- 09 Sep, 2019 37 commits
-
-
Josef Bacik authored
Another easy set to move over to block-group.c. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Move these bits first as they are the easiest to move. Export two of the helpers so they can be moved all at once. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor style updates ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
This is prep work for moving all of the block group cache code into its own file. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor comment updates ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
This is prep work for moving block_group_cache around. Having this in the header file makes the header file include need to be in a certain order, which is awkward, so just move it into free-space-cache.c and then we can re-arrange later. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Used only for in-memory state tracking. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The switch to open coded set/get has happend long time ago in 962a298f ("btrfs: kill the key type accessor helpers"), remove the stray helpers. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The status of flush bio is tracked as a status bit, changed in commit 1c3063b6 ("btrfs: cleanup device states define BTRFS_DEV_STATE_FLUSH_SENT"), the flush_bio_sent was forgotten. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
The bulk of the work done when cloning extents, at ioctl.c:btrfs_clone(), is done inside an if statement that checks if the found key has the type BTRFS_EXTENT_DATA_KEY. That if statement is redundant however, because btrfs_search_slot() always leaves us in a leaf slot that points to a key that is always greater then or equals to the search key, and our search key here has that type, and because we bail out before that if statement if the key at the given leaf slot is greater then BTRFS_EXTENT_DATA_KEY. Therefore just remove that if statement, not only because it is useless but mostly because it increases the nesting/indentation level in this function which is quite big and makes things a bit awkward whenever I need to fix something that requires changing btrfs_clone() (and it has been like that for many years already). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Simplify the code by removing variables that don't bring any real value as well as simplifying the checks when buidling the candidate list of devices. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
join_running_log_trans checks btrfs_root::log_root outside of btrfs_root::log_mutex to avoid contention on the mutex. Turns out this check is not necessary because the two callers of join_running_log_trans (both of which deal with removing entries from the tree-log during unlink) explicitly check whether the respective inode has been logged in the current transaction. If it hasn't then it won't have any items in the tree-log and call path will return before calling join_running_log_trans. If the check passes, however, then it's guaranteed that btrfs_root::log_root is set because the inode is logged. Those guarantees allows us to remove the speculative as well as the implicity and tricky memory barrier. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
If we need to start an inode caching thread, because none currently exists on disk, we can wake up all waiters as soon as we mark the range starting at root's highest objectid + 1 and ending at BTRFS_LAST_FREE_OBJECTID as free, so that they don't need to wait for the caching thread to start and do some progress. We follow the same approach within the caching thread, since as soon as it finds a free range and marks it as free space in the cache, it wakes up all waiters. So improve this by adding such a wakeup call after marking that initial range as free space. Fixes: a47d6b70 ("Btrfs: setup free ino caching in a more asynchronous way") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
If the caching thread fails to allocate a path, it returns without waking up any cache waiters, leaving them hang forever. Fix this by following the same approach as when we fail to start the caching thread: print an error message, disable inode caching and make the wakers fallback to non-caching mode behaviour (calling btrfs_find_free_objectid()). Fixes: 581bb050 ("Btrfs: Cache free inode numbers in memory") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
If we fail to start the inode caching thread, we print an error message and disable the inode cache, however we never wake up any waiters, so they hang forever waiting for the caching to finish. Fix this by waking them up and have them fallback to a call to btrfs_find_free_objectid(). Fixes: e60efa84 ("Btrfs: avoid triggering bug_on() when we fail to start inode caching task") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
If we failed to allocate the data extent(s) for the inode space cache, we were bailing out without releasing the previously reserved metadata. This was triggering the following warnings when unmounting a filesystem: $ cat -n fs/btrfs/inode.c (...) 9268 void btrfs_destroy_inode(struct inode *inode) 9269 { (...) 9276 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9277 WARN_ON(BTRFS_I(inode)->block_rsv.size); (...) 9281 WARN_ON(BTRFS_I(inode)->csum_bytes); 9282 WARN_ON(BTRFS_I(inode)->defrag_bytes); (...) Several fstests test cases triggered this often, such as generic/083, generic/102, generic/172, generic/269 and generic/300 at least, producing stack traces like the following in dmesg/syslog: [82039.079546] WARNING: CPU: 2 PID: 13167 at fs/btrfs/inode.c:9276 btrfs_destroy_inode+0x203/0x270 [btrfs] (...) [82039.081543] CPU: 2 PID: 13167 Comm: umount Tainted: G W 5.2.0-rc4-btrfs-next-50 #1 [82039.081912] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [82039.082673] RIP: 0010:btrfs_destroy_inode+0x203/0x270 [btrfs] (...) [82039.083913] RSP: 0018:ffffac0b426a7d30 EFLAGS: 00010206 [82039.084320] RAX: ffff8ddf77691158 RBX: ffff8dde29b34660 RCX: 0000000000000002 [82039.084736] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8dde29b34660 [82039.085156] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000 [82039.085578] R10: ffffac0b426a7c90 R11: ffffffffb9aad768 R12: ffffac0b426a7db0 [82039.086000] R13: ffff8ddf5fbec0a0 R14: dead000000000100 R15: 0000000000000000 [82039.086416] FS: 00007f8db96d12c0(0000) GS:ffff8de036b00000(0000) knlGS:0000000000000000 [82039.086837] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [82039.087253] CR2: 0000000001416108 CR3: 00000002315cc001 CR4: 00000000003606e0 [82039.087672] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [82039.088089] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [82039.088504] Call Trace: [82039.088918] destroy_inode+0x3b/0x70 [82039.089340] btrfs_free_fs_root+0x16/0xa0 [btrfs] [82039.089768] btrfs_free_fs_roots+0xd8/0x160 [btrfs] [82039.090183] ? wait_for_completion+0x65/0x1a0 [82039.090607] close_ctree+0x172/0x370 [btrfs] [82039.091021] generic_shutdown_super+0x6c/0x110 [82039.091427] kill_anon_super+0xe/0x30 [82039.091832] btrfs_kill_super+0x12/0xa0 [btrfs] [82039.092233] deactivate_locked_super+0x3a/0x70 [82039.092636] cleanup_mnt+0x3b/0x80 [82039.093039] task_work_run+0x93/0xc0 [82039.093457] exit_to_usermode_loop+0xfa/0x100 [82039.093856] do_syscall_64+0x162/0x1d0 [82039.094244] entry_SYSCALL_64_after_hwframe+0x49/0xbe [82039.094634] RIP: 0033:0x7f8db8fbab37 (...) [82039.095876] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [82039.096290] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37 [82039.096700] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240 [82039.097110] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015 [82039.097522] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64 [82039.097937] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0 [82039.098350] irq event stamp: 0 [82039.098750] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [82039.099150] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.099545] softirqs last enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.099925] softirqs last disabled at (0): [<0000000000000000>] 0x0 [82039.100292] ---[ end trace f2521afa616ddccc ]--- [82039.100707] WARNING: CPU: 2 PID: 13167 at fs/btrfs/inode.c:9277 btrfs_destroy_inode+0x1ac/0x270 [btrfs] (...) [82039.103050] CPU: 2 PID: 13167 Comm: umount Tainted: G W 5.2.0-rc4-btrfs-next-50 #1 [82039.103428] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [82039.104203] RIP: 0010:btrfs_destroy_inode+0x1ac/0x270 [btrfs] (...) [82039.105461] RSP: 0018:ffffac0b426a7d30 EFLAGS: 00010206 [82039.105866] RAX: ffff8ddf77691158 RBX: ffff8dde29b34660 RCX: 0000000000000002 [82039.106270] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8dde29b34660 [82039.106673] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000 [82039.107078] R10: ffffac0b426a7c90 R11: ffffffffb9aad768 R12: ffffac0b426a7db0 [82039.107487] R13: ffff8ddf5fbec0a0 R14: dead000000000100 R15: 0000000000000000 [82039.107894] FS: 00007f8db96d12c0(0000) GS:ffff8de036b00000(0000) knlGS:0000000000000000 [82039.108309] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [82039.108723] CR2: 0000000001416108 CR3: 00000002315cc001 CR4: 00000000003606e0 [82039.109146] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [82039.109567] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [82039.109989] Call Trace: [82039.110405] destroy_inode+0x3b/0x70 [82039.110830] btrfs_free_fs_root+0x16/0xa0 [btrfs] [82039.111257] btrfs_free_fs_roots+0xd8/0x160 [btrfs] [82039.111675] ? wait_for_completion+0x65/0x1a0 [82039.112101] close_ctree+0x172/0x370 [btrfs] [82039.112519] generic_shutdown_super+0x6c/0x110 [82039.112988] kill_anon_super+0xe/0x30 [82039.113439] btrfs_kill_super+0x12/0xa0 [btrfs] [82039.113861] deactivate_locked_super+0x3a/0x70 [82039.114278] cleanup_mnt+0x3b/0x80 [82039.114685] task_work_run+0x93/0xc0 [82039.115083] exit_to_usermode_loop+0xfa/0x100 [82039.115476] do_syscall_64+0x162/0x1d0 [82039.115863] entry_SYSCALL_64_after_hwframe+0x49/0xbe [82039.116254] RIP: 0033:0x7f8db8fbab37 (...) [82039.117463] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [82039.117882] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37 [82039.118330] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240 [82039.118743] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015 [82039.119159] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64 [82039.119574] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0 [82039.119987] irq event stamp: 0 [82039.120387] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [82039.120787] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.121182] softirqs last enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.121563] softirqs last disabled at (0): [<0000000000000000>] 0x0 [82039.121933] ---[ end trace f2521afa616ddccd ]--- [82039.122353] WARNING: CPU: 2 PID: 13167 at fs/btrfs/inode.c:9278 btrfs_destroy_inode+0x1bc/0x270 [btrfs] (...) [82039.124606] CPU: 2 PID: 13167 Comm: umount Tainted: G W 5.2.0-rc4-btrfs-next-50 #1 [82039.125008] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [82039.125801] RIP: 0010:btrfs_destroy_inode+0x1bc/0x270 [btrfs] (...) [82039.126998] RSP: 0018:ffffac0b426a7d30 EFLAGS: 00010202 [82039.127399] RAX: ffff8ddf77691158 RBX: ffff8dde29b34660 RCX: 0000000000000002 [82039.127803] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff8dde29b34660 [82039.128206] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000 [82039.128611] R10: ffffac0b426a7c90 R11: ffffffffb9aad768 R12: ffffac0b426a7db0 [82039.129020] R13: ffff8ddf5fbec0a0 R14: dead000000000100 R15: 0000000000000000 [82039.129428] FS: 00007f8db96d12c0(0000) GS:ffff8de036b00000(0000) knlGS:0000000000000000 [82039.129846] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [82039.130261] CR2: 0000000001416108 CR3: 00000002315cc001 CR4: 00000000003606e0 [82039.130684] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [82039.131142] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [82039.131561] Call Trace: [82039.131990] destroy_inode+0x3b/0x70 [82039.132417] btrfs_free_fs_root+0x16/0xa0 [btrfs] [82039.132844] btrfs_free_fs_roots+0xd8/0x160 [btrfs] [82039.133262] ? wait_for_completion+0x65/0x1a0 [82039.133688] close_ctree+0x172/0x370 [btrfs] [82039.134157] generic_shutdown_super+0x6c/0x110 [82039.134575] kill_anon_super+0xe/0x30 [82039.134997] btrfs_kill_super+0x12/0xa0 [btrfs] [82039.135415] deactivate_locked_super+0x3a/0x70 [82039.135832] cleanup_mnt+0x3b/0x80 [82039.136239] task_work_run+0x93/0xc0 [82039.136637] exit_to_usermode_loop+0xfa/0x100 [82039.137029] do_syscall_64+0x162/0x1d0 [82039.137418] entry_SYSCALL_64_after_hwframe+0x49/0xbe [82039.137812] RIP: 0033:0x7f8db8fbab37 (...) [82039.139059] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [82039.139475] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37 [82039.139890] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240 [82039.140302] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015 [82039.140719] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64 [82039.141138] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0 [82039.141597] irq event stamp: 0 [82039.142043] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [82039.142443] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.142839] softirqs last enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.143220] softirqs last disabled at (0): [<0000000000000000>] 0x0 [82039.143588] ---[ end trace f2521afa616ddcce ]--- [82039.167472] WARNING: CPU: 3 PID: 13167 at fs/btrfs/extent-tree.c:10120 btrfs_free_block_groups+0x30d/0x460 [btrfs] (...) [82039.173800] CPU: 3 PID: 13167 Comm: umount Tainted: G W 5.2.0-rc4-btrfs-next-50 #1 [82039.174847] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [82039.177031] RIP: 0010:btrfs_free_block_groups+0x30d/0x460 [btrfs] (...) [82039.180397] RSP: 0018:ffffac0b426a7dd8 EFLAGS: 00010206 [82039.181574] RAX: ffff8de010a1db40 RBX: ffff8de010a1db40 RCX: 0000000000170014 [82039.182711] RDX: ffff8ddff4380040 RSI: ffff8de010a1da58 RDI: 0000000000000246 [82039.183817] RBP: ffff8ddf5fbec000 R08: 0000000000000000 R09: 0000000000000000 [82039.184925] R10: ffff8de036404380 R11: ffffffffb8a5ea00 R12: ffff8de010a1b2b8 [82039.186090] R13: ffff8de010a1b2b8 R14: 0000000000000000 R15: dead000000000100 [82039.187208] FS: 00007f8db96d12c0(0000) GS:ffff8de036b80000(0000) knlGS:0000000000000000 [82039.188345] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [82039.189481] CR2: 00007fb044005170 CR3: 00000002315cc006 CR4: 00000000003606e0 [82039.190674] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [82039.191829] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [82039.192978] Call Trace: [82039.194160] close_ctree+0x19a/0x370 [btrfs] [82039.195315] generic_shutdown_super+0x6c/0x110 [82039.196486] kill_anon_super+0xe/0x30 [82039.197645] btrfs_kill_super+0x12/0xa0 [btrfs] [82039.198696] deactivate_locked_super+0x3a/0x70 [82039.199619] cleanup_mnt+0x3b/0x80 [82039.200559] task_work_run+0x93/0xc0 [82039.201505] exit_to_usermode_loop+0xfa/0x100 [82039.202436] do_syscall_64+0x162/0x1d0 [82039.203339] entry_SYSCALL_64_after_hwframe+0x49/0xbe [82039.204091] RIP: 0033:0x7f8db8fbab37 (...) [82039.206360] RSP: 002b:00007ffdce35b468 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [82039.207132] RAX: 0000000000000000 RBX: 0000560d20b00060 RCX: 00007f8db8fbab37 [82039.207906] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000560d20b00240 [82039.208621] RBP: 0000560d20b00240 R08: 0000560d20b00270 R09: 0000000000000015 [82039.209285] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f8db94bce64 [82039.209984] R13: 0000000000000000 R14: 0000000000000000 R15: 00007ffdce35b6f0 [82039.210642] irq event stamp: 0 [82039.211306] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [82039.211971] hardirqs last disabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.212643] softirqs last enabled at (0): [<ffffffffb7884ff2>] copy_process.part.33+0x7f2/0x1f00 [82039.213304] softirqs last disabled at (0): [<0000000000000000>] 0x0 [82039.213875] ---[ end trace f2521afa616ddccf ]--- Fix this by releasing the reserved metadata on failure to allocate data extent(s) for the inode cache. Fixes: 69fe2d75 ("btrfs: make the delalloc block rsv per inode") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
If we are able to load an existing inode cache off disk, we set the state of the cache to BTRFS_CACHE_FINISHED, but we don't wake up any one waiting for the cache to be available. This means that anyone waiting for the cache to be available, waiting on the condition that either its state is BTRFS_CACHE_FINISHED or its available free space is greather than zero, can hang forever. This could be observed running fstests with MOUNT_OPTIONS="-o inode_cache", in particular test case generic/161 triggered it very frequently for me, producing a trace like the following: [63795.739712] BTRFS info (device sdc): enabling inode map caching [63795.739714] BTRFS info (device sdc): disk space caching is enabled [63795.739716] BTRFS info (device sdc): has skinny extents [64036.653886] INFO: task btrfs-transacti:3917 blocked for more than 120 seconds. [64036.654079] Not tainted 5.2.0-rc4-btrfs-next-50 #1 [64036.654143] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [64036.654232] btrfs-transacti D 0 3917 2 0x80004000 [64036.654239] Call Trace: [64036.654258] ? __schedule+0x3ae/0x7b0 [64036.654271] schedule+0x3a/0xb0 [64036.654325] btrfs_commit_transaction+0x978/0xae0 [btrfs] [64036.654339] ? remove_wait_queue+0x60/0x60 [64036.654395] transaction_kthread+0x146/0x180 [btrfs] [64036.654450] ? btrfs_cleanup_transaction+0x620/0x620 [btrfs] [64036.654456] kthread+0x103/0x140 [64036.654464] ? kthread_create_worker_on_cpu+0x70/0x70 [64036.654476] ret_from_fork+0x3a/0x50 [64036.654504] INFO: task xfs_io:3919 blocked for more than 120 seconds. [64036.654568] Not tainted 5.2.0-rc4-btrfs-next-50 #1 [64036.654617] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [64036.654685] xfs_io D 0 3919 3633 0x00000000 [64036.654691] Call Trace: [64036.654703] ? __schedule+0x3ae/0x7b0 [64036.654716] schedule+0x3a/0xb0 [64036.654756] btrfs_find_free_ino+0xa9/0x120 [btrfs] [64036.654764] ? remove_wait_queue+0x60/0x60 [64036.654809] btrfs_create+0x72/0x1f0 [btrfs] [64036.654822] lookup_open+0x6bc/0x790 [64036.654849] path_openat+0x3bc/0xc00 [64036.654854] ? __lock_acquire+0x331/0x1cb0 [64036.654869] do_filp_open+0x99/0x110 [64036.654884] ? __alloc_fd+0xee/0x200 [64036.654895] ? do_raw_spin_unlock+0x49/0xc0 [64036.654909] ? do_sys_open+0x132/0x220 [64036.654913] do_sys_open+0x132/0x220 [64036.654926] do_syscall_64+0x60/0x1d0 [64036.654933] entry_SYSCALL_64_after_hwframe+0x49/0xbe Fix this by adding a wake_up() call right after setting the cache state to BTRFS_CACHE_FINISHED, at start_caching(), when we are able to load the cache from disk. Fixes: 82d5902d ("Btrfs: Support reading/writing on disk free ino cache") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
This patch will introduce ROOT_ITEM check, which includes: - Key->objectid and key->offset check Currently only some easy check, e.g. 0 as rootid is invalid. - Item size check Root item size is fixed. - Generation checks Generation, generation_v2 and last_snapshot should not be greater than super generation + 1 - Level and alignment check Level should be in [0, 7], and bytenr must be aligned to sector size. - Flags check Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203261Reported-by: Jungyeon Yoon <jungyeon.yoon@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] With fuzzed image and MIXED_GROUPS super flag, we can hit the following BUG_ON(): kernel BUG at fs/btrfs/delayed-ref.c:491! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 PID: 1849 Comm: sync Tainted: G O 5.2.0-custom #27 RIP: 0010:update_existing_head_ref.cold+0x44/0x46 [btrfs] Call Trace: add_delayed_ref_head+0x20c/0x2d0 [btrfs] btrfs_add_delayed_tree_ref+0x1fc/0x490 [btrfs] btrfs_free_tree_block+0x123/0x380 [btrfs] __btrfs_cow_block+0x435/0x500 [btrfs] btrfs_cow_block+0x110/0x240 [btrfs] btrfs_search_slot+0x230/0xa00 [btrfs] ? __lock_acquire+0x105e/0x1e20 btrfs_insert_empty_items+0x67/0xc0 [btrfs] alloc_reserved_file_extent+0x9e/0x340 [btrfs] __btrfs_run_delayed_refs+0x78e/0x1240 [btrfs] ? kvm_clock_read+0x18/0x30 ? __sched_clock_gtod_offset+0x21/0x50 btrfs_run_delayed_refs.part.0+0x4e/0x180 [btrfs] btrfs_run_delayed_refs+0x23/0x30 [btrfs] btrfs_commit_transaction+0x53/0x9f0 [btrfs] btrfs_sync_fs+0x7c/0x1c0 [btrfs] ? __ia32_sys_fdatasync+0x20/0x20 sync_fs_one_sb+0x23/0x30 iterate_supers+0x95/0x100 ksys_sync+0x62/0xb0 __ia32_sys_sync+0xe/0x20 do_syscall_64+0x65/0x240 entry_SYSCALL_64_after_hwframe+0x49/0xbe [CAUSE] This situation is caused by several factors: - Fuzzed image The extent tree of this fs missed one backref for extent tree root. So we can allocated space from that slot. - MIXED_BG feature Super block has MIXED_BG flag. - No mixed block groups exists All block groups are just regular ones. This makes data space_info->block_groups[] contains metadata block groups. And when we reserve space for data, we can use space in metadata block group. Then we hit the following file operations: - fallocate We need to allocate data extents. find_free_extent() choose to use the metadata block to allocate space from, and choose the space of extent tree root, since its backref is missing. This generate one delayed ref head with is_data = 1. - extent tree update We need to update extent tree at run_delayed_ref time. This generate one delayed ref head with is_data = 0, for the same bytenr of old extent tree root. Then we trigger the BUG_ON(). [FIX] The quick fix here is to check block_group->flags before using it. The problem can only happen for MIXED_GROUPS fs. Regular filesystems won't have space_info with DATA|METADATA flag, and no way to hit the bug. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203255Reported-by: Jungyeon Yoon <jungyeon.yoon@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
There is one report of fuzzed image which leads to BUG_ON() in btrfs_delete_delayed_dir_index(). Although that fuzzed image can already be addressed by enhanced extent-tree error handler, it's still better to hunt down more BUG_ON(). This patch will hunt down two BUG_ON()s in btrfs_delete_delayed_dir_index(): - One for error from btrfs_delayed_item_reserve_metadata() Instead of BUG_ON(), we output an error message and free the item. And return the error. All callers of this function handles the error by aborting current trasaction. - One for possible EEXIST from __btrfs_add_delayed_deletion_item() That function can return -EEXIST. We already have a good enough error message for that, only need to clean up the reserved metadata space and allocated item. To help above cleanup, also modifiy __btrfs_remove_delayed_item() called in btrfs_release_delayed_item(), to skip unassociated item. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203253Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
[BUG] Test case btrfs/156 fails since commit 302167c5 ("btrfs: don't end the transaction for delayed refs in throttle") with ENOSPC. [CAUSE] The ENOSPC is reported from btrfs_can_relocate(). This function will check: - If this block group is empty, we can relocate - If we can enough free space, we can relocate Above checks are valid but the following check is vague due to its implementation: - If and only if we can allocated a new block group to contain all the used space, we can relocate This design itself is OK, but the way to determine if we can allocate a new block group is problematic. btrfs_can_relocate() uses find_free_dev_extent() to find free space on a device. However find_free_dev_extent() only searches commit root and excludes dev extents allocated in current trans, this makes it unable to use dev extent just freed in current transaction. So for the following example, btrfs_can_relocate() will report ENOSPC: The example block group layout: 1M 129M 257M 385M 513M 550M |///////|///////////|//////////| | | // = Used bg, consider all bg is 100% used for easy calculation. And all block groups are SINGLE, on-disk bytenr is the same as the logical bytenr. 1) Bg in [129M, 257M) get relocated to [385M, 513M), transid=100 1M 129M 257M 385M 513M 550M |///////| |//////////|/////////| In transid 100, bg in [129M, 257M) get relocated to [385M, 513M) However transid 100 is not committed yet, so in dev commit tree, we still have the old dev extents layout: 1M 129M 257M 385M 513M 550M |///////|///////////|//////////| | | 2) Try to relocate bg [257M, 385M) We goes into btrfs_can_relocate(), no free space in current bgs, so we check if we can find large enough free dev extents. The first slot is [385M, 513M), but that is already used by new bg at [385M, 513M), so we continue search. The remaining slot is [512M, 550M), smaller than the bg's length 128M. So btrfs_can_relocate report ENOSPC. However this is over killed, in fact if we just skip btrfs_can_relocate() check, and go into regular relocation routine, at extent reservation time, if we can't find free extent, then we fallback to commit transaction, which will free up the dev extents and allow new block group to be created. [FIX] The fix here is to remove btrfs_can_relocate() completely. If we hit the false ENOSPC case just like btrfs/156, extent allocator will push harder by committing transaction and we will have space for new block group, avoiding the false ENOSPC. If we really ran out of space, we will hit ENOSPC at relocate_block_group(), and btrfs will just reports the ENOSPC error as usual. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
inc_block_group_ro() is only designed to mark one block group read-only, it doesn't really care if other block groups have enough free space to contain the used space in the block group. However due to the close connection between this function and relocation, sometimes we can be confused and think this function is responsible for balance space reservation, which is not true. Add some comment to make the functionality clear. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Since commit 6df9a95e ("Btrfs: make the chunk allocator completely tree lockless") we search commit root of device tree to avoid deadlock. This introduced a safety feature, find_free_dev_extent_start() won't use dev extents which just get freed in current transaction. This safety feature makes sure we won't allocate new block group using just freed dev extents to break CoW. However, this feature also makes find_free_dev_extent_start() not reliable reporting free device space. Just add such comment to make later viewer careful about this behavior. This behavior makes one caller, btrfs_can_relocate() unreliable determining the device free space. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
This function is only used locally in find_free_dev_extent(), no external callers. So unexport it. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The tree is going to be modified so it must be the exclusive lock. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
As add_extent_mapping is called from several functions, let's add the lock annotation. The tree is going to be modified so it must be the exclusive lock. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Jia-Ju Bai authored
In insert_inline_extent(), the case that checks compressed_size > 0 and compressed_pages = NULL cannot occur, otherwise a null-pointer dereference may occur on line 215: cpage = compressed_pages[i]; To catch this incorrect case, an assertion is added. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
It's unlikely in-band dedupe is going to land so just remove any leftovers - dedupe.h header as well as the 'dedupe' parameter to btrfs_set_extent_delalloc. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
It was added in ba8b04c1 ("btrfs: extend btrfs_set_extent_delalloc and its friends to support in-band dedupe and subpage size patchset") as a preparatory patch for in-band and subapge block size patchsets. However neither of those are likely to be merged anytime soon and the code has diverged significantly from the last public post of either of those patchsets. It's unlikely either of the patchests are going to use those preparatory steps so just remove the variables. Since cow_file_range also took delalloc_end to pass it to extent_clear_unlock_delalloc remove the parameter from that function as well. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This label is only executed if compress_file_range fails to create an inline extent. So move its code in the semantically related inline extent handling branch. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
compress_file_range returns a void, yet uses a function parameter as a return value. Make that more idiomatic by simply returning the number of compressed extents directly. Also track such extents in more aptly named variables. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Eric Sandeen authored
I lifted the btrfs label get/set ioctls to the vfs some time ago, but never followed up to use those common definitions directly in btrfs. This patch does that. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Those were split out of btrfs_clear_lock_blocking_rw by aa12c027 ("btrfs: split btrfs_clear_lock_blocking_rw to read and write helpers") however at that time this function was unused due to commit 52398340 ("Btrfs: kill btrfs_clear_path_blocking"). Put the final nail in the coffin of those 2 functions. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Arnd Bergmann authored
btrfsic_process_written_block() cals btrfsic_process_metablock(), which has a fairly large stack usage due to the btrfsic_stack_frame variable. It also calls btrfsic_test_for_metadata(), which now needs several hundreds of bytes for its SHASH_DESC_ON_STACK(). In some configurations, we end up with both functions on the same stack, and gcc warns about the excessive stack usage that might cause the available stack space to run out: fs/btrfs/check-integrity.c:1743:13: error: stack frame size of 1152 bytes in function 'btrfsic_process_written_block' [-Werror,-Wframe-larger-than=] Marking both child functions as noinline_for_stack helps because this guarantees that the large variables are not on the same stack frame. Fixes: d5178578 ("btrfs: directly call into crypto framework for checksumming") Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
YueHaibing authored
Fixes gcc '-Wunused-but-set-variable' warning: fs/btrfs/volumes.c: In function __btrfs_map_block: fs/btrfs/volumes.c:6023:6: warning: variable offset set but not used [-Wunused-but-set-variable] It is not used any more since commit 343abd1c0ca9 ("btrfs: Use btrfs_get_io_geometry appropriately") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: YueHaibing <yuehaibing@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
When cloning extents (or deduplicating) we create a transaction with a space reservation that considers we will drop or update a single file extent item of the destination inode (that we modify a single leaf). That is fine for the vast majority of scenarios, however it might happen that we need to drop many file extent items, and adjust at most two file extent items, in the destination root, which can span multiple leafs. This will lead to either the call to btrfs_drop_extents() to fail with ENOSPC or the subsequent calls to btrfs_insert_empty_item() or btrfs_update_inode() (called through clone_finish_inode_update()) to fail with ENOSPC. Such failure results in a transaction abort, leaving the filesystem in a read-only mode. In order to fix this we need to follow the same approach as the hole punching code, where we create a local reservation with 1 unit and keep ending and starting transactions, after balancing the btree inode, when __btrfs_drop_extents() returns ENOSPC. So fix this by making the extent cloning call calls the recently added btrfs_punch_hole_range() helper, which is what does the mentioned work for hole punching, and make sure whenever we drop extent items in a transaction, we also add a replacing file extent item, to avoid corruption (a hole) if after ending a transaction and before starting a new one, the old transaction gets committed and a power failure happens before we finish cloning. A test case for fstests follows soon. Reported-by: David Goodwin <david@codepoets.co.uk> Link: https://lore.kernel.org/linux-btrfs/a4a4cf31-9cf4-e52c-1f86-c62d336c9cd1@codepoets.co.uk/Reported-by: Sam Tygier <sam@tygier.co.uk> Link: https://lore.kernel.org/linux-btrfs/82aace9f-a1e3-1f0b-055f-3ea75f7a41a0@tygier.co.uk/ Fixes: b6f3409b ("Btrfs: reserve sufficient space for ioctl clone") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Move the code that is responsible for dropping extents in a range out of btrfs_punch_hole() into a new helper function, btrfs_punch_hole_range(), so that later it can be used by the reflinking (extent cloning and dedup) code to fix a ENOSPC bug. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
- 08 Sep, 2019 3 commits
-
-
Linus Torvalds authored
-
git://github.com/ojeda/linuxLinus Torvalds authored
Pull section attribute fix from Miguel Ojeda: "Fix Oops in Clang-compiled kernels (Nick Desaulniers)" * tag 'compiler-attributes-for-linus-v5.3-rc8' of git://github.com/ojeda/linux: include/linux/compiler.h: fix Oops for Clang-compiled kernels
-
git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpioLinus Torvalds authored
Pull GPIO fixes from Linus Walleij: "All related to the PCA953x driver when handling chips with more than 8 ports, now that works again" * tag 'gpio-v5.3-5' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpio: gpio: pca953x: use pca953x_read_regs instead of regmap_bulk_read gpio: pca953x: correct type of reg_direction
-