/* * linux/arch/i386/mm/init.c * * Copyright (C) 1995 Linus Torvalds * * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 */ #include <linux/config.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/smp.h> #include <linux/init.h> #ifdef CONFIG_BLK_DEV_INITRD #include <linux/blk.h> #endif #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/bootmem.h> #include <linux/slab.h> #include <asm/processor.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/dma.h> #include <asm/fixmap.h> #include <asm/e820.h> #include <asm/apic.h> #include <asm/tlb.h> #include <asm/tlbflush.h> mmu_gather_t mmu_gathers[NR_CPUS]; unsigned long highstart_pfn, highend_pfn; static unsigned long totalram_pages; static unsigned long totalhigh_pages; /* * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the * physical space so we can cache the place of the first one and move * around without checking the pgd every time. */ #if CONFIG_HIGHMEM pte_t *kmap_pte; pgprot_t kmap_prot; #define kmap_get_fixmap_pte(vaddr) \ pte_offset_kernel(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr)) void __init kmap_init(void) { unsigned long kmap_vstart; /* cache the first kmap pte */ kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN); kmap_pte = kmap_get_fixmap_pte(kmap_vstart); kmap_prot = PAGE_KERNEL; } #endif /* CONFIG_HIGHMEM */ void show_mem(void) { int i, total = 0, reserved = 0; int shared = 0, cached = 0; int highmem = 0; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageHighMem(mem_map+i)) highmem++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (page_count(mem_map+i)) shared += page_count(mem_map+i) - 1; } printk("%d pages of RAM\n", total); printk("%d pages of HIGHMEM\n",highmem); printk("%d reserved pages\n",reserved); printk("%d pages shared\n",shared); printk("%d pages swap cached\n",cached); printk("%ld buffermem pages\n", nr_buffermem_pages()); } /* References to section boundaries */ extern char _text, _etext, _edata, __bss_start, _end; extern char __init_begin, __init_end; static inline void set_pte_phys (unsigned long vaddr, unsigned long phys, pgprot_t flags) { pgd_t *pgd; pmd_t *pmd; pte_t *pte; pgd = swapper_pg_dir + __pgd_offset(vaddr); if (pgd_none(*pgd)) { printk("PAE BUG #00!\n"); return; } pmd = pmd_offset(pgd, vaddr); if (pmd_none(*pmd)) { printk("PAE BUG #01!\n"); return; } pte = pte_offset_kernel(pmd, vaddr); /* <phys,flags> stored as-is, to permit clearing entries */ set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags)); /* * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ __flush_tlb_one(vaddr); } void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags) { unsigned long address = __fix_to_virt(idx); if (idx >= __end_of_fixed_addresses) { printk("Invalid __set_fixmap\n"); return; } set_pte_phys(address, phys, flags); } static void __init fixrange_init (unsigned long start, unsigned long end, pgd_t *pgd_base) { pgd_t *pgd; pmd_t *pmd; pte_t *pte; int i, j; unsigned long vaddr; vaddr = start; i = __pgd_offset(vaddr); j = __pmd_offset(vaddr); pgd = pgd_base + i; for ( ; (i < PTRS_PER_PGD) && (vaddr != end); pgd++, i++) { #if CONFIG_X86_PAE if (pgd_none(*pgd)) { pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE); set_pgd(pgd, __pgd(__pa(pmd) + 0x1)); if (pmd != pmd_offset(pgd, 0)) printk("PAE BUG #02!\n"); } pmd = pmd_offset(pgd, vaddr); #else pmd = (pmd_t *)pgd; #endif for (; (j < PTRS_PER_PMD) && (vaddr != end); pmd++, j++) { if (pmd_none(*pmd)) { pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE); set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte))); if (pte != pte_offset_kernel(pmd, 0)) BUG(); } vaddr += PMD_SIZE; } j = 0; } } static void __init pagetable_init (void) { unsigned long vaddr, end; pgd_t *pgd, *pgd_base; int i, j, k; pmd_t *pmd; pte_t *pte, *pte_base; /* * This can be zero as well - no problem, in that case we exit * the loops anyway due to the PTRS_PER_* conditions. */ end = (unsigned long)__va(max_low_pfn*PAGE_SIZE); pgd_base = swapper_pg_dir; #if CONFIG_X86_PAE for (i = 0; i < PTRS_PER_PGD; i++) set_pgd(pgd_base + i, __pgd(1 + __pa(empty_zero_page))); #endif i = __pgd_offset(PAGE_OFFSET); pgd = pgd_base + i; for (; i < PTRS_PER_PGD; pgd++, i++) { vaddr = i*PGDIR_SIZE; if (end && (vaddr >= end)) break; #if CONFIG_X86_PAE pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE); set_pgd(pgd, __pgd(__pa(pmd) + 0x1)); #else pmd = (pmd_t *)pgd; #endif if (pmd != pmd_offset(pgd, 0)) BUG(); for (j = 0; j < PTRS_PER_PMD; pmd++, j++) { vaddr = i*PGDIR_SIZE + j*PMD_SIZE; if (end && (vaddr >= end)) break; if (cpu_has_pse) { unsigned long __pe; set_in_cr4(X86_CR4_PSE); boot_cpu_data.wp_works_ok = 1; __pe = _KERNPG_TABLE + _PAGE_PSE + __pa(vaddr); /* Make it "global" too if supported */ if (cpu_has_pge) { set_in_cr4(X86_CR4_PGE); __pe += _PAGE_GLOBAL; } set_pmd(pmd, __pmd(__pe)); continue; } pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE); for (k = 0; k < PTRS_PER_PTE; pte++, k++) { vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE; if (end && (vaddr >= end)) break; *pte = pfn_pte(__pa(vaddr) >> PAGE_SHIFT, PAGE_KERNEL); } set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base))); if (pte_base != pte_offset_kernel(pmd, 0)) BUG(); } } /* * Fixed mappings, only the page table structure has to be * created - mappings will be set by set_fixmap(): */ vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK; fixrange_init(vaddr, 0, pgd_base); #if CONFIG_HIGHMEM /* * Permanent kmaps: */ vaddr = PKMAP_BASE; fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); pgd = swapper_pg_dir + __pgd_offset(vaddr); pmd = pmd_offset(pgd, vaddr); pte = pte_offset_kernel(pmd, vaddr); pkmap_page_table = pte; #endif #if CONFIG_X86_PAE /* * Add low memory identity-mappings - SMP needs it when * starting up on an AP from real-mode. In the non-PAE * case we already have these mappings through head.S. * All user-space mappings are explicitly cleared after * SMP startup. */ pgd_base[0] = pgd_base[USER_PTRS_PER_PGD]; #endif } void __init zap_low_mappings (void) { int i; /* * Zap initial low-memory mappings. * * Note that "pgd_clear()" doesn't do it for * us, because pgd_clear() is a no-op on i386. */ for (i = 0; i < USER_PTRS_PER_PGD; i++) #if CONFIG_X86_PAE set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page))); #else set_pgd(swapper_pg_dir+i, __pgd(0)); #endif flush_tlb_all(); } /* * paging_init() sets up the page tables - note that the first 8MB are * already mapped by head.S. * * This routines also unmaps the page at virtual kernel address 0, so * that we can trap those pesky NULL-reference errors in the kernel. */ void __init paging_init(void) { pagetable_init(); __asm__( "movl %0,%%cr3\n" ::"r"(__pa(swapper_pg_dir))); #if CONFIG_X86_PAE /* * We will bail out later - printk doesnt work right now so * the user would just see a hanging kernel. */ if (cpu_has_pae) set_in_cr4(X86_CR4_PAE); #endif __flush_tlb_all(); #ifdef CONFIG_HIGHMEM kmap_init(); #endif { unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; unsigned int max_dma, high, low; max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; low = max_low_pfn; high = highend_pfn; if (low < max_dma) zones_size[ZONE_DMA] = low; else { zones_size[ZONE_DMA] = max_dma; zones_size[ZONE_NORMAL] = low - max_dma; #ifdef CONFIG_HIGHMEM zones_size[ZONE_HIGHMEM] = high - low; #endif } free_area_init(zones_size); } return; } /* * Test if the WP bit works in supervisor mode. It isn't supported on 386's * and also on some strange 486's (NexGen etc.). All 586+'s are OK. The jumps * before and after the test are here to work-around some nasty CPU bugs. */ /* * This function cannot be __init, since exceptions don't work in that * section. */ static int do_test_wp_bit(unsigned long vaddr); void __init test_wp_bit(void) { /* * Ok, all PSE-capable CPUs are definitely handling the WP bit right. */ const unsigned long vaddr = PAGE_OFFSET; pgd_t *pgd; pmd_t *pmd; pte_t *pte, old_pte; printk("Checking if this processor honours the WP bit even in supervisor mode... "); pgd = swapper_pg_dir + __pgd_offset(vaddr); pmd = pmd_offset(pgd, vaddr); pte = pte_offset_kernel(pmd, vaddr); old_pte = *pte; *pte = pfn_pte(0, PAGE_READONLY); local_flush_tlb(); boot_cpu_data.wp_works_ok = do_test_wp_bit(vaddr); *pte = old_pte; local_flush_tlb(); if (!boot_cpu_data.wp_works_ok) { printk("No.\n"); #ifdef CONFIG_X86_WP_WORKS_OK panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!"); #endif } else { printk("Ok.\n"); } } static inline int page_is_ram (unsigned long pagenr) { int i; for (i = 0; i < e820.nr_map; i++) { unsigned long addr, end; if (e820.map[i].type != E820_RAM) /* not usable memory */ continue; /* * !!!FIXME!!! Some BIOSen report areas as RAM that * are not. Notably the 640->1Mb area. We need a sanity * check here. */ addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT; end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT; if ((pagenr >= addr) && (pagenr < end)) return 1; } return 0; } static inline int page_kills_ppro(unsigned long pagenr) { if(pagenr >= 0x70000 && pagenr <= 0x7003F) return 1; return 0; } void __init mem_init(void) { extern int ppro_with_ram_bug(void); int codesize, reservedpages, datasize, initsize; int tmp; int bad_ppro; if (!mem_map) BUG(); bad_ppro = ppro_with_ram_bug(); #ifdef CONFIG_HIGHMEM highmem_start_page = mem_map + highstart_pfn; max_mapnr = num_physpages = highend_pfn; #else max_mapnr = num_physpages = max_low_pfn; #endif high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); /* clear the zero-page */ memset(empty_zero_page, 0, PAGE_SIZE); /* this will put all low memory onto the freelists */ totalram_pages += free_all_bootmem(); reservedpages = 0; for (tmp = 0; tmp < max_low_pfn; tmp++) /* * Only count reserved RAM pages */ if (page_is_ram(tmp) && PageReserved(mem_map+tmp)) reservedpages++; #ifdef CONFIG_HIGHMEM for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { struct page *page = mem_map + tmp; if (!page_is_ram(tmp)) { SetPageReserved(page); continue; } if (bad_ppro && page_kills_ppro(tmp)) { SetPageReserved(page); continue; } ClearPageReserved(page); set_bit(PG_highmem, &page->flags); atomic_set(&page->count, 1); __free_page(page); totalhigh_pages++; } totalram_pages += totalhigh_pages; #endif codesize = (unsigned long) &_etext - (unsigned long) &_text; datasize = (unsigned long) &_edata - (unsigned long) &_etext; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; printk("Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), max_mapnr << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, initsize >> 10, (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)) ); #if CONFIG_X86_PAE if (!cpu_has_pae) panic("cannot execute a PAE-enabled kernel on a PAE-less CPU!"); #endif if (boot_cpu_data.wp_works_ok < 0) test_wp_bit(); /* * Subtle. SMP is doing it's boot stuff late (because it has to * fork idle threads) - but it also needs low mappings for the * protected-mode entry to work. We zap these entries only after * the WP-bit has been tested. */ #ifndef CONFIG_SMP zap_low_mappings(); #endif } /* Put this after the callers, so that it cannot be inlined */ static int do_test_wp_bit(unsigned long vaddr) { char tmp_reg; int flag; __asm__ __volatile__( " movb %0,%1 \n" "1: movb %1,%0 \n" " xorl %2,%2 \n" "2: \n" ".section __ex_table,\"a\"\n" " .align 4 \n" " .long 1b,2b \n" ".previous \n" :"=m" (*(char *) vaddr), "=q" (tmp_reg), "=r" (flag) :"2" (1) :"memory"); return flag; } void free_initmem(void) { unsigned long addr; addr = (unsigned long)(&__init_begin); for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); set_page_count(virt_to_page(addr), 1); free_page(addr); totalram_pages++; } printk ("Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { if (start < end) printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); totalram_pages++; } } #endif void si_meminfo(struct sysinfo *val) { val->totalram = totalram_pages; val->sharedram = 0; val->freeram = nr_free_pages(); val->bufferram = atomic_read(&buffermem_pages); val->totalhigh = totalhigh_pages; val->freehigh = nr_free_highpages(); val->mem_unit = PAGE_SIZE; return; } #if defined(CONFIG_X86_PAE) static struct kmem_cache_s *pae_pgd_cachep; void __init pgtable_cache_init(void) { /* * PAE pgds must be 16-byte aligned: */ pae_pgd_cachep = kmem_cache_create("pae_pgd", 32, 0, SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_ALIGN, NULL, NULL); if (!pae_pgd_cachep) panic("init_pae(): Cannot alloc pae_pgd SLAB cache"); } pgd_t *pgd_alloc(struct mm_struct *mm) { int i; pgd_t *pgd = kmem_cache_alloc(pae_pgd_cachep, GFP_KERNEL); if (pgd) { for (i = 0; i < USER_PTRS_PER_PGD; i++) { unsigned long pmd = __get_free_page(GFP_KERNEL); if (!pmd) goto out_oom; clear_page(pmd); set_pgd(pgd + i, __pgd(1 + __pa(pmd))); } memcpy(pgd + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return pgd; out_oom: for (i--; i >= 0; i--) free_page((unsigned long)__va(pgd_val(pgd[i])-1)); kmem_cache_free(pae_pgd_cachep, pgd); return NULL; } void pgd_free(pgd_t *pgd) { int i; for (i = 0; i < USER_PTRS_PER_PGD; i++) free_page((unsigned long)__va(pgd_val(pgd[i])-1)); kmem_cache_free(pae_pgd_cachep, pgd); } #else pgd_t *pgd_alloc(struct mm_struct *mm) { pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL); if (pgd) { memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t)); memcpy(pgd + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return pgd; } void pgd_free(pgd_t *pgd) { free_page((unsigned long)pgd); } #endif /* CONFIG_X86_PAE */ pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) { int count = 0; pte_t *pte; do { pte = (pte_t *) __get_free_page(GFP_KERNEL); if (pte) clear_page(pte); else { current->state = TASK_UNINTERRUPTIBLE; schedule_timeout(HZ); } } while (!pte && (count++ < 10)); return pte; } struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) { int count = 0; struct page *pte; do { #if CONFIG_HIGHPTE pte = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, 0); #else pte = alloc_pages(GFP_KERNEL, 0); #endif if (pte) clear_highpage(pte); else { current->state = TASK_UNINTERRUPTIBLE; schedule_timeout(HZ); } } while (!pte && (count++ < 10)); return pte; }