcm_substream *substream) ...@@ -160,8 +160,8 @@ static int davinci_pcm_dma_request(struct snd_pcm_substream *substream)
* so davinci_pcm_enqueue_dma() takes less time in IRQ. * so davinci_pcm_enqueue_dma() takes less time in IRQ.
*/ */
edma_read_slot(prtd->slave_lch, &p_ram); edma_read_slot(prtd->slave_lch, &p_ram);
p_ram.opt |= TCINTEN | EDMA_TCC(prtd->master_lch); p_ram.opt |= TCINTEN | EDMA_TCC(EDMA_CHAN_SLOT(prtd->master_lch));
p_ram.link_bcntrld = prtd->slave_lch << 5; p_ram.link_bcntrld = EDMA_CHAN_SLOT(prtd->slave_lch) << 5;
edma_write_slot(prtd->slave_lch, &p_ram); edma_write_slot(prtd->slave_lch, &p_ram);
return 0; return 0;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment