Commit 75f95da0 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'libnvdimm-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "The vast bulk of this update is the new support for the security
  capabilities of some nvdimms.

  The userspace tooling for this capability is still a work in progress,
  but the changes survive the existing libnvdimm unit tests. The changes
  also pass manual checkout on hardware and the new nfit_test emulation
  of the security capability.

  The touches of the security/keys/ files have received the necessary
  acks from Mimi and David. Those changes were necessary to allow for a
  new generic encrypted-key type, and allow the nvdimm sub-system to
  lookup key material referenced by the libnvdimm-sysfs interface.

  Summary:

   - Add support for the security features of nvdimm devices that
     implement a security model similar to ATA hard drive security. The
     security model supports locking access to the media at
     device-power-loss, to be unlocked with a passphrase, and
     secure-erase (crypto-scramble).

     Unlike the ATA security case where the kernel expects device
     security to be managed in a pre-OS environment, the libnvdimm
     security implementation allows key provisioning and key-operations
     at OS runtime. Keys are managed with the kernel's encrypted-keys
     facility to provide data-at-rest security for the libnvdimm key
     material. The usage model mirrors fscrypt key management, but is
     driven via libnvdimm sysfs.

   - Miscellaneous updates for api usage and comment fixes"

* tag 'libnvdimm-for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (21 commits)
  libnvdimm/security: Quiet security operations
  libnvdimm/security: Add documentation for nvdimm security support
  tools/testing/nvdimm: add Intel DSM 1.8 support for nfit_test
  tools/testing/nvdimm: Add overwrite support for nfit_test
  tools/testing/nvdimm: Add test support for Intel nvdimm security DSMs
  acpi/nfit, libnvdimm/security: add Intel DSM 1.8 master passphrase support
  acpi/nfit, libnvdimm/security: Add security DSM overwrite support
  acpi/nfit, libnvdimm: Add support for issue secure erase DSM to Intel nvdimm
  acpi/nfit, libnvdimm: Add enable/update passphrase support for Intel nvdimms
  acpi/nfit, libnvdimm: Add disable passphrase support to Intel nvdimm.
  acpi/nfit, libnvdimm: Add unlock of nvdimm support for Intel DIMMs
  acpi/nfit, libnvdimm: Add freeze security support to Intel nvdimm
  acpi/nfit, libnvdimm: Introduce nvdimm_security_ops
  keys-encrypted: add nvdimm key format type to encrypted keys
  keys: Export lookup_user_key to external users
  acpi/nfit, libnvdimm: Store dimm id as a member to struct nvdimm
  libnvdimm, namespace: Replace kmemdup() with kstrndup()
  libnvdimm, label: Switch to bitmap_zalloc()
  ACPI/nfit: Adjust annotation for why return 0 if fail to find NFIT at start
  libnvdimm, bus: Check id immediately following ida_simple_get
  ...
parents 4ed7bdc1 4b5f747e
NVDIMM SECURITY
===============
1. Introduction
---------------
With the introduction of Intel Device Specific Methods (DSM) v1.8
specification [1], security DSMs are introduced. The spec added the following
security DSMs: "get security state", "set passphrase", "disable passphrase",
"unlock unit", "freeze lock", "secure erase", and "overwrite". A security_ops
data structure has been added to struct dimm in order to support the security
operations and generic APIs are exposed to allow vendor neutral operations.
2. Sysfs Interface
------------------
The "security" sysfs attribute is provided in the nvdimm sysfs directory. For
example:
/sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/security
The "show" attribute of that attribute will display the security state for
that DIMM. The following states are available: disabled, unlocked, locked,
frozen, and overwrite. If security is not supported, the sysfs attribute
will not be visible.
The "store" attribute takes several commands when it is being written to
in order to support some of the security functionalities:
update <old_keyid> <new_keyid> - enable or update passphrase.
disable <keyid> - disable enabled security and remove key.
freeze - freeze changing of security states.
erase <keyid> - delete existing user encryption key.
overwrite <keyid> - wipe the entire nvdimm.
master_update <keyid> <new_keyid> - enable or update master passphrase.
master_erase <keyid> - delete existing user encryption key.
3. Key Management
-----------------
The key is associated to the payload by the DIMM id. For example:
# cat /sys/devices/LNXSYSTM:00/LNXSYBUS:00/ACPI0012:00/ndbus0/nmem0/nfit/id
8089-a2-1740-00000133
The DIMM id would be provided along with the key payload (passphrase) to
the kernel.
The security keys are managed on the basis of a single key per DIMM. The
key "passphrase" is expected to be 32bytes long. This is similar to the ATA
security specification [2]. A key is initially acquired via the request_key()
kernel API call during nvdimm unlock. It is up to the user to make sure that
all the keys are in the kernel user keyring for unlock.
A nvdimm encrypted-key of format enc32 has the description format of:
nvdimm:<bus-provider-specific-unique-id>
See file ``Documentation/security/keys/trusted-encrypted.rst`` for creating
encrypted-keys of enc32 format. TPM usage with a master trusted key is
preferred for sealing the encrypted-keys.
4. Unlocking
------------
When the DIMMs are being enumerated by the kernel, the kernel will attempt to
retrieve the key from the kernel user keyring. This is the only time
a locked DIMM can be unlocked. Once unlocked, the DIMM will remain unlocked
until reboot. Typically an entity (i.e. shell script) will inject all the
relevant encrypted-keys into the kernel user keyring during the initramfs phase.
This provides the unlock function access to all the related keys that contain
the passphrase for the respective nvdimms. It is also recommended that the
keys are injected before libnvdimm is loaded by modprobe.
5. Update
---------
When doing an update, it is expected that the existing key is removed from
the kernel user keyring and reinjected as different (old) key. It's irrelevant
what the key description is for the old key since we are only interested in the
keyid when doing the update operation. It is also expected that the new key
is injected with the description format described from earlier in this
document. The update command written to the sysfs attribute will be with
the format:
update <old keyid> <new keyid>
If there is no old keyid due to a security enabling, then a 0 should be
passed in.
6. Freeze
---------
The freeze operation does not require any keys. The security config can be
frozen by a user with root privelege.
7. Disable
----------
The security disable command format is:
disable <keyid>
An key with the current passphrase payload that is tied to the nvdimm should be
in the kernel user keyring.
8. Secure Erase
---------------
The command format for doing a secure erase is:
erase <keyid>
An key with the current passphrase payload that is tied to the nvdimm should be
in the kernel user keyring.
9. Overwrite
------------
The command format for doing an overwrite is:
overwrite <keyid>
Overwrite can be done without a key if security is not enabled. A key serial
of 0 can be passed in to indicate no key.
The sysfs attribute "security" can be polled to wait on overwrite completion.
Overwrite can last tens of minutes or more depending on nvdimm size.
An encrypted-key with the current user passphrase that is tied to the nvdimm
should be injected and its keyid should be passed in via sysfs.
10. Master Update
-----------------
The command format for doing a master update is:
update <old keyid> <new keyid>
The operating mechanism for master update is identical to update except the
master passphrase key is passed to the kernel. The master passphrase key
is just another encrypted-key.
This command is only available when security is disabled.
11. Master Erase
----------------
The command format for doing a master erase is:
master_erase <current keyid>
This command has the same operating mechanism as erase except the master
passphrase key is passed to the kernel. The master passphrase key is just
another encrypted-key.
This command is only available when the master security is enabled, indicated
by the extended security status.
[1]: http://pmem.io/documents/NVDIMM_DSM_Interface-V1.8.pdf
[2]: http://www.t13.org/documents/UploadedDocuments/docs2006/e05179r4-ACS-SecurityClarifications.pdf
...@@ -76,7 +76,7 @@ Usage:: ...@@ -76,7 +76,7 @@ Usage::
Where:: Where::
format:= 'default | ecryptfs' format:= 'default | ecryptfs | enc32'
key-type:= 'trusted' | 'user' key-type:= 'trusted' | 'user'
...@@ -173,3 +173,7 @@ are anticipated. In particular the new format 'ecryptfs' has been defined in ...@@ -173,3 +173,7 @@ are anticipated. In particular the new format 'ecryptfs' has been defined in
in order to use encrypted keys to mount an eCryptfs filesystem. More details in order to use encrypted keys to mount an eCryptfs filesystem. More details
about the usage can be found in the file about the usage can be found in the file
``Documentation/security/keys/ecryptfs.rst``. ``Documentation/security/keys/ecryptfs.rst``.
Another new format 'enc32' has been defined in order to support encrypted keys
with payload size of 32 bytes. This will initially be used for nvdimm security
but may expand to other usages that require 32 bytes payload.
...@@ -13,3 +13,14 @@ config ACPI_NFIT ...@@ -13,3 +13,14 @@ config ACPI_NFIT
To compile this driver as a module, choose M here: To compile this driver as a module, choose M here:
the module will be called nfit. the module will be called nfit.
config NFIT_SECURITY_DEBUG
bool "Enable debug for NVDIMM security commands"
depends on ACPI_NFIT
help
Some NVDIMM devices and controllers support encryption and
other security features. The payloads for the commands that
enable those features may contain sensitive clear-text
security material. Disable debug of those command payloads
by default. If you are a kernel developer actively working
on NVDIMM security enabling say Y, otherwise say N.
obj-$(CONFIG_ACPI_NFIT) := nfit.o obj-$(CONFIG_ACPI_NFIT) := nfit.o
nfit-y := core.o nfit-y := core.o
nfit-y += intel.o
nfit-$(CONFIG_X86_MCE) += mce.o nfit-$(CONFIG_X86_MCE) += mce.o
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include <linux/nd.h> #include <linux/nd.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <acpi/nfit.h> #include <acpi/nfit.h>
#include "intel.h"
#include "nfit.h" #include "nfit.h"
#include "intel.h" #include "intel.h"
...@@ -380,6 +381,16 @@ static u8 nfit_dsm_revid(unsigned family, unsigned func) ...@@ -380,6 +381,16 @@ static u8 nfit_dsm_revid(unsigned family, unsigned func)
[NVDIMM_INTEL_QUERY_FWUPDATE] = 2, [NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
[NVDIMM_INTEL_SET_THRESHOLD] = 2, [NVDIMM_INTEL_SET_THRESHOLD] = 2,
[NVDIMM_INTEL_INJECT_ERROR] = 2, [NVDIMM_INTEL_INJECT_ERROR] = 2,
[NVDIMM_INTEL_GET_SECURITY_STATE] = 2,
[NVDIMM_INTEL_SET_PASSPHRASE] = 2,
[NVDIMM_INTEL_DISABLE_PASSPHRASE] = 2,
[NVDIMM_INTEL_UNLOCK_UNIT] = 2,
[NVDIMM_INTEL_FREEZE_LOCK] = 2,
[NVDIMM_INTEL_SECURE_ERASE] = 2,
[NVDIMM_INTEL_OVERWRITE] = 2,
[NVDIMM_INTEL_QUERY_OVERWRITE] = 2,
[NVDIMM_INTEL_SET_MASTER_PASSPHRASE] = 2,
[NVDIMM_INTEL_MASTER_SECURE_ERASE] = 2,
}, },
}; };
u8 id; u8 id;
...@@ -394,6 +405,17 @@ static u8 nfit_dsm_revid(unsigned family, unsigned func) ...@@ -394,6 +405,17 @@ static u8 nfit_dsm_revid(unsigned family, unsigned func)
return id; return id;
} }
static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
return true;
}
int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
{ {
...@@ -478,6 +500,7 @@ int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, ...@@ -478,6 +500,7 @@ int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n", dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
dimm_name, cmd, func, in_buf.buffer.length); dimm_name, cmd, func, in_buf.buffer.length);
if (payload_dumpable(nvdimm, func))
print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4,
in_buf.buffer.pointer, in_buf.buffer.pointer,
min_t(u32, 256, in_buf.buffer.length), true); min_t(u32, 256, in_buf.buffer.length), true);
...@@ -1573,18 +1596,10 @@ static DEVICE_ATTR_RO(flags); ...@@ -1573,18 +1596,10 @@ static DEVICE_ATTR_RO(flags);
static ssize_t id_show(struct device *dev, static ssize_t id_show(struct device *dev,
struct device_attribute *attr, char *buf) struct device_attribute *attr, char *buf)
{ {
struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); struct nvdimm *nvdimm = to_nvdimm(dev);
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) return sprintf(buf, "%s\n", nfit_mem->id);
return sprintf(buf, "%04x-%02x-%04x-%08x\n",
be16_to_cpu(dcr->vendor_id),
dcr->manufacturing_location,
be16_to_cpu(dcr->manufacturing_date),
be32_to_cpu(dcr->serial_number));
else
return sprintf(buf, "%04x-%08x\n",
be16_to_cpu(dcr->vendor_id),
be32_to_cpu(dcr->serial_number));
} }
static DEVICE_ATTR_RO(id); static DEVICE_ATTR_RO(id);
...@@ -1780,10 +1795,23 @@ static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, ...@@ -1780,10 +1795,23 @@ static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
const guid_t *guid; const guid_t *guid;
int i; int i;
int family = -1; int family = -1;
struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
/* nfit test assumes 1:1 relationship between commands and dsms */ /* nfit test assumes 1:1 relationship between commands and dsms */
nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
nfit_mem->family = NVDIMM_FAMILY_INTEL; nfit_mem->family = NVDIMM_FAMILY_INTEL;
if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
be16_to_cpu(dcr->vendor_id),
dcr->manufacturing_location,
be16_to_cpu(dcr->manufacturing_date),
be32_to_cpu(dcr->serial_number));
else
sprintf(nfit_mem->id, "%04x-%08x",
be16_to_cpu(dcr->vendor_id),
be32_to_cpu(dcr->serial_number));
adev = to_acpi_dev(acpi_desc); adev = to_acpi_dev(acpi_desc);
if (!adev) { if (!adev) {
/* unit test case */ /* unit test case */
...@@ -1904,6 +1932,16 @@ static void shutdown_dimm_notify(void *data) ...@@ -1904,6 +1932,16 @@ static void shutdown_dimm_notify(void *data)
mutex_unlock(&acpi_desc->init_mutex); mutex_unlock(&acpi_desc->init_mutex);
} }
static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
{
switch (family) {
case NVDIMM_FAMILY_INTEL:
return intel_security_ops;
default:
return NULL;
}
}
static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
{ {
struct nfit_mem *nfit_mem; struct nfit_mem *nfit_mem;
...@@ -1970,10 +2008,11 @@ static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) ...@@ -1970,10 +2008,11 @@ static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
: NULL; : NULL;
nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
acpi_nfit_dimm_attribute_groups, acpi_nfit_dimm_attribute_groups,
flags, cmd_mask, flush ? flush->hint_count : 0, flags, cmd_mask, flush ? flush->hint_count : 0,
nfit_mem->flush_wpq); nfit_mem->flush_wpq, &nfit_mem->id[0],
acpi_nfit_get_security_ops(nfit_mem->family));
if (!nvdimm) if (!nvdimm)
return -ENOMEM; return -ENOMEM;
...@@ -2008,6 +2047,11 @@ static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) ...@@ -2008,6 +2047,11 @@ static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
if (!nvdimm) if (!nvdimm)
continue; continue;
rc = nvdimm_security_setup_events(nvdimm);
if (rc < 0)
dev_warn(acpi_desc->dev,
"security event setup failed: %d\n", rc);
nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
if (nfit_kernfs) if (nfit_kernfs)
nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
...@@ -3337,7 +3381,7 @@ static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) ...@@ -3337,7 +3381,7 @@ static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
return 0; return 0;
} }
static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd) struct nvdimm *nvdimm, unsigned int cmd)
{ {
struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
...@@ -3359,6 +3403,23 @@ static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, ...@@ -3359,6 +3403,23 @@ static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
return 0; return 0;
} }
/* prevent security commands from being issued via ioctl */
static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd, void *buf)
{
struct nd_cmd_pkg *call_pkg = buf;
unsigned int func;
if (nvdimm && cmd == ND_CMD_CALL &&
call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
func = call_pkg->nd_command;
if ((1 << func) & NVDIMM_INTEL_SECURITY_CMDMASK)
return -EOPNOTSUPP;
}
return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
}
int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
enum nfit_ars_state req_type) enum nfit_ars_state req_type)
{ {
...@@ -3474,7 +3535,13 @@ static int acpi_nfit_add(struct acpi_device *adev) ...@@ -3474,7 +3535,13 @@ static int acpi_nfit_add(struct acpi_device *adev)
status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
if (ACPI_FAILURE(status)) { if (ACPI_FAILURE(status)) {
/* This is ok, we could have an nvdimm hotplugged later */ /* The NVDIMM root device allows OS to trigger enumeration of
* NVDIMMs through NFIT at boot time and re-enumeration at
* root level via the _FIT method during runtime.
* This is ok to return 0 here, we could have an nvdimm
* hotplugged later and evaluate _FIT method which returns
* data in the format of a series of NFIT Structures.
*/
dev_dbg(dev, "failed to find NFIT at startup\n"); dev_dbg(dev, "failed to find NFIT at startup\n");
return 0; return 0;
} }
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2018 Intel Corporation. All rights reserved. */
#include <linux/libnvdimm.h>
#include <linux/ndctl.h>
#include <linux/acpi.h>
#include <asm/smp.h>
#include "intel.h"
#include "nfit.h"
static enum nvdimm_security_state intel_security_state(struct nvdimm *nvdimm,
enum nvdimm_passphrase_type ptype)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_get_security_state cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_GET_SECURITY_STATE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_out =
sizeof(struct nd_intel_get_security_state),
.nd_fw_size =
sizeof(struct nd_intel_get_security_state),
},
};
int rc;
if (!test_bit(NVDIMM_INTEL_GET_SECURITY_STATE, &nfit_mem->dsm_mask))
return -ENXIO;
/*
* Short circuit the state retrieval while we are doing overwrite.
* The DSM spec states that the security state is indeterminate
* until the overwrite DSM completes.
*/
if (nvdimm_in_overwrite(nvdimm) && ptype == NVDIMM_USER)
return NVDIMM_SECURITY_OVERWRITE;
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
if (nd_cmd.cmd.status)
return -EIO;
/* check and see if security is enabled and locked */
if (ptype == NVDIMM_MASTER) {
if (nd_cmd.cmd.extended_state & ND_INTEL_SEC_ESTATE_ENABLED)
return NVDIMM_SECURITY_UNLOCKED;
else if (nd_cmd.cmd.extended_state &
ND_INTEL_SEC_ESTATE_PLIMIT)
return NVDIMM_SECURITY_FROZEN;
} else {
if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_UNSUPPORTED)
return -ENXIO;
else if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_ENABLED) {
if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_LOCKED)
return NVDIMM_SECURITY_LOCKED;
else if (nd_cmd.cmd.state & ND_INTEL_SEC_STATE_FROZEN
|| nd_cmd.cmd.state &
ND_INTEL_SEC_STATE_PLIMIT)
return NVDIMM_SECURITY_FROZEN;
else
return NVDIMM_SECURITY_UNLOCKED;
}
}
/* this should cover master security disabled as well */
return NVDIMM_SECURITY_DISABLED;
}
static int intel_security_freeze(struct nvdimm *nvdimm)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_freeze_lock cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_FREEZE_LOCK,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
int rc;
if (!test_bit(NVDIMM_INTEL_FREEZE_LOCK, &nfit_mem->dsm_mask))
return -ENOTTY;
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
if (nd_cmd.cmd.status)
return -EIO;
return 0;
}
static int intel_security_change_key(struct nvdimm *nvdimm,
const struct nvdimm_key_data *old_data,
const struct nvdimm_key_data *new_data,
enum nvdimm_passphrase_type ptype)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
unsigned int cmd = ptype == NVDIMM_MASTER ?
NVDIMM_INTEL_SET_MASTER_PASSPHRASE :
NVDIMM_INTEL_SET_PASSPHRASE;
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_set_passphrase cmd;
} nd_cmd = {
.pkg = {
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE * 2,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
.nd_command = cmd,
},
};
int rc;
if (!test_bit(cmd, &nfit_mem->dsm_mask))
return -ENOTTY;
if (old_data)
memcpy(nd_cmd.cmd.old_pass, old_data->data,
sizeof(nd_cmd.cmd.old_pass));
memcpy(nd_cmd.cmd.new_pass, new_data->data,
sizeof(nd_cmd.cmd.new_pass));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
return 0;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_NOT_SUPPORTED:
return -EOPNOTSUPP;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -EIO;
}
}
static void nvdimm_invalidate_cache(void);
static int intel_security_unlock(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data)
{
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_unlock_unit cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_UNLOCK_UNIT,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
int rc;
if (!test_bit(NVDIMM_INTEL_UNLOCK_UNIT, &nfit_mem->dsm_mask))
return -ENOTTY;
memcpy(nd_cmd.cmd.passphrase, key_data->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
default:
return -EIO;
}
/* DIMM unlocked, invalidate all CPU caches before we read it */
nvdimm_invalidate_cache();
return 0;
}
static int intel_security_disable(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_disable_passphrase cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_DISABLE_PASSPHRASE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
if (!test_bit(NVDIMM_INTEL_DISABLE_PASSPHRASE, &nfit_mem->dsm_mask))
return -ENOTTY;
memcpy(nd_cmd.cmd.passphrase, key_data->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -ENXIO;
}
return 0;
}
static int intel_security_erase(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key,
enum nvdimm_passphrase_type ptype)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
unsigned int cmd = ptype == NVDIMM_MASTER ?
NVDIMM_INTEL_MASTER_SECURE_ERASE : NVDIMM_INTEL_SECURE_ERASE;
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_secure_erase cmd;
} nd_cmd = {
.pkg = {
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
.nd_command = cmd,
},
};
if (!test_bit(cmd, &nfit_mem->dsm_mask))
return -ENOTTY;
/* flush all cache before we erase DIMM */
nvdimm_invalidate_cache();
memcpy(nd_cmd.cmd.passphrase, key->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_NOT_SUPPORTED:
return -EOPNOTSUPP;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -ENXIO;
}
/* DIMM erased, invalidate all CPU caches before we read it */
nvdimm_invalidate_cache();
return 0;
}
static int intel_security_query_overwrite(struct nvdimm *nvdimm)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_query_overwrite cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_QUERY_OVERWRITE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
if (!test_bit(NVDIMM_INTEL_QUERY_OVERWRITE, &nfit_mem->dsm_mask))
return -ENOTTY;
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
break;
case ND_INTEL_STATUS_OQUERY_INPROGRESS:
return -EBUSY;
default:
return -ENXIO;
}
/* flush all cache before we make the nvdimms available */
nvdimm_invalidate_cache();
return 0;
}
static int intel_security_overwrite(struct nvdimm *nvdimm,
const struct nvdimm_key_data *nkey)
{
int rc;
struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
struct {
struct nd_cmd_pkg pkg;
struct nd_intel_overwrite cmd;
} nd_cmd = {
.pkg = {
.nd_command = NVDIMM_INTEL_OVERWRITE,
.nd_family = NVDIMM_FAMILY_INTEL,
.nd_size_in = ND_INTEL_PASSPHRASE_SIZE,
.nd_size_out = ND_INTEL_STATUS_SIZE,
.nd_fw_size = ND_INTEL_STATUS_SIZE,
},
};
if (!test_bit(NVDIMM_INTEL_OVERWRITE, &nfit_mem->dsm_mask))
return -ENOTTY;
/* flush all cache before we erase DIMM */
nvdimm_invalidate_cache();
if (nkey)
memcpy(nd_cmd.cmd.passphrase, nkey->data,
sizeof(nd_cmd.cmd.passphrase));
rc = nvdimm_ctl(nvdimm, ND_CMD_CALL, &nd_cmd, sizeof(nd_cmd), NULL);
if (rc < 0)
return rc;
switch (nd_cmd.cmd.status) {
case 0:
return 0;
case ND_INTEL_STATUS_OVERWRITE_UNSUPPORTED:
return -ENOTSUPP;
case ND_INTEL_STATUS_INVALID_PASS:
return -EINVAL;
case ND_INTEL_STATUS_INVALID_STATE:
default:
return -ENXIO;
}
}
/*
* TODO: define a cross arch wbinvd equivalent when/if
* NVDIMM_FAMILY_INTEL command support arrives on another arch.
*/
#ifdef CONFIG_X86
static void nvdimm_invalidate_cache(void)
{
wbinvd_on_all_cpus();
}
#else
static void nvdimm_invalidate_cache(void)
{
WARN_ON_ONCE("cache invalidation required after unlock\n");
}
#endif
static const struct nvdimm_security_ops __intel_security_ops = {
.state = intel_security_state,
.freeze = intel_security_freeze,
.change_key = intel_security_change_key,
.disable = intel_security_disable,
#ifdef CONFIG_X86
.unlock = intel_security_unlock,
.erase = intel_security_erase,
.overwrite = intel_security_overwrite,
.query_overwrite = intel_security_query_overwrite,
#endif
};
const struct nvdimm_security_ops *intel_security_ops = &__intel_security_ops;
...@@ -35,4 +35,80 @@ struct nd_intel_smart { ...@@ -35,4 +35,80 @@ struct nd_intel_smart {
}; };
} __packed; } __packed;
extern const struct nvdimm_security_ops *intel_security_ops;
#define ND_INTEL_STATUS_SIZE 4
#define ND_INTEL_PASSPHRASE_SIZE 32
#define ND_INTEL_STATUS_NOT_SUPPORTED 1
#define ND_INTEL_STATUS_RETRY 5
#define ND_INTEL_STATUS_NOT_READY 9
#define ND_INTEL_STATUS_INVALID_STATE 10
#define ND_INTEL_STATUS_INVALID_PASS 11
#define ND_INTEL_STATUS_OVERWRITE_UNSUPPORTED 0x10007
#define ND_INTEL_STATUS_OQUERY_INPROGRESS 0x10007
#define ND_INTEL_STATUS_OQUERY_SEQUENCE_ERR 0x20007
#define ND_INTEL_SEC_STATE_ENABLED 0x02
#define ND_INTEL_SEC_STATE_LOCKED 0x04
#define ND_INTEL_SEC_STATE_FROZEN 0x08
#define ND_INTEL_SEC_STATE_PLIMIT 0x10
#define ND_INTEL_SEC_STATE_UNSUPPORTED 0x20
#define ND_INTEL_SEC_STATE_OVERWRITE 0x40
#define ND_INTEL_SEC_ESTATE_ENABLED 0x01
#define ND_INTEL_SEC_ESTATE_PLIMIT 0x02
struct nd_intel_get_security_state {
u32 status;
u8 extended_state;
u8 reserved[3];
u8 state;
u8 reserved1[3];
} __packed;
struct nd_intel_set_passphrase {
u8 old_pass[ND_INTEL_PASSPHRASE_SIZE];
u8 new_pass[ND_INTEL_PASSPHRASE_SIZE];
u32 status;
} __packed;
struct nd_intel_unlock_unit {
u8 passphrase[ND_INTEL_PASSPHRASE_SIZE];
u32 status;
} __packed;
struct nd_intel_disable_passphrase {
u8 passphrase[ND_INTEL_PASSPHRASE_SIZE];
u32 status;
} __packed;
struct nd_intel_freeze_lock {
u32 status;
} __packed;
struct nd_intel_secure_erase {
u8 passphrase[ND_INTEL_PASSPHRASE_SIZE];
u32 status;
} __packed;
struct nd_intel_overwrite {
u8 passphrase[ND_INTEL_PASSPHRASE_SIZE];
u32 status;
} __packed;
struct nd_intel_query_overwrite {
u32 status;
} __packed;
struct nd_intel_set_master_passphrase {
u8 old_pass[ND_INTEL_PASSPHRASE_SIZE];
u8 new_pass[ND_INTEL_PASSPHRASE_SIZE];
u32 status;
} __packed;
struct nd_intel_master_secure_erase {
u8 passphrase[ND_INTEL_PASSPHRASE_SIZE];
u32 status;
} __packed;
#endif #endif
...@@ -60,14 +60,33 @@ enum nvdimm_family_cmds { ...@@ -60,14 +60,33 @@ enum nvdimm_family_cmds {
NVDIMM_INTEL_QUERY_FWUPDATE = 16, NVDIMM_INTEL_QUERY_FWUPDATE = 16,
NVDIMM_INTEL_SET_THRESHOLD = 17, NVDIMM_INTEL_SET_THRESHOLD = 17,
NVDIMM_INTEL_INJECT_ERROR = 18, NVDIMM_INTEL_INJECT_ERROR = 18,
NVDIMM_INTEL_GET_SECURITY_STATE = 19,
NVDIMM_INTEL_SET_PASSPHRASE = 20,
NVDIMM_INTEL_DISABLE_PASSPHRASE = 21,
NVDIMM_INTEL_UNLOCK_UNIT = 22,
NVDIMM_INTEL_FREEZE_LOCK = 23,
NVDIMM_INTEL_SECURE_ERASE = 24,
NVDIMM_INTEL_OVERWRITE = 25,
NVDIMM_INTEL_QUERY_OVERWRITE = 26,
NVDIMM_INTEL_SET_MASTER_PASSPHRASE = 27,
NVDIMM_INTEL_MASTER_SECURE_ERASE = 28,
}; };
#define NVDIMM_INTEL_SECURITY_CMDMASK \
(1 << NVDIMM_INTEL_GET_SECURITY_STATE | 1 << NVDIMM_INTEL_SET_PASSPHRASE \
| 1 << NVDIMM_INTEL_DISABLE_PASSPHRASE | 1 << NVDIMM_INTEL_UNLOCK_UNIT \
| 1 << NVDIMM_INTEL_FREEZE_LOCK | 1 << NVDIMM_INTEL_SECURE_ERASE \
| 1 << NVDIMM_INTEL_OVERWRITE | 1 << NVDIMM_INTEL_QUERY_OVERWRITE \
| 1 << NVDIMM_INTEL_SET_MASTER_PASSPHRASE \
| 1 << NVDIMM_INTEL_MASTER_SECURE_ERASE)
#define NVDIMM_INTEL_CMDMASK \ #define NVDIMM_INTEL_CMDMASK \
(NVDIMM_STANDARD_CMDMASK | 1 << NVDIMM_INTEL_GET_MODES \ (NVDIMM_STANDARD_CMDMASK | 1 << NVDIMM_INTEL_GET_MODES \
| 1 << NVDIMM_INTEL_GET_FWINFO | 1 << NVDIMM_INTEL_START_FWUPDATE \ | 1 << NVDIMM_INTEL_GET_FWINFO | 1 << NVDIMM_INTEL_START_FWUPDATE \
| 1 << NVDIMM_INTEL_SEND_FWUPDATE | 1 << NVDIMM_INTEL_FINISH_FWUPDATE \ | 1 << NVDIMM_INTEL_SEND_FWUPDATE | 1 << NVDIMM_INTEL_FINISH_FWUPDATE \
| 1 << NVDIMM_INTEL_QUERY_FWUPDATE | 1 << NVDIMM_INTEL_SET_THRESHOLD \ | 1 << NVDIMM_INTEL_QUERY_FWUPDATE | 1 << NVDIMM_INTEL_SET_THRESHOLD \
| 1 << NVDIMM_INTEL_INJECT_ERROR | 1 << NVDIMM_INTEL_LATCH_SHUTDOWN) | 1 << NVDIMM_INTEL_INJECT_ERROR | 1 << NVDIMM_INTEL_LATCH_SHUTDOWN \
| NVDIMM_INTEL_SECURITY_CMDMASK)
enum nfit_uuids { enum nfit_uuids {
/* for simplicity alias the uuid index with the family id */ /* for simplicity alias the uuid index with the family id */
...@@ -164,6 +183,8 @@ enum nfit_mem_flags { ...@@ -164,6 +183,8 @@ enum nfit_mem_flags {
NFIT_MEM_DIRTY_COUNT, NFIT_MEM_DIRTY_COUNT,
}; };
#define NFIT_DIMM_ID_LEN 22
/* assembled tables for a given dimm/memory-device */ /* assembled tables for a given dimm/memory-device */
struct nfit_mem { struct nfit_mem {
struct nvdimm *nvdimm; struct nvdimm *nvdimm;
...@@ -181,6 +202,7 @@ struct nfit_mem { ...@@ -181,6 +202,7 @@ struct nfit_mem {
struct list_head list; struct list_head list;
struct acpi_device *adev; struct acpi_device *adev;
struct acpi_nfit_desc *acpi_desc; struct acpi_nfit_desc *acpi_desc;
char id[NFIT_DIMM_ID_LEN+1];
struct resource *flush_wpq; struct resource *flush_wpq;
unsigned long dsm_mask; unsigned long dsm_mask;
unsigned long flags; unsigned long flags;
......
...@@ -112,4 +112,9 @@ config OF_PMEM ...@@ -112,4 +112,9 @@ config OF_PMEM
Select Y if unsure. Select Y if unsure.
config NVDIMM_KEYS
def_bool y
depends on ENCRYPTED_KEYS
depends on (LIBNVDIMM=ENCRYPTED_KEYS) || LIBNVDIMM=m
endif endif
...@@ -27,3 +27,4 @@ libnvdimm-$(CONFIG_ND_CLAIM) += claim.o ...@@ -27,3 +27,4 @@ libnvdimm-$(CONFIG_ND_CLAIM) += claim.o
libnvdimm-$(CONFIG_BTT) += btt_devs.o libnvdimm-$(CONFIG_BTT) += btt_devs.o
libnvdimm-$(CONFIG_NVDIMM_PFN) += pfn_devs.o libnvdimm-$(CONFIG_NVDIMM_PFN) += pfn_devs.o
libnvdimm-$(CONFIG_NVDIMM_DAX) += dax_devs.o libnvdimm-$(CONFIG_NVDIMM_DAX) += dax_devs.o
libnvdimm-$(CONFIG_NVDIMM_KEYS) += security.o
...@@ -331,6 +331,12 @@ struct nvdimm_bus *to_nvdimm_bus(struct device *dev) ...@@ -331,6 +331,12 @@ struct nvdimm_bus *to_nvdimm_bus(struct device *dev)
} }
EXPORT_SYMBOL_GPL(to_nvdimm_bus); EXPORT_SYMBOL_GPL(to_nvdimm_bus);
struct nvdimm_bus *nvdimm_to_bus(struct nvdimm *nvdimm)
{
return to_nvdimm_bus(nvdimm->dev.parent);
}
EXPORT_SYMBOL_GPL(nvdimm_to_bus);
struct nvdimm_bus *nvdimm_bus_register(struct device *parent, struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
struct nvdimm_bus_descriptor *nd_desc) struct nvdimm_bus_descriptor *nd_desc)
{ {
...@@ -344,12 +350,12 @@ struct nvdimm_bus *nvdimm_bus_register(struct device *parent, ...@@ -344,12 +350,12 @@ struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
INIT_LIST_HEAD(&nvdimm_bus->mapping_list); INIT_LIST_HEAD(&nvdimm_bus->mapping_list);
init_waitqueue_head(&nvdimm_bus->probe_wait); init_waitqueue_head(&nvdimm_bus->probe_wait);
nvdimm_bus->id = ida_simple_get(&nd_ida, 0, 0, GFP_KERNEL); nvdimm_bus->id = ida_simple_get(&nd_ida, 0, 0, GFP_KERNEL);
mutex_init(&nvdimm_bus->reconfig_mutex);
badrange_init(&nvdimm_bus->badrange);
if (nvdimm_bus->id < 0) { if (nvdimm_bus->id < 0) {
kfree(nvdimm_bus); kfree(nvdimm_bus);
return NULL; return NULL;
} }
mutex_init(&nvdimm_bus->reconfig_mutex);
badrange_init(&nvdimm_bus->badrange);
nvdimm_bus->nd_desc = nd_desc; nvdimm_bus->nd_desc = nd_desc;
nvdimm_bus->dev.parent = parent; nvdimm_bus->dev.parent = parent;
nvdimm_bus->dev.release = nvdimm_bus_release; nvdimm_bus->dev.release = nvdimm_bus_release;
...@@ -387,9 +393,24 @@ static int child_unregister(struct device *dev, void *data) ...@@ -387,9 +393,24 @@ static int child_unregister(struct device *dev, void *data)
* i.e. remove classless children * i.e. remove classless children
*/ */
if (dev->class) if (dev->class)
/* pass */; return 0;
else
if (is_nvdimm(dev)) {
struct nvdimm *nvdimm = to_nvdimm(dev);
bool dev_put = false;
/* We are shutting down. Make state frozen artificially. */
nvdimm_bus_lock(dev);
nvdimm->sec.state = NVDIMM_SECURITY_FROZEN;
if (test_and_clear_bit(NDD_WORK_PENDING, &nvdimm->flags))
dev_put = true;
nvdimm_bus_unlock(dev);
cancel_delayed_work_sync(&nvdimm->dwork);
if (dev_put)
put_device(dev);
}
nd_device_unregister(dev, ND_SYNC); nd_device_unregister(dev, ND_SYNC);
return 0; return 0;
} }
...@@ -902,7 +923,7 @@ static int nd_cmd_clear_to_send(struct nvdimm_bus *nvdimm_bus, ...@@ -902,7 +923,7 @@ static int nd_cmd_clear_to_send(struct nvdimm_bus *nvdimm_bus,
/* ask the bus provider if it would like to block this request */ /* ask the bus provider if it would like to block this request */
if (nd_desc->clear_to_send) { if (nd_desc->clear_to_send) {
int rc = nd_desc->clear_to_send(nd_desc, nvdimm, cmd); int rc = nd_desc->clear_to_send(nd_desc, nvdimm, cmd, data);
if (rc) if (rc)
return rc; return rc;
......
...@@ -34,7 +34,11 @@ static int nvdimm_probe(struct device *dev) ...@@ -34,7 +34,11 @@ static int nvdimm_probe(struct device *dev)
return rc; return rc;
} }
/* reset locked, to be validated below... */ /*
* The locked status bit reflects explicit status codes from the
* label reading commands, revalidate it each time the driver is
* activated and re-reads the label area.
*/
nvdimm_clear_locked(dev); nvdimm_clear_locked(dev);
ndd = kzalloc(sizeof(*ndd), GFP_KERNEL); ndd = kzalloc(sizeof(*ndd), GFP_KERNEL);
...@@ -51,6 +55,16 @@ static int nvdimm_probe(struct device *dev) ...@@ -51,6 +55,16 @@ static int nvdimm_probe(struct device *dev)
get_device(dev); get_device(dev);
kref_init(&ndd->kref); kref_init(&ndd->kref);
/*
* Attempt to unlock, if the DIMM supports security commands,
* otherwise the locked indication is determined by explicit
* status codes from the label reading commands.
*/
rc = nvdimm_security_unlock(dev);
if (rc < 0)
dev_dbg(dev, "failed to unlock dimm: %d\n", rc);
/* /*
* EACCES failures reading the namespace label-area-properties * EACCES failures reading the namespace label-area-properties
* are interpreted as the DIMM capacity being locked but the * are interpreted as the DIMM capacity being locked but the
......
...@@ -370,23 +370,172 @@ static ssize_t available_slots_show(struct device *dev, ...@@ -370,23 +370,172 @@ static ssize_t available_slots_show(struct device *dev,
} }
static DEVICE_ATTR_RO(available_slots); static DEVICE_ATTR_RO(available_slots);
__weak ssize_t security_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
switch (nvdimm->sec.state) {
case NVDIMM_SECURITY_DISABLED:
return sprintf(buf, "disabled\n");
case NVDIMM_SECURITY_UNLOCKED:
return sprintf(buf, "unlocked\n");
case NVDIMM_SECURITY_LOCKED:
return sprintf(buf, "locked\n");
case NVDIMM_SECURITY_FROZEN:
return sprintf(buf, "frozen\n");
case NVDIMM_SECURITY_OVERWRITE:
return sprintf(buf, "overwrite\n");
default:
return -ENOTTY;
}
return -ENOTTY;
}
#define OPS \
C( OP_FREEZE, "freeze", 1), \
C( OP_DISABLE, "disable", 2), \
C( OP_UPDATE, "update", 3), \
C( OP_ERASE, "erase", 2), \
C( OP_OVERWRITE, "overwrite", 2), \
C( OP_MASTER_UPDATE, "master_update", 3), \
C( OP_MASTER_ERASE, "master_erase", 2)
#undef C
#define C(a, b, c) a
enum nvdimmsec_op_ids { OPS };
#undef C
#define C(a, b, c) { b, c }
static struct {
const char *name;
int args;
} ops[] = { OPS };
#undef C
#define SEC_CMD_SIZE 32
#define KEY_ID_SIZE 10
static ssize_t __security_store(struct device *dev, const char *buf, size_t len)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
ssize_t rc;
char cmd[SEC_CMD_SIZE+1], keystr[KEY_ID_SIZE+1],
nkeystr[KEY_ID_SIZE+1];
unsigned int key, newkey;
int i;
if (atomic_read(&nvdimm->busy))
return -EBUSY;
rc = sscanf(buf, "%"__stringify(SEC_CMD_SIZE)"s"
" %"__stringify(KEY_ID_SIZE)"s"
" %"__stringify(KEY_ID_SIZE)"s",
cmd, keystr, nkeystr);
if (rc < 1)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(ops); i++)
if (sysfs_streq(cmd, ops[i].name))
break;
if (i >= ARRAY_SIZE(ops))
return -EINVAL;
if (ops[i].args > 1)
rc = kstrtouint(keystr, 0, &key);
if (rc >= 0 && ops[i].args > 2)
rc = kstrtouint(nkeystr, 0, &newkey);
if (rc < 0)
return rc;
if (i == OP_FREEZE) {
dev_dbg(dev, "freeze\n");
rc = nvdimm_security_freeze(nvdimm);
} else if (i == OP_DISABLE) {
dev_dbg(dev, "disable %u\n", key);
rc = nvdimm_security_disable(nvdimm, key);
} else if (i == OP_UPDATE) {
dev_dbg(dev, "update %u %u\n", key, newkey);
rc = nvdimm_security_update(nvdimm, key, newkey, NVDIMM_USER);
} else if (i == OP_ERASE) {
dev_dbg(dev, "erase %u\n", key);
rc = nvdimm_security_erase(nvdimm, key, NVDIMM_USER);
} else if (i == OP_OVERWRITE) {
dev_dbg(dev, "overwrite %u\n", key);
rc = nvdimm_security_overwrite(nvdimm, key);
} else if (i == OP_MASTER_UPDATE) {
dev_dbg(dev, "master_update %u %u\n", key, newkey);
rc = nvdimm_security_update(nvdimm, key, newkey,
NVDIMM_MASTER);
} else if (i == OP_MASTER_ERASE) {
dev_dbg(dev, "master_erase %u\n", key);
rc = nvdimm_security_erase(nvdimm, key,
NVDIMM_MASTER);
} else
return -EINVAL;
if (rc == 0)
rc = len;
return rc;
}
static ssize_t security_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
ssize_t rc;
/*
* Require all userspace triggered security management to be
* done while probing is idle and the DIMM is not in active use
* in any region.
*/
device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
rc = __security_store(dev, buf, len);
nvdimm_bus_unlock(dev);
device_unlock(dev);
return rc;
}
static DEVICE_ATTR_RW(security);
static struct attribute *nvdimm_attributes[] = { static struct attribute *nvdimm_attributes[] = {
&dev_attr_state.attr, &dev_attr_state.attr,
&dev_attr_flags.attr, &dev_attr_flags.attr,
&dev_attr_commands.attr, &dev_attr_commands.attr,
&dev_attr_available_slots.attr, &dev_attr_available_slots.attr,
&dev_attr_security.attr,
NULL, NULL,
}; };
static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct nvdimm *nvdimm = to_nvdimm(dev);
if (a != &dev_attr_security.attr)
return a->mode;
if (nvdimm->sec.state < 0)
return 0;
/* Are there any state mutation ops? */
if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable
|| nvdimm->sec.ops->change_key
|| nvdimm->sec.ops->erase
|| nvdimm->sec.ops->overwrite)
return a->mode;
return 0444;
}
struct attribute_group nvdimm_attribute_group = { struct attribute_group nvdimm_attribute_group = {
.attrs = nvdimm_attributes, .attrs = nvdimm_attributes,
.is_visible = nvdimm_visible,
}; };
EXPORT_SYMBOL_GPL(nvdimm_attribute_group); EXPORT_SYMBOL_GPL(nvdimm_attribute_group);
struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus,
const struct attribute_group **groups, unsigned long flags, void *provider_data, const struct attribute_group **groups,
unsigned long cmd_mask, int num_flush, unsigned long flags, unsigned long cmd_mask, int num_flush,
struct resource *flush_wpq) struct resource *flush_wpq, const char *dimm_id,
const struct nvdimm_security_ops *sec_ops)
{ {
struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL); struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL);
struct device *dev; struct device *dev;
...@@ -399,6 +548,8 @@ struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, ...@@ -399,6 +548,8 @@ struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data,
kfree(nvdimm); kfree(nvdimm);
return NULL; return NULL;
} }
nvdimm->dimm_id = dimm_id;
nvdimm->provider_data = provider_data; nvdimm->provider_data = provider_data;
nvdimm->flags = flags; nvdimm->flags = flags;
nvdimm->cmd_mask = cmd_mask; nvdimm->cmd_mask = cmd_mask;
...@@ -411,11 +562,60 @@ struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, ...@@ -411,11 +562,60 @@ struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data,
dev->type = &nvdimm_device_type; dev->type = &nvdimm_device_type;
dev->devt = MKDEV(nvdimm_major, nvdimm->id); dev->devt = MKDEV(nvdimm_major, nvdimm->id);
dev->groups = groups; dev->groups = groups;
nvdimm->sec.ops = sec_ops;
nvdimm->sec.overwrite_tmo = 0;
INIT_DELAYED_WORK(&nvdimm->dwork, nvdimm_security_overwrite_query);
/*
* Security state must be initialized before device_add() for
* attribute visibility.
*/
/* get security state and extended (master) state */
nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER);
nvdimm->sec.ext_state = nvdimm_security_state(nvdimm, NVDIMM_MASTER);
nd_device_register(dev); nd_device_register(dev);
return nvdimm; return nvdimm;
} }
EXPORT_SYMBOL_GPL(nvdimm_create); EXPORT_SYMBOL_GPL(__nvdimm_create);
int nvdimm_security_setup_events(struct nvdimm *nvdimm)
{
nvdimm->sec.overwrite_state = sysfs_get_dirent(nvdimm->dev.kobj.sd,
"security");
if (!nvdimm->sec.overwrite_state)
return -ENODEV;
return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_security_setup_events);
int nvdimm_in_overwrite(struct nvdimm *nvdimm)
{
return test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags);
}
EXPORT_SYMBOL_GPL(nvdimm_in_overwrite);
int nvdimm_security_freeze(struct nvdimm *nvdimm)
{
int rc;
WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze)
return -EOPNOTSUPP;
if (nvdimm->sec.state < 0)
return -EIO;
if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
dev_warn(&nvdimm->dev, "Overwrite operation in progress.\n");
return -EBUSY;
}
rc = nvdimm->sec.ops->freeze(nvdimm);
nvdimm->sec.state = nvdimm_security_state(nvdimm, NVDIMM_USER);
return rc;
}
int alias_dpa_busy(struct device *dev, void *data) int alias_dpa_busy(struct device *dev, void *data)
{ {
......
...@@ -944,8 +944,7 @@ static int __blk_label_update(struct nd_region *nd_region, ...@@ -944,8 +944,7 @@ static int __blk_label_update(struct nd_region *nd_region,
victims = 0; victims = 0;
if (old_num_resources) { if (old_num_resources) {
/* convert old local-label-map to dimm-slot victim-map */ /* convert old local-label-map to dimm-slot victim-map */
victim_map = kcalloc(BITS_TO_LONGS(nslot), sizeof(long), victim_map = bitmap_zalloc(nslot, GFP_KERNEL);
GFP_KERNEL);
if (!victim_map) if (!victim_map)
return -ENOMEM; return -ENOMEM;
...@@ -968,7 +967,7 @@ static int __blk_label_update(struct nd_region *nd_region, ...@@ -968,7 +967,7 @@ static int __blk_label_update(struct nd_region *nd_region,
/* don't allow updates that consume the last label */ /* don't allow updates that consume the last label */
if (nfree - alloc < 0 || nfree - alloc + victims < 1) { if (nfree - alloc < 0 || nfree - alloc + victims < 1) {
dev_info(&nsblk->common.dev, "insufficient label space\n"); dev_info(&nsblk->common.dev, "insufficient label space\n");
kfree(victim_map); bitmap_free(victim_map);
return -ENOSPC; return -ENOSPC;
} }
/* from here on we need to abort on error */ /* from here on we need to abort on error */
...@@ -1140,7 +1139,7 @@ static int __blk_label_update(struct nd_region *nd_region, ...@@ -1140,7 +1139,7 @@ static int __blk_label_update(struct nd_region *nd_region,
out: out:
kfree(old_res_list); kfree(old_res_list);
kfree(victim_map); bitmap_free(victim_map);
return rc; return rc;
abort: abort:
......
...@@ -270,11 +270,10 @@ static ssize_t __alt_name_store(struct device *dev, const char *buf, ...@@ -270,11 +270,10 @@ static ssize_t __alt_name_store(struct device *dev, const char *buf,
if (dev->driver || to_ndns(dev)->claim) if (dev->driver || to_ndns(dev)->claim)
return -EBUSY; return -EBUSY;
input = kmemdup(buf, len + 1, GFP_KERNEL); input = kstrndup(buf, len, GFP_KERNEL);
if (!input) if (!input)
return -ENOMEM; return -ENOMEM;
input[len] = '\0';
pos = strim(input); pos = strim(input);
if (strlen(pos) + 1 > NSLABEL_NAME_LEN) { if (strlen(pos) + 1 > NSLABEL_NAME_LEN) {
rc = -EINVAL; rc = -EINVAL;
......
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
extern struct list_head nvdimm_bus_list; extern struct list_head nvdimm_bus_list;
extern struct mutex nvdimm_bus_list_mutex; extern struct mutex nvdimm_bus_list_mutex;
extern int nvdimm_major; extern int nvdimm_major;
extern struct workqueue_struct *nvdimm_wq;
struct nvdimm_bus { struct nvdimm_bus {
struct nvdimm_bus_descriptor *nd_desc; struct nvdimm_bus_descriptor *nd_desc;
...@@ -41,8 +42,64 @@ struct nvdimm { ...@@ -41,8 +42,64 @@ struct nvdimm {
atomic_t busy; atomic_t busy;
int id, num_flush; int id, num_flush;
struct resource *flush_wpq; struct resource *flush_wpq;
const char *dimm_id;
struct {
const struct nvdimm_security_ops *ops;
enum nvdimm_security_state state;
enum nvdimm_security_state ext_state;
unsigned int overwrite_tmo;
struct kernfs_node *overwrite_state;
} sec;
struct delayed_work dwork;
}; };
static inline enum nvdimm_security_state nvdimm_security_state(
struct nvdimm *nvdimm, bool master)
{
if (!nvdimm->sec.ops)
return -ENXIO;
return nvdimm->sec.ops->state(nvdimm, master);
}
int nvdimm_security_freeze(struct nvdimm *nvdimm);
#if IS_ENABLED(CONFIG_NVDIMM_KEYS)
int nvdimm_security_disable(struct nvdimm *nvdimm, unsigned int keyid);
int nvdimm_security_update(struct nvdimm *nvdimm, unsigned int keyid,
unsigned int new_keyid,
enum nvdimm_passphrase_type pass_type);
int nvdimm_security_erase(struct nvdimm *nvdimm, unsigned int keyid,
enum nvdimm_passphrase_type pass_type);
int nvdimm_security_overwrite(struct nvdimm *nvdimm, unsigned int keyid);
void nvdimm_security_overwrite_query(struct work_struct *work);
#else
static inline int nvdimm_security_disable(struct nvdimm *nvdimm,
unsigned int keyid)
{
return -EOPNOTSUPP;
}
static inline int nvdimm_security_update(struct nvdimm *nvdimm,
unsigned int keyid,
unsigned int new_keyid,
enum nvdimm_passphrase_type pass_type)
{
return -EOPNOTSUPP;
}
static inline int nvdimm_security_erase(struct nvdimm *nvdimm,
unsigned int keyid,
enum nvdimm_passphrase_type pass_type)
{
return -EOPNOTSUPP;
}
static inline int nvdimm_security_overwrite(struct nvdimm *nvdimm,
unsigned int keyid)
{
return -EOPNOTSUPP;
}
static inline void nvdimm_security_overwrite_query(struct work_struct *work)
{
}
#endif
/** /**
* struct blk_alloc_info - tracking info for BLK dpa scanning * struct blk_alloc_info - tracking info for BLK dpa scanning
* @nd_mapping: blk region mapping boundaries * @nd_mapping: blk region mapping boundaries
......
...@@ -250,6 +250,14 @@ long nvdimm_clear_poison(struct device *dev, phys_addr_t phys, ...@@ -250,6 +250,14 @@ long nvdimm_clear_poison(struct device *dev, phys_addr_t phys,
void nvdimm_set_aliasing(struct device *dev); void nvdimm_set_aliasing(struct device *dev);
void nvdimm_set_locked(struct device *dev); void nvdimm_set_locked(struct device *dev);
void nvdimm_clear_locked(struct device *dev); void nvdimm_clear_locked(struct device *dev);
#if IS_ENABLED(CONFIG_NVDIMM_KEYS)
int nvdimm_security_unlock(struct device *dev);
#else
static inline int nvdimm_security_unlock(struct device *dev)
{
return 0;
}
#endif
struct nd_btt *to_nd_btt(struct device *dev); struct nd_btt *to_nd_btt(struct device *dev);
struct nd_gen_sb { struct nd_gen_sb {
......
...@@ -79,6 +79,11 @@ int nd_region_activate(struct nd_region *nd_region) ...@@ -79,6 +79,11 @@ int nd_region_activate(struct nd_region *nd_region)
struct nd_mapping *nd_mapping = &nd_region->mapping[i]; struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm; struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
nvdimm_bus_unlock(&nd_region->dev);
return -EBUSY;
}
/* at least one null hint slot per-dimm for the "no-hint" case */ /* at least one null hint slot per-dimm for the "no-hint" case */
flush_data_size += sizeof(void *); flush_data_size += sizeof(void *);
num_flush = min_not_zero(num_flush, nvdimm->num_flush); num_flush = min_not_zero(num_flush, nvdimm->num_flush);
......
This diff is collapsed.
...@@ -346,6 +346,9 @@ static inline key_serial_t key_serial(const struct key *key) ...@@ -346,6 +346,9 @@ static inline key_serial_t key_serial(const struct key *key)
extern void key_set_timeout(struct key *, unsigned); extern void key_set_timeout(struct key *, unsigned);
extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags,
key_perm_t perm);
/* /*
* The permissions required on a key that we're looking up. * The permissions required on a key that we're looking up.
*/ */
......
...@@ -38,6 +38,10 @@ enum { ...@@ -38,6 +38,10 @@ enum {
NDD_UNARMED = 1, NDD_UNARMED = 1,
/* locked memory devices should not be accessed */ /* locked memory devices should not be accessed */
NDD_LOCKED = 2, NDD_LOCKED = 2,
/* memory under security wipes should not be accessed */
NDD_SECURITY_OVERWRITE = 3,
/* tracking whether or not there is a pending device reference */
NDD_WORK_PENDING = 4,
/* need to set a limit somewhere, but yes, this is likely overkill */ /* need to set a limit somewhere, but yes, this is likely overkill */
ND_IOCTL_MAX_BUFLEN = SZ_4M, ND_IOCTL_MAX_BUFLEN = SZ_4M,
...@@ -87,7 +91,7 @@ struct nvdimm_bus_descriptor { ...@@ -87,7 +91,7 @@ struct nvdimm_bus_descriptor {
ndctl_fn ndctl; ndctl_fn ndctl;
int (*flush_probe)(struct nvdimm_bus_descriptor *nd_desc); int (*flush_probe)(struct nvdimm_bus_descriptor *nd_desc);
int (*clear_to_send)(struct nvdimm_bus_descriptor *nd_desc, int (*clear_to_send)(struct nvdimm_bus_descriptor *nd_desc,
struct nvdimm *nvdimm, unsigned int cmd); struct nvdimm *nvdimm, unsigned int cmd, void *data);
}; };
struct nd_cmd_desc { struct nd_cmd_desc {
...@@ -155,6 +159,46 @@ static inline struct nd_blk_region_desc *to_blk_region_desc( ...@@ -155,6 +159,46 @@ static inline struct nd_blk_region_desc *to_blk_region_desc(
} }
enum nvdimm_security_state {
NVDIMM_SECURITY_DISABLED,
NVDIMM_SECURITY_UNLOCKED,
NVDIMM_SECURITY_LOCKED,
NVDIMM_SECURITY_FROZEN,
NVDIMM_SECURITY_OVERWRITE,
};
#define NVDIMM_PASSPHRASE_LEN 32
#define NVDIMM_KEY_DESC_LEN 22
struct nvdimm_key_data {
u8 data[NVDIMM_PASSPHRASE_LEN];
};
enum nvdimm_passphrase_type {
NVDIMM_USER,
NVDIMM_MASTER,
};
struct nvdimm_security_ops {
enum nvdimm_security_state (*state)(struct nvdimm *nvdimm,
enum nvdimm_passphrase_type pass_type);
int (*freeze)(struct nvdimm *nvdimm);
int (*change_key)(struct nvdimm *nvdimm,
const struct nvdimm_key_data *old_data,
const struct nvdimm_key_data *new_data,
enum nvdimm_passphrase_type pass_type);
int (*unlock)(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data);
int (*disable)(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data);
int (*erase)(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data,
enum nvdimm_passphrase_type pass_type);
int (*overwrite)(struct nvdimm *nvdimm,
const struct nvdimm_key_data *key_data);
int (*query_overwrite)(struct nvdimm *nvdimm);
};
void badrange_init(struct badrange *badrange); void badrange_init(struct badrange *badrange);
int badrange_add(struct badrange *badrange, u64 addr, u64 length); int badrange_add(struct badrange *badrange, u64 addr, u64 length);
void badrange_forget(struct badrange *badrange, phys_addr_t start, void badrange_forget(struct badrange *badrange, phys_addr_t start,
...@@ -165,6 +209,7 @@ struct nvdimm_bus *nvdimm_bus_register(struct device *parent, ...@@ -165,6 +209,7 @@ struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
struct nvdimm_bus_descriptor *nfit_desc); struct nvdimm_bus_descriptor *nfit_desc);
void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus); void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus);
struct nvdimm_bus *to_nvdimm_bus(struct device *dev); struct nvdimm_bus *to_nvdimm_bus(struct device *dev);
struct nvdimm_bus *nvdimm_to_bus(struct nvdimm *nvdimm);
struct nvdimm *to_nvdimm(struct device *dev); struct nvdimm *to_nvdimm(struct device *dev);
struct nd_region *to_nd_region(struct device *dev); struct nd_region *to_nd_region(struct device *dev);
struct device *nd_region_dev(struct nd_region *nd_region); struct device *nd_region_dev(struct nd_region *nd_region);
...@@ -175,10 +220,21 @@ const char *nvdimm_name(struct nvdimm *nvdimm); ...@@ -175,10 +220,21 @@ const char *nvdimm_name(struct nvdimm *nvdimm);
struct kobject *nvdimm_kobj(struct nvdimm *nvdimm); struct kobject *nvdimm_kobj(struct nvdimm *nvdimm);
unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm); unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm);
void *nvdimm_provider_data(struct nvdimm *nvdimm); void *nvdimm_provider_data(struct nvdimm *nvdimm);
struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus,
const struct attribute_group **groups, unsigned long flags, void *provider_data, const struct attribute_group **groups,
unsigned long cmd_mask, int num_flush, unsigned long flags, unsigned long cmd_mask, int num_flush,
struct resource *flush_wpq); struct resource *flush_wpq, const char *dimm_id,
const struct nvdimm_security_ops *sec_ops);
static inline struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus,
void *provider_data, const struct attribute_group **groups,
unsigned long flags, unsigned long cmd_mask, int num_flush,
struct resource *flush_wpq)
{
return __nvdimm_create(nvdimm_bus, provider_data, groups, flags,
cmd_mask, num_flush, flush_wpq, NULL, NULL);
}
int nvdimm_security_setup_events(struct nvdimm *nvdimm);
const struct nd_cmd_desc *nd_cmd_dimm_desc(int cmd); const struct nd_cmd_desc *nd_cmd_dimm_desc(int cmd);
const struct nd_cmd_desc *nd_cmd_bus_desc(int cmd); const struct nd_cmd_desc *nd_cmd_bus_desc(int cmd);
u32 nd_cmd_in_size(struct nvdimm *nvdimm, int cmd, u32 nd_cmd_in_size(struct nvdimm *nvdimm, int cmd,
...@@ -204,6 +260,16 @@ u64 nd_fletcher64(void *addr, size_t len, bool le); ...@@ -204,6 +260,16 @@ u64 nd_fletcher64(void *addr, size_t len, bool le);
void nvdimm_flush(struct nd_region *nd_region); void nvdimm_flush(struct nd_region *nd_region);
int nvdimm_has_flush(struct nd_region *nd_region); int nvdimm_has_flush(struct nd_region *nd_region);
int nvdimm_has_cache(struct nd_region *nd_region); int nvdimm_has_cache(struct nd_region *nd_region);
int nvdimm_in_overwrite(struct nvdimm *nvdimm);
static inline int nvdimm_ctl(struct nvdimm *nvdimm, unsigned int cmd, void *buf,
unsigned int buf_len, int *cmd_rc)
{
struct nvdimm_bus *nvdimm_bus = nvdimm_to_bus(nvdimm);
struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
return nd_desc->ndctl(nd_desc, nvdimm, cmd, buf, buf_len, cmd_rc);
}
#ifdef CONFIG_ARCH_HAS_PMEM_API #ifdef CONFIG_ARCH_HAS_PMEM_API
#define ARCH_MEMREMAP_PMEM MEMREMAP_WB #define ARCH_MEMREMAP_PMEM MEMREMAP_WB
......
...@@ -45,6 +45,7 @@ static const char hmac_alg[] = "hmac(sha256)"; ...@@ -45,6 +45,7 @@ static const char hmac_alg[] = "hmac(sha256)";
static const char blkcipher_alg[] = "cbc(aes)"; static const char blkcipher_alg[] = "cbc(aes)";
static const char key_format_default[] = "default"; static const char key_format_default[] = "default";
static const char key_format_ecryptfs[] = "ecryptfs"; static const char key_format_ecryptfs[] = "ecryptfs";
static const char key_format_enc32[] = "enc32";
static unsigned int ivsize; static unsigned int ivsize;
static int blksize; static int blksize;
...@@ -54,6 +55,7 @@ static int blksize; ...@@ -54,6 +55,7 @@ static int blksize;
#define HASH_SIZE SHA256_DIGEST_SIZE #define HASH_SIZE SHA256_DIGEST_SIZE
#define MAX_DATA_SIZE 4096 #define MAX_DATA_SIZE 4096
#define MIN_DATA_SIZE 20 #define MIN_DATA_SIZE 20
#define KEY_ENC32_PAYLOAD_LEN 32
static struct crypto_shash *hash_tfm; static struct crypto_shash *hash_tfm;
...@@ -62,12 +64,13 @@ enum { ...@@ -62,12 +64,13 @@ enum {
}; };
enum { enum {
Opt_error = -1, Opt_default, Opt_ecryptfs Opt_error = -1, Opt_default, Opt_ecryptfs, Opt_enc32
}; };
static const match_table_t key_format_tokens = { static const match_table_t key_format_tokens = {
{Opt_default, "default"}, {Opt_default, "default"},
{Opt_ecryptfs, "ecryptfs"}, {Opt_ecryptfs, "ecryptfs"},
{Opt_enc32, "enc32"},
{Opt_error, NULL} {Opt_error, NULL}
}; };
...@@ -195,6 +198,7 @@ static int datablob_parse(char *datablob, const char **format, ...@@ -195,6 +198,7 @@ static int datablob_parse(char *datablob, const char **format,
key_format = match_token(p, key_format_tokens, args); key_format = match_token(p, key_format_tokens, args);
switch (key_format) { switch (key_format) {
case Opt_ecryptfs: case Opt_ecryptfs:
case Opt_enc32:
case Opt_default: case Opt_default:
*format = p; *format = p;
*master_desc = strsep(&datablob, " \t"); *master_desc = strsep(&datablob, " \t");
...@@ -625,15 +629,22 @@ static struct encrypted_key_payload *encrypted_key_alloc(struct key *key, ...@@ -625,15 +629,22 @@ static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
format_len = (!format) ? strlen(key_format_default) : strlen(format); format_len = (!format) ? strlen(key_format_default) : strlen(format);
decrypted_datalen = dlen; decrypted_datalen = dlen;
payload_datalen = decrypted_datalen; payload_datalen = decrypted_datalen;
if (format && !strcmp(format, key_format_ecryptfs)) { if (format) {
if (!strcmp(format, key_format_ecryptfs)) {
if (dlen != ECRYPTFS_MAX_KEY_BYTES) { if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
pr_err("encrypted_key: keylen for the ecryptfs format " pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
"must be equal to %d bytes\n",
ECRYPTFS_MAX_KEY_BYTES); ECRYPTFS_MAX_KEY_BYTES);
return ERR_PTR(-EINVAL); return ERR_PTR(-EINVAL);
} }
decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES; decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
payload_datalen = sizeof(struct ecryptfs_auth_tok); payload_datalen = sizeof(struct ecryptfs_auth_tok);
} else if (!strcmp(format, key_format_enc32)) {
if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
decrypted_datalen);
return ERR_PTR(-EINVAL);
}
}
} }
encrypted_datalen = roundup(decrypted_datalen, blksize); encrypted_datalen = roundup(decrypted_datalen, blksize);
......
...@@ -158,8 +158,6 @@ extern struct key *request_key_and_link(struct key_type *type, ...@@ -158,8 +158,6 @@ extern struct key *request_key_and_link(struct key_type *type,
extern bool lookup_user_key_possessed(const struct key *key, extern bool lookup_user_key_possessed(const struct key *key,
const struct key_match_data *match_data); const struct key_match_data *match_data);
extern key_ref_t lookup_user_key(key_serial_t id, unsigned long flags,
key_perm_t perm);
#define KEY_LOOKUP_CREATE 0x01 #define KEY_LOOKUP_CREATE 0x01
#define KEY_LOOKUP_PARTIAL 0x02 #define KEY_LOOKUP_PARTIAL 0x02
#define KEY_LOOKUP_FOR_UNLINK 0x04 #define KEY_LOOKUP_FOR_UNLINK 0x04
......
...@@ -754,6 +754,7 @@ key_ref_t lookup_user_key(key_serial_t id, unsigned long lflags, ...@@ -754,6 +754,7 @@ key_ref_t lookup_user_key(key_serial_t id, unsigned long lflags,
put_cred(ctx.cred); put_cred(ctx.cred);
goto try_again; goto try_again;
} }
EXPORT_SYMBOL(lookup_user_key);
/* /*
* Join the named keyring as the session keyring if possible else attempt to * Join the named keyring as the session keyring if possible else attempt to
......
...@@ -37,6 +37,7 @@ obj-$(CONFIG_DEV_DAX) += device_dax.o ...@@ -37,6 +37,7 @@ obj-$(CONFIG_DEV_DAX) += device_dax.o
obj-$(CONFIG_DEV_DAX_PMEM) += dax_pmem.o obj-$(CONFIG_DEV_DAX_PMEM) += dax_pmem.o
nfit-y := $(ACPI_SRC)/core.o nfit-y := $(ACPI_SRC)/core.o
nfit-y += $(ACPI_SRC)/intel.o
nfit-$(CONFIG_X86_MCE) += $(ACPI_SRC)/mce.o nfit-$(CONFIG_X86_MCE) += $(ACPI_SRC)/mce.o
nfit-y += acpi_nfit_test.o nfit-y += acpi_nfit_test.o
nfit-y += config_check.o nfit-y += config_check.o
...@@ -79,6 +80,8 @@ libnvdimm-$(CONFIG_ND_CLAIM) += $(NVDIMM_SRC)/claim.o ...@@ -79,6 +80,8 @@ libnvdimm-$(CONFIG_ND_CLAIM) += $(NVDIMM_SRC)/claim.o
libnvdimm-$(CONFIG_BTT) += $(NVDIMM_SRC)/btt_devs.o libnvdimm-$(CONFIG_BTT) += $(NVDIMM_SRC)/btt_devs.o
libnvdimm-$(CONFIG_NVDIMM_PFN) += $(NVDIMM_SRC)/pfn_devs.o libnvdimm-$(CONFIG_NVDIMM_PFN) += $(NVDIMM_SRC)/pfn_devs.o
libnvdimm-$(CONFIG_NVDIMM_DAX) += $(NVDIMM_SRC)/dax_devs.o libnvdimm-$(CONFIG_NVDIMM_DAX) += $(NVDIMM_SRC)/dax_devs.o
libnvdimm-$(CONFIG_NVDIMM_KEYS) += $(NVDIMM_SRC)/security.o
libnvdimm-y += dimm_devs.o
libnvdimm-y += libnvdimm_test.o libnvdimm-y += libnvdimm_test.o
libnvdimm-y += config_check.o libnvdimm-y += config_check.o
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright Intel Corp. 2018 */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/nd.h>
#include "pmem.h"
#include "pfn.h"
#include "nd.h"
#include "nd-core.h"
ssize_t security_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvdimm *nvdimm = to_nvdimm(dev);
/*
* For the test version we need to poll the "hardware" in order
* to get the updated status for unlock testing.
*/
nvdimm->sec.state = nvdimm_security_state(nvdimm, false);
nvdimm->sec.ext_state = nvdimm_security_state(nvdimm, true);
switch (nvdimm->sec.state) {
case NVDIMM_SECURITY_DISABLED:
return sprintf(buf, "disabled\n");
case NVDIMM_SECURITY_UNLOCKED:
return sprintf(buf, "unlocked\n");
case NVDIMM_SECURITY_LOCKED:
return sprintf(buf, "locked\n");
case NVDIMM_SECURITY_FROZEN:
return sprintf(buf, "frozen\n");
case NVDIMM_SECURITY_OVERWRITE:
return sprintf(buf, "overwrite\n");
default:
return -ENOTTY;
}
return -ENOTTY;
}
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment