/* * Intel IO-APIC support for multi-Pentium hosts. * * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo * * Many thanks to Stig Venaas for trying out countless experimental * patches and reporting/debugging problems patiently! * * (c) 1999, Multiple IO-APIC support, developed by * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>, * further tested and cleaned up by Zach Brown <zab@redhat.com> * and Ingo Molnar <mingo@redhat.com> * * Fixes * Maciej W. Rozycki : Bits for genuine 82489DX APICs; * thanks to Eric Gilmore * and Rolf G. Tews * for testing these extensively * Paul Diefenbaugh : Added full ACPI support */ #include <linux/mm.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/config.h> #include <linux/smp_lock.h> #include <linux/mc146818rtc.h> #include <linux/compiler.h> #include <linux/acpi.h> #include <asm/io.h> #include <asm/smp.h> #include <asm/desc.h> #include <mach_apic.h> #include "io_ports.h" #undef APIC_LOCKUP_DEBUG #define APIC_LOCKUP_DEBUG static spinlock_t ioapic_lock = SPIN_LOCK_UNLOCKED; /* * Is the SiS APIC rmw bug present ? * -1 = don't know, 0 = no, 1 = yes */ int sis_apic_bug = -1; /* * # of IRQ routing registers */ int nr_ioapic_registers[MAX_IO_APICS]; /* * Rough estimation of how many shared IRQs there are, can * be changed anytime. */ #define MAX_PLUS_SHARED_IRQS NR_IRQS #define PIN_MAP_SIZE (MAX_PLUS_SHARED_IRQS + NR_IRQS) /* * This is performance-critical, we want to do it O(1) * * the indexing order of this array favors 1:1 mappings * between pins and IRQs. */ static struct irq_pin_list { int apic, pin, next; } irq_2_pin[PIN_MAP_SIZE]; /* * The common case is 1:1 IRQ<->pin mappings. Sometimes there are * shared ISA-space IRQs, so we have to support them. We are super * fast in the common case, and fast for shared ISA-space IRQs. */ static void __init add_pin_to_irq(unsigned int irq, int apic, int pin) { static int first_free_entry = NR_IRQS; struct irq_pin_list *entry = irq_2_pin + irq; while (entry->next) entry = irq_2_pin + entry->next; if (entry->pin != -1) { entry->next = first_free_entry; entry = irq_2_pin + entry->next; if (++first_free_entry >= PIN_MAP_SIZE) panic("io_apic.c: whoops"); } entry->apic = apic; entry->pin = pin; } /* * Reroute an IRQ to a different pin. */ static void __init replace_pin_at_irq(unsigned int irq, int oldapic, int oldpin, int newapic, int newpin) { struct irq_pin_list *entry = irq_2_pin + irq; while (1) { if (entry->apic == oldapic && entry->pin == oldpin) { entry->apic = newapic; entry->pin = newpin; } if (!entry->next) break; entry = irq_2_pin + entry->next; } } /* mask = 1 */ static void __mask_IO_APIC_irq (unsigned int irq) { int pin; struct irq_pin_list *entry = irq_2_pin + irq; for (;;) { unsigned int reg; pin = entry->pin; if (pin == -1) break; reg = io_apic_read(entry->apic, 0x10 + pin*2); io_apic_modify(entry->apic, 0x10 + pin*2, reg |= 0x00010000); if (!entry->next) break; entry = irq_2_pin + entry->next; } io_apic_sync(entry->apic); } /* mask = 0 */ static void __unmask_IO_APIC_irq (unsigned int irq) { int pin; struct irq_pin_list *entry = irq_2_pin + irq; for (;;) { unsigned int reg; pin = entry->pin; if (pin == -1) break; reg = io_apic_read(entry->apic, 0x10 + pin*2); io_apic_modify(entry->apic, 0x10 + pin*2, reg &= 0xfffeffff); if (!entry->next) break; entry = irq_2_pin + entry->next; } } /* mask = 1, trigger = 0 */ static void __mask_and_edge_IO_APIC_irq (unsigned int irq) { int pin; struct irq_pin_list *entry = irq_2_pin + irq; for (;;) { unsigned int reg; pin = entry->pin; if (pin == -1) break; reg = io_apic_read(entry->apic, 0x10 + pin*2); reg = (reg & 0xffff7fff) | 0x00010000; io_apic_modify(entry->apic, 0x10 + pin*2, reg); if (!entry->next) break; entry = irq_2_pin + entry->next; } } /* mask = 0, trigger = 1 */ static void __unmask_and_level_IO_APIC_irq (unsigned int irq) { int pin; struct irq_pin_list *entry = irq_2_pin + irq; for (;;) { unsigned int reg; pin = entry->pin; if (pin == -1) break; reg = io_apic_read(entry->apic, 0x10 + pin*2); reg = (reg & 0xfffeffff) | 0x00008000; io_apic_modify(entry->apic, 0x10 + pin*2, reg); if (!entry->next) break; entry = irq_2_pin + entry->next; } } static void mask_IO_APIC_irq (unsigned int irq) { unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); __mask_IO_APIC_irq(irq); spin_unlock_irqrestore(&ioapic_lock, flags); } static void unmask_IO_APIC_irq (unsigned int irq) { unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); __unmask_IO_APIC_irq(irq); spin_unlock_irqrestore(&ioapic_lock, flags); } void clear_IO_APIC_pin(unsigned int apic, unsigned int pin) { struct IO_APIC_route_entry entry; unsigned long flags; /* Check delivery_mode to be sure we're not clearing an SMI pin */ spin_lock_irqsave(&ioapic_lock, flags); *(((int*)&entry) + 0) = io_apic_read(apic, 0x10 + 2 * pin); *(((int*)&entry) + 1) = io_apic_read(apic, 0x11 + 2 * pin); spin_unlock_irqrestore(&ioapic_lock, flags); if (entry.delivery_mode == dest_SMI) return; /* * Disable it in the IO-APIC irq-routing table: */ memset(&entry, 0, sizeof(entry)); entry.mask = 1; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic, 0x10 + 2 * pin, *(((int *)&entry) + 0)); io_apic_write(apic, 0x11 + 2 * pin, *(((int *)&entry) + 1)); spin_unlock_irqrestore(&ioapic_lock, flags); } static void clear_IO_APIC (void) { int apic, pin; for (apic = 0; apic < nr_ioapics; apic++) for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) clear_IO_APIC_pin(apic, pin); } static void set_ioapic_affinity (unsigned int irq, unsigned long cpu_mask) { unsigned long flags; int pin; struct irq_pin_list *entry = irq_2_pin + irq; unsigned int apicid_value; apicid_value = cpu_mask_to_apicid(cpu_mask); /* Prepare to do the io_apic_write */ apicid_value = apicid_value << 24; spin_lock_irqsave(&ioapic_lock, flags); for (;;) { pin = entry->pin; if (pin == -1) break; io_apic_write(entry->apic, 0x10 + 1 + pin*2, apicid_value); if (!entry->next) break; entry = irq_2_pin + entry->next; } spin_unlock_irqrestore(&ioapic_lock, flags); } #if defined(CONFIG_SMP) # include <asm/processor.h> /* kernel_thread() */ # include <linux/kernel_stat.h> /* kstat */ # include <linux/slab.h> /* kmalloc() */ # include <linux/timer.h> /* time_after() */ # ifdef CONFIG_BALANCED_IRQ_DEBUG # define TDprintk(x...) do { printk("<%ld:%s:%d>: ", jiffies, __FILE__, __LINE__); printk(x); } while (0) # define Dprintk(x...) do { TDprintk(x); } while (0) # else # define TDprintk(x...) # define Dprintk(x...) # endif extern unsigned long irq_affinity[NR_IRQS]; static int __cacheline_aligned pending_irq_balance_cpumask[NR_IRQS]; #define IRQBALANCE_CHECK_ARCH -999 static int irqbalance_disabled = IRQBALANCE_CHECK_ARCH; static int physical_balance = 0; struct irq_cpu_info { unsigned long * last_irq; unsigned long * irq_delta; unsigned long irq; } irq_cpu_data[NR_CPUS]; #define CPU_IRQ(cpu) (irq_cpu_data[cpu].irq) #define LAST_CPU_IRQ(cpu,irq) (irq_cpu_data[cpu].last_irq[irq]) #define IRQ_DELTA(cpu,irq) (irq_cpu_data[cpu].irq_delta[irq]) #define IDLE_ENOUGH(cpu,now) \ (idle_cpu(cpu) && ((now) - irq_stat[(cpu)].idle_timestamp > 1)) #define IRQ_ALLOWED(cpu,allowed_mask) \ ((1 << cpu) & (allowed_mask)) #define CPU_TO_PACKAGEINDEX(i) \ ((physical_balance && i > cpu_sibling_map[i]) ? cpu_sibling_map[i] : i) #define MAX_BALANCED_IRQ_INTERVAL (5*HZ) #define MIN_BALANCED_IRQ_INTERVAL (HZ/2) #define BALANCED_IRQ_MORE_DELTA (HZ/10) #define BALANCED_IRQ_LESS_DELTA (HZ) long balanced_irq_interval = MAX_BALANCED_IRQ_INTERVAL; static unsigned long move(int curr_cpu, unsigned long allowed_mask, unsigned long now, int direction) { int search_idle = 1; int cpu = curr_cpu; goto inside; do { if (unlikely(cpu == curr_cpu)) search_idle = 0; inside: if (direction == 1) { cpu++; if (cpu >= NR_CPUS) cpu = 0; } else { cpu--; if (cpu == -1) cpu = NR_CPUS-1; } } while (!cpu_online(cpu) || !IRQ_ALLOWED(cpu,allowed_mask) || (search_idle && !IDLE_ENOUGH(cpu,now))); return cpu; } static inline void balance_irq(int cpu, int irq) { unsigned long now = jiffies; unsigned long allowed_mask; unsigned int new_cpu; if (irqbalance_disabled) return; allowed_mask = cpu_online_map & irq_affinity[irq]; new_cpu = move(cpu, allowed_mask, now, 1); if (cpu != new_cpu) { irq_desc_t *desc = irq_desc + irq; unsigned long flags; spin_lock_irqsave(&desc->lock, flags); pending_irq_balance_cpumask[irq] = 1 << new_cpu; spin_unlock_irqrestore(&desc->lock, flags); } } static inline void rotate_irqs_among_cpus(unsigned long useful_load_threshold) { int i, j; Dprintk("Rotating IRQs among CPUs.\n"); for (i = 0; i < NR_CPUS; i++) { for (j = 0; cpu_online(i) && (j < NR_IRQS); j++) { if (!irq_desc[j].action) continue; /* Is it a significant load ? */ if (IRQ_DELTA(CPU_TO_PACKAGEINDEX(i),j) < useful_load_threshold) continue; balance_irq(i, j); } } balanced_irq_interval = max((long)MIN_BALANCED_IRQ_INTERVAL, balanced_irq_interval - BALANCED_IRQ_LESS_DELTA); return; } static void do_irq_balance(void) { int i, j; unsigned long max_cpu_irq = 0, min_cpu_irq = (~0); unsigned long move_this_load = 0; int max_loaded = 0, min_loaded = 0; unsigned long useful_load_threshold = balanced_irq_interval + 10; int selected_irq; int tmp_loaded, first_attempt = 1; unsigned long tmp_cpu_irq; unsigned long imbalance = 0; unsigned long allowed_mask; unsigned long target_cpu_mask; for (i = 0; i < NR_CPUS; i++) { int package_index; CPU_IRQ(i) = 0; if (!cpu_online(i)) continue; package_index = CPU_TO_PACKAGEINDEX(i); for (j = 0; j < NR_IRQS; j++) { unsigned long value_now, delta; /* Is this an active IRQ? */ if (!irq_desc[j].action) continue; if ( package_index == i ) IRQ_DELTA(package_index,j) = 0; /* Determine the total count per processor per IRQ */ value_now = (unsigned long) kstat_cpu(i).irqs[j]; /* Determine the activity per processor per IRQ */ delta = value_now - LAST_CPU_IRQ(i,j); /* Update last_cpu_irq[][] for the next time */ LAST_CPU_IRQ(i,j) = value_now; /* Ignore IRQs whose rate is less than the clock */ if (delta < useful_load_threshold) continue; /* update the load for the processor or package total */ IRQ_DELTA(package_index,j) += delta; /* Keep track of the higher numbered sibling as well */ if (i != package_index) CPU_IRQ(i) += delta; /* * We have sibling A and sibling B in the package * * cpu_irq[A] = load for cpu A + load for cpu B * cpu_irq[B] = load for cpu B */ CPU_IRQ(package_index) += delta; } } /* Find the least loaded processor package */ for (i = 0; i < NR_CPUS; i++) { if (!cpu_online(i)) continue; if (physical_balance && i > cpu_sibling_map[i]) continue; if (min_cpu_irq > CPU_IRQ(i)) { min_cpu_irq = CPU_IRQ(i); min_loaded = i; } } max_cpu_irq = ULONG_MAX; tryanothercpu: /* Look for heaviest loaded processor. * We may come back to get the next heaviest loaded processor. * Skip processors with trivial loads. */ tmp_cpu_irq = 0; tmp_loaded = -1; for (i = 0; i < NR_CPUS; i++) { if (!cpu_online(i)) continue; if (physical_balance && i > cpu_sibling_map[i]) continue; if (max_cpu_irq <= CPU_IRQ(i)) continue; if (tmp_cpu_irq < CPU_IRQ(i)) { tmp_cpu_irq = CPU_IRQ(i); tmp_loaded = i; } } if (tmp_loaded == -1) { /* In the case of small number of heavy interrupt sources, * loading some of the cpus too much. We use Ingo's original * approach to rotate them around. */ if (!first_attempt && imbalance >= useful_load_threshold) { rotate_irqs_among_cpus(useful_load_threshold); return; } goto not_worth_the_effort; } first_attempt = 0; /* heaviest search */ max_cpu_irq = tmp_cpu_irq; /* load */ max_loaded = tmp_loaded; /* processor */ imbalance = (max_cpu_irq - min_cpu_irq) / 2; Dprintk("max_loaded cpu = %d\n", max_loaded); Dprintk("min_loaded cpu = %d\n", min_loaded); Dprintk("max_cpu_irq load = %ld\n", max_cpu_irq); Dprintk("min_cpu_irq load = %ld\n", min_cpu_irq); Dprintk("load imbalance = %lu\n", imbalance); /* if imbalance is less than approx 10% of max load, then * observe diminishing returns action. - quit */ if (imbalance < (max_cpu_irq >> 3)) { Dprintk("Imbalance too trivial\n"); goto not_worth_the_effort; } tryanotherirq: /* if we select an IRQ to move that can't go where we want, then * see if there is another one to try. */ move_this_load = 0; selected_irq = -1; for (j = 0; j < NR_IRQS; j++) { /* Is this an active IRQ? */ if (!irq_desc[j].action) continue; if (imbalance <= IRQ_DELTA(max_loaded,j)) continue; /* Try to find the IRQ that is closest to the imbalance * without going over. */ if (move_this_load < IRQ_DELTA(max_loaded,j)) { move_this_load = IRQ_DELTA(max_loaded,j); selected_irq = j; } } if (selected_irq == -1) { goto tryanothercpu; } imbalance = move_this_load; /* For physical_balance case, we accumlated both load * values in the one of the siblings cpu_irq[], * to use the same code for physical and logical processors * as much as possible. * * NOTE: the cpu_irq[] array holds the sum of the load for * sibling A and sibling B in the slot for the lowest numbered * sibling (A), _AND_ the load for sibling B in the slot for * the higher numbered sibling. * * We seek the least loaded sibling by making the comparison * (A+B)/2 vs B */ if (physical_balance && (CPU_IRQ(min_loaded) >> 1) > CPU_IRQ(cpu_sibling_map[min_loaded])) min_loaded = cpu_sibling_map[min_loaded]; allowed_mask = cpu_online_map & irq_affinity[selected_irq]; target_cpu_mask = 1 << min_loaded; if (target_cpu_mask & allowed_mask) { irq_desc_t *desc = irq_desc + selected_irq; unsigned long flags; Dprintk("irq = %d moved to cpu = %d\n", selected_irq, min_loaded); /* mark for change destination */ spin_lock_irqsave(&desc->lock, flags); pending_irq_balance_cpumask[selected_irq] = 1 << min_loaded; spin_unlock_irqrestore(&desc->lock, flags); /* Since we made a change, come back sooner to * check for more variation. */ balanced_irq_interval = max((long)MIN_BALANCED_IRQ_INTERVAL, balanced_irq_interval - BALANCED_IRQ_LESS_DELTA); return; } goto tryanotherirq; not_worth_the_effort: /* * if we did not find an IRQ to move, then adjust the time interval * upward */ balanced_irq_interval = min((long)MAX_BALANCED_IRQ_INTERVAL, balanced_irq_interval + BALANCED_IRQ_MORE_DELTA); Dprintk("IRQ worth rotating not found\n"); return; } int balanced_irq(void *unused) { int i; unsigned long prev_balance_time = jiffies; long time_remaining = balanced_irq_interval; daemonize("kirqd"); /* push everything to CPU 0 to give us a starting point. */ for (i = 0 ; i < NR_IRQS ; i++) pending_irq_balance_cpumask[i] = 1; repeat: set_current_state(TASK_INTERRUPTIBLE); time_remaining = schedule_timeout(time_remaining); if (time_after(jiffies, prev_balance_time+balanced_irq_interval)) { Dprintk("balanced_irq: calling do_irq_balance() %lu\n", jiffies); do_irq_balance(); prev_balance_time = jiffies; time_remaining = balanced_irq_interval; } goto repeat; } static int __init balanced_irq_init(void) { int i; struct cpuinfo_x86 *c; c = &boot_cpu_data; /* When not overwritten by the command line ask subarchitecture. */ if (irqbalance_disabled == IRQBALANCE_CHECK_ARCH) irqbalance_disabled = NO_BALANCE_IRQ; if (irqbalance_disabled) return 0; /* disable irqbalance completely if there is only one processor online */ if (num_online_cpus() < 2) { irqbalance_disabled = 1; return 0; } /* * Enable physical balance only if more than 1 physical processor * is present */ if (smp_num_siblings > 1 && cpu_online_map >> 2) physical_balance = 1; for (i = 0; i < NR_CPUS; i++) { if (!cpu_online(i)) continue; irq_cpu_data[i].irq_delta = kmalloc(sizeof(unsigned long) * NR_IRQS, GFP_KERNEL); irq_cpu_data[i].last_irq = kmalloc(sizeof(unsigned long) * NR_IRQS, GFP_KERNEL); if (irq_cpu_data[i].irq_delta == NULL || irq_cpu_data[i].last_irq == NULL) { printk(KERN_ERR "balanced_irq_init: out of memory"); goto failed; } memset(irq_cpu_data[i].irq_delta,0,sizeof(unsigned long) * NR_IRQS); memset(irq_cpu_data[i].last_irq,0,sizeof(unsigned long) * NR_IRQS); } printk(KERN_INFO "Starting balanced_irq\n"); if (kernel_thread(balanced_irq, NULL, CLONE_KERNEL) >= 0) return 0; else printk(KERN_ERR "balanced_irq_init: failed to spawn balanced_irq"); failed: for (i = 0; i < NR_CPUS; i++) { if(irq_cpu_data[i].irq_delta) kfree(irq_cpu_data[i].irq_delta); if(irq_cpu_data[i].last_irq) kfree(irq_cpu_data[i].last_irq); } return 0; } static int __init irqbalance_disable(char *str) { irqbalance_disabled = 1; return 0; } __setup("noirqbalance", irqbalance_disable); static void set_ioapic_affinity (unsigned int irq, unsigned long mask); static inline void move_irq(int irq) { /* note - we hold the desc->lock */ if (unlikely(pending_irq_balance_cpumask[irq])) { set_ioapic_affinity(irq, pending_irq_balance_cpumask[irq]); pending_irq_balance_cpumask[irq] = 0; } } __initcall(balanced_irq_init); #else /* !SMP */ static inline void move_irq(int irq) { } #endif /* defined(CONFIG_SMP) */ /* * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to * specific CPU-side IRQs. */ #define MAX_PIRQS 8 int pirq_entries [MAX_PIRQS]; int pirqs_enabled; int skip_ioapic_setup; static int __init ioapic_setup(char *str) { skip_ioapic_setup = 1; return 1; } __setup("noapic", ioapic_setup); static int __init ioapic_pirq_setup(char *str) { int i, max; int ints[MAX_PIRQS+1]; get_options(str, ARRAY_SIZE(ints), ints); for (i = 0; i < MAX_PIRQS; i++) pirq_entries[i] = -1; pirqs_enabled = 1; printk(KERN_INFO "PIRQ redirection, working around broken MP-BIOS.\n"); max = MAX_PIRQS; if (ints[0] < MAX_PIRQS) max = ints[0]; for (i = 0; i < max; i++) { printk(KERN_DEBUG "... PIRQ%d -> IRQ %d\n", i, ints[i+1]); /* * PIRQs are mapped upside down, usually. */ pirq_entries[MAX_PIRQS-i-1] = ints[i+1]; } return 1; } __setup("pirq=", ioapic_pirq_setup); /* * Find the IRQ entry number of a certain pin. */ static int __init find_irq_entry(int apic, int pin, int type) { int i; for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].mpc_irqtype == type && (mp_irqs[i].mpc_dstapic == mp_ioapics[apic].mpc_apicid || mp_irqs[i].mpc_dstapic == MP_APIC_ALL) && mp_irqs[i].mpc_dstirq == pin) return i; return -1; } /* * Find the pin to which IRQ[irq] (ISA) is connected */ static int __init find_isa_irq_pin(int irq, int type) { int i; for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].mpc_srcbus; if ((mp_bus_id_to_type[lbus] == MP_BUS_ISA || mp_bus_id_to_type[lbus] == MP_BUS_EISA || mp_bus_id_to_type[lbus] == MP_BUS_MCA || mp_bus_id_to_type[lbus] == MP_BUS_NEC98 ) && (mp_irqs[i].mpc_irqtype == type) && (mp_irqs[i].mpc_srcbusirq == irq)) return mp_irqs[i].mpc_dstirq; } return -1; } /* * Find a specific PCI IRQ entry. * Not an __init, possibly needed by modules */ static int pin_2_irq(int idx, int apic, int pin); int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin) { int apic, i, best_guess = -1; Dprintk("querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n", bus, slot, pin); if (mp_bus_id_to_pci_bus[bus] == -1) { printk(KERN_WARNING "PCI BIOS passed nonexistent PCI bus %d!\n", bus); return -1; } for (i = 0; i < mp_irq_entries; i++) { int lbus = mp_irqs[i].mpc_srcbus; for (apic = 0; apic < nr_ioapics; apic++) if (mp_ioapics[apic].mpc_apicid == mp_irqs[i].mpc_dstapic || mp_irqs[i].mpc_dstapic == MP_APIC_ALL) break; if ((mp_bus_id_to_type[lbus] == MP_BUS_PCI) && !mp_irqs[i].mpc_irqtype && (bus == lbus) && (slot == ((mp_irqs[i].mpc_srcbusirq >> 2) & 0x1f))) { int irq = pin_2_irq(i,apic,mp_irqs[i].mpc_dstirq); if (!(apic || IO_APIC_IRQ(irq))) continue; if (pin == (mp_irqs[i].mpc_srcbusirq & 3)) return irq; /* * Use the first all-but-pin matching entry as a * best-guess fuzzy result for broken mptables. */ if (best_guess < 0) best_guess = irq; } } return best_guess; } /* * This function currently is only a helper for the i386 smp boot process where * we need to reprogram the ioredtbls to cater for the cpus which have come online * so mask in all cases should simply be TARGET_CPUS */ void __init setup_ioapic_dest (unsigned long mask) { int pin, ioapic, irq, irq_entry; if (skip_ioapic_setup == 1) return; for (ioapic = 0; ioapic < nr_ioapics; ioapic++) { for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) { irq_entry = find_irq_entry(ioapic, pin, mp_INT); if (irq_entry == -1) continue; irq = pin_2_irq(irq_entry, ioapic, pin); set_ioapic_affinity(irq, mask); } } } /* * EISA Edge/Level control register, ELCR */ static int __init EISA_ELCR(unsigned int irq) { if (irq < 16) { unsigned int port = 0x4d0 + (irq >> 3); return (inb(port) >> (irq & 7)) & 1; } printk(KERN_INFO "Broken MPtable reports ISA irq %d\n", irq); return 0; } /* EISA interrupts are always polarity zero and can be edge or level * trigger depending on the ELCR value. If an interrupt is listed as * EISA conforming in the MP table, that means its trigger type must * be read in from the ELCR */ #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].mpc_srcbusirq)) #define default_EISA_polarity(idx) (0) /* ISA interrupts are always polarity zero edge triggered, * when listed as conforming in the MP table. */ #define default_ISA_trigger(idx) (0) #define default_ISA_polarity(idx) (0) /* PCI interrupts are always polarity one level triggered, * when listed as conforming in the MP table. */ #define default_PCI_trigger(idx) (1) #define default_PCI_polarity(idx) (1) /* MCA interrupts are always polarity zero level triggered, * when listed as conforming in the MP table. */ #define default_MCA_trigger(idx) (1) #define default_MCA_polarity(idx) (0) /* NEC98 interrupts are always polarity zero edge triggered, * when listed as conforming in the MP table. */ #define default_NEC98_trigger(idx) (0) #define default_NEC98_polarity(idx) (0) static int __init MPBIOS_polarity(int idx) { int bus = mp_irqs[idx].mpc_srcbus; int polarity; /* * Determine IRQ line polarity (high active or low active): */ switch (mp_irqs[idx].mpc_irqflag & 3) { case 0: /* conforms, ie. bus-type dependent polarity */ { switch (mp_bus_id_to_type[bus]) { case MP_BUS_ISA: /* ISA pin */ { polarity = default_ISA_polarity(idx); break; } case MP_BUS_EISA: /* EISA pin */ { polarity = default_EISA_polarity(idx); break; } case MP_BUS_PCI: /* PCI pin */ { polarity = default_PCI_polarity(idx); break; } case MP_BUS_MCA: /* MCA pin */ { polarity = default_MCA_polarity(idx); break; } case MP_BUS_NEC98: /* NEC 98 pin */ { polarity = default_NEC98_polarity(idx); break; } default: { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } } break; } case 1: /* high active */ { polarity = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } case 3: /* low active */ { polarity = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); polarity = 1; break; } } return polarity; } static int __init MPBIOS_trigger(int idx) { int bus = mp_irqs[idx].mpc_srcbus; int trigger; /* * Determine IRQ trigger mode (edge or level sensitive): */ switch ((mp_irqs[idx].mpc_irqflag>>2) & 3) { case 0: /* conforms, ie. bus-type dependent */ { switch (mp_bus_id_to_type[bus]) { case MP_BUS_ISA: /* ISA pin */ { trigger = default_ISA_trigger(idx); break; } case MP_BUS_EISA: /* EISA pin */ { trigger = default_EISA_trigger(idx); break; } case MP_BUS_PCI: /* PCI pin */ { trigger = default_PCI_trigger(idx); break; } case MP_BUS_MCA: /* MCA pin */ { trigger = default_MCA_trigger(idx); break; } case MP_BUS_NEC98: /* NEC 98 pin */ { trigger = default_NEC98_trigger(idx); break; } default: { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 1; break; } } break; } case 1: /* edge */ { trigger = 0; break; } case 2: /* reserved */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 1; break; } case 3: /* level */ { trigger = 1; break; } default: /* invalid */ { printk(KERN_WARNING "broken BIOS!!\n"); trigger = 0; break; } } return trigger; } static inline int irq_polarity(int idx) { return MPBIOS_polarity(idx); } static inline int irq_trigger(int idx) { return MPBIOS_trigger(idx); } static int pin_2_irq(int idx, int apic, int pin) { int irq, i; int bus = mp_irqs[idx].mpc_srcbus; /* * Debugging check, we are in big trouble if this message pops up! */ if (mp_irqs[idx].mpc_dstirq != pin) printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n"); switch (mp_bus_id_to_type[bus]) { case MP_BUS_ISA: /* ISA pin */ case MP_BUS_EISA: case MP_BUS_MCA: case MP_BUS_NEC98: { irq = mp_irqs[idx].mpc_srcbusirq; break; } case MP_BUS_PCI: /* PCI pin */ { /* * PCI IRQs are mapped in order */ i = irq = 0; while (i < apic) irq += nr_ioapic_registers[i++]; irq += pin; if ((!apic) && (irq < 16)) irq += 16; break; } default: { printk(KERN_ERR "unknown bus type %d.\n",bus); irq = 0; break; } } /* * PCI IRQ command line redirection. Yes, limits are hardcoded. */ if ((pin >= 16) && (pin <= 23)) { if (pirq_entries[pin-16] != -1) { if (!pirq_entries[pin-16]) { printk(KERN_DEBUG "disabling PIRQ%d\n", pin-16); } else { irq = pirq_entries[pin-16]; printk(KERN_DEBUG "using PIRQ%d -> IRQ %d\n", pin-16, irq); } } } return irq; } static inline int IO_APIC_irq_trigger(int irq) { int apic, idx, pin; for (apic = 0; apic < nr_ioapics; apic++) { for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { idx = find_irq_entry(apic,pin,mp_INT); if ((idx != -1) && (irq == pin_2_irq(idx,apic,pin))) return irq_trigger(idx); } } /* * nonexistent IRQs are edge default */ return 0; } int irq_vector[NR_IRQS] = { FIRST_DEVICE_VECTOR , 0 }; static int __init assign_irq_vector(int irq) { static int current_vector = FIRST_DEVICE_VECTOR, offset = 0; if (IO_APIC_VECTOR(irq) > 0) return IO_APIC_VECTOR(irq); next: current_vector += 8; if (current_vector == SYSCALL_VECTOR) goto next; if (current_vector >= FIRST_SYSTEM_VECTOR) { offset = (offset + 1) & 7; current_vector = FIRST_DEVICE_VECTOR + offset; } IO_APIC_VECTOR(irq) = current_vector; return current_vector; } static struct hw_interrupt_type ioapic_level_irq_type; static struct hw_interrupt_type ioapic_edge_irq_type; void __init setup_IO_APIC_irqs(void) { struct IO_APIC_route_entry entry; int apic, pin, idx, irq, first_notcon = 1, vector; unsigned long flags; printk(KERN_DEBUG "init IO_APIC IRQs\n"); for (apic = 0; apic < nr_ioapics; apic++) { for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) { /* * add it to the IO-APIC irq-routing table: */ memset(&entry,0,sizeof(entry)); entry.delivery_mode = INT_DELIVERY_MODE; entry.dest_mode = INT_DEST_MODE; entry.mask = 0; /* enable IRQ */ entry.dest.logical.logical_dest = cpu_mask_to_apicid(TARGET_CPUS); idx = find_irq_entry(apic,pin,mp_INT); if (idx == -1) { if (first_notcon) { printk(KERN_DEBUG " IO-APIC (apicid-pin) %d-%d", mp_ioapics[apic].mpc_apicid, pin); first_notcon = 0; } else printk(", %d-%d", mp_ioapics[apic].mpc_apicid, pin); continue; } entry.trigger = irq_trigger(idx); entry.polarity = irq_polarity(idx); if (irq_trigger(idx)) { entry.trigger = 1; entry.mask = 1; } irq = pin_2_irq(idx, apic, pin); /* * skip adding the timer int on secondary nodes, which causes * a small but painful rift in the time-space continuum */ if (multi_timer_check(apic, irq)) continue; else add_pin_to_irq(irq, apic, pin); if (!apic && !IO_APIC_IRQ(irq)) continue; if (IO_APIC_IRQ(irq)) { vector = assign_irq_vector(irq); entry.vector = vector; if (IO_APIC_irq_trigger(irq)) irq_desc[irq].handler = &ioapic_level_irq_type; else irq_desc[irq].handler = &ioapic_edge_irq_type; set_intr_gate(vector, interrupt[irq]); if (!apic && (irq < 16)) disable_8259A_irq(irq); } spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic, 0x11+2*pin, *(((int *)&entry)+1)); io_apic_write(apic, 0x10+2*pin, *(((int *)&entry)+0)); spin_unlock_irqrestore(&ioapic_lock, flags); } } if (!first_notcon) printk(" not connected.\n"); } /* * Set up the 8259A-master output pin: */ void __init setup_ExtINT_IRQ0_pin(unsigned int pin, int vector) { struct IO_APIC_route_entry entry; unsigned long flags; memset(&entry,0,sizeof(entry)); disable_8259A_irq(0); /* mask LVT0 */ apic_write_around(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); /* * We use logical delivery to get the timer IRQ * to the first CPU. */ entry.dest_mode = INT_DEST_MODE; entry.mask = 0; /* unmask IRQ now */ entry.dest.logical.logical_dest = cpu_mask_to_apicid(TARGET_CPUS); entry.delivery_mode = INT_DELIVERY_MODE; entry.polarity = 0; entry.trigger = 0; entry.vector = vector; /* * The timer IRQ doesn't have to know that behind the * scene we have a 8259A-master in AEOI mode ... */ irq_desc[0].handler = &ioapic_edge_irq_type; /* * Add it to the IO-APIC irq-routing table: */ spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(0, 0x11+2*pin, *(((int *)&entry)+1)); io_apic_write(0, 0x10+2*pin, *(((int *)&entry)+0)); spin_unlock_irqrestore(&ioapic_lock, flags); enable_8259A_irq(0); } static inline void UNEXPECTED_IO_APIC(void) { } void __init print_IO_APIC(void) { int apic, i; struct IO_APIC_reg_00 reg_00; struct IO_APIC_reg_01 reg_01; struct IO_APIC_reg_02 reg_02; struct IO_APIC_reg_03 reg_03; unsigned long flags; printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries); for (i = 0; i < nr_ioapics; i++) printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n", mp_ioapics[i].mpc_apicid, nr_ioapic_registers[i]); /* * We are a bit conservative about what we expect. We have to * know about every hardware change ASAP. */ printk(KERN_INFO "testing the IO APIC.......................\n"); for (apic = 0; apic < nr_ioapics; apic++) { spin_lock_irqsave(&ioapic_lock, flags); *(int *)®_00 = io_apic_read(apic, 0); *(int *)®_01 = io_apic_read(apic, 1); if (reg_01.version >= 0x10) *(int *)®_02 = io_apic_read(apic, 2); if (reg_01.version >= 0x20) *(int *)®_03 = io_apic_read(apic, 3); spin_unlock_irqrestore(&ioapic_lock, flags); printk("\n"); printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mpc_apicid); printk(KERN_DEBUG ".... register #00: %08X\n", *(int *)®_00); printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.ID); printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.delivery_type); printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.LTS); if (reg_00.ID >= APIC_BROADCAST_ID) UNEXPECTED_IO_APIC(); if (reg_00.__reserved_1 || reg_00.__reserved_2) UNEXPECTED_IO_APIC(); printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)®_01); printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.entries); if ( (reg_01.entries != 0x0f) && /* older (Neptune) boards */ (reg_01.entries != 0x17) && /* typical ISA+PCI boards */ (reg_01.entries != 0x1b) && /* Compaq Proliant boards */ (reg_01.entries != 0x1f) && /* dual Xeon boards */ (reg_01.entries != 0x22) && /* bigger Xeon boards */ (reg_01.entries != 0x2E) && (reg_01.entries != 0x3F) ) UNEXPECTED_IO_APIC(); printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.PRQ); printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.version); if ( (reg_01.version != 0x01) && /* 82489DX IO-APICs */ (reg_01.version != 0x10) && /* oldest IO-APICs */ (reg_01.version != 0x11) && /* Pentium/Pro IO-APICs */ (reg_01.version != 0x13) && /* Xeon IO-APICs */ (reg_01.version != 0x20) /* Intel P64H (82806 AA) */ ) UNEXPECTED_IO_APIC(); if (reg_01.__reserved_1 || reg_01.__reserved_2) UNEXPECTED_IO_APIC(); /* * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02, * but the value of reg_02 is read as the previous read register * value, so ignore it if reg_02 == reg_01. */ if (reg_01.version >= 0x10 && *(int *)®_02 != *(int *)®_01) { printk(KERN_DEBUG ".... register #02: %08X\n", *(int *)®_02); printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.arbitration); if (reg_02.__reserved_1 || reg_02.__reserved_2) UNEXPECTED_IO_APIC(); } /* * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02 * or reg_03, but the value of reg_0[23] is read as the previous read * register value, so ignore it if reg_03 == reg_0[12]. */ if (reg_01.version >= 0x20 && *(int *)®_03 != *(int *)®_02 && *(int *)®_03 != *(int *)®_01) { printk(KERN_DEBUG ".... register #03: %08X\n", *(int *)®_03); printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.boot_DT); if (reg_03.__reserved_1) UNEXPECTED_IO_APIC(); } printk(KERN_DEBUG ".... IRQ redirection table:\n"); printk(KERN_DEBUG " NR Log Phy Mask Trig IRR Pol" " Stat Dest Deli Vect: \n"); for (i = 0; i <= reg_01.entries; i++) { struct IO_APIC_route_entry entry; spin_lock_irqsave(&ioapic_lock, flags); *(((int *)&entry)+0) = io_apic_read(apic, 0x10+i*2); *(((int *)&entry)+1) = io_apic_read(apic, 0x11+i*2); spin_unlock_irqrestore(&ioapic_lock, flags); printk(KERN_DEBUG " %02x %03X %02X ", i, entry.dest.logical.logical_dest, entry.dest.physical.physical_dest ); printk("%1d %1d %1d %1d %1d %1d %1d %02X\n", entry.mask, entry.trigger, entry.irr, entry.polarity, entry.delivery_status, entry.dest_mode, entry.delivery_mode, entry.vector ); } } printk(KERN_DEBUG "IRQ to pin mappings:\n"); for (i = 0; i < NR_IRQS; i++) { struct irq_pin_list *entry = irq_2_pin + i; if (entry->pin < 0) continue; printk(KERN_DEBUG "IRQ%d ", i); for (;;) { printk("-> %d:%d", entry->apic, entry->pin); if (!entry->next) break; entry = irq_2_pin + entry->next; } printk("\n"); } printk(KERN_INFO ".................................... done.\n"); return; } static void print_APIC_bitfield (int base) { unsigned int v; int i, j; printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG); for (i = 0; i < 8; i++) { v = apic_read(base + i*0x10); for (j = 0; j < 32; j++) { if (v & (1<<j)) printk("1"); else printk("0"); } printk("\n"); } } void /*__init*/ print_local_APIC(void * dummy) { unsigned int v, ver, maxlvt; printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n", smp_processor_id(), hard_smp_processor_id()); v = apic_read(APIC_ID); printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, GET_APIC_ID(v)); v = apic_read(APIC_LVR); printk(KERN_INFO "... APIC VERSION: %08x\n", v); ver = GET_APIC_VERSION(v); maxlvt = get_maxlvt(); v = apic_read(APIC_TASKPRI); printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK); if (APIC_INTEGRATED(ver)) { /* !82489DX */ v = apic_read(APIC_ARBPRI); printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v, v & APIC_ARBPRI_MASK); v = apic_read(APIC_PROCPRI); printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v); } v = apic_read(APIC_EOI); printk(KERN_DEBUG "... APIC EOI: %08x\n", v); v = apic_read(APIC_RRR); printk(KERN_DEBUG "... APIC RRR: %08x\n", v); v = apic_read(APIC_LDR); printk(KERN_DEBUG "... APIC LDR: %08x\n", v); v = apic_read(APIC_DFR); printk(KERN_DEBUG "... APIC DFR: %08x\n", v); v = apic_read(APIC_SPIV); printk(KERN_DEBUG "... APIC SPIV: %08x\n", v); printk(KERN_DEBUG "... APIC ISR field:\n"); print_APIC_bitfield(APIC_ISR); printk(KERN_DEBUG "... APIC TMR field:\n"); print_APIC_bitfield(APIC_TMR); printk(KERN_DEBUG "... APIC IRR field:\n"); print_APIC_bitfield(APIC_IRR); if (APIC_INTEGRATED(ver)) { /* !82489DX */ if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); v = apic_read(APIC_ESR); printk(KERN_DEBUG "... APIC ESR: %08x\n", v); } v = apic_read(APIC_ICR); printk(KERN_DEBUG "... APIC ICR: %08x\n", v); v = apic_read(APIC_ICR2); printk(KERN_DEBUG "... APIC ICR2: %08x\n", v); v = apic_read(APIC_LVTT); printk(KERN_DEBUG "... APIC LVTT: %08x\n", v); if (maxlvt > 3) { /* PC is LVT#4. */ v = apic_read(APIC_LVTPC); printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v); } v = apic_read(APIC_LVT0); printk(KERN_DEBUG "... APIC LVT0: %08x\n", v); v = apic_read(APIC_LVT1); printk(KERN_DEBUG "... APIC LVT1: %08x\n", v); if (maxlvt > 2) { /* ERR is LVT#3. */ v = apic_read(APIC_LVTERR); printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v); } v = apic_read(APIC_TMICT); printk(KERN_DEBUG "... APIC TMICT: %08x\n", v); v = apic_read(APIC_TMCCT); printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v); v = apic_read(APIC_TDCR); printk(KERN_DEBUG "... APIC TDCR: %08x\n", v); printk("\n"); } void print_all_local_APICs (void) { on_each_cpu(print_local_APIC, NULL, 1, 1); } void /*__init*/ print_PIC(void) { extern spinlock_t i8259A_lock; unsigned int v; unsigned long flags; printk(KERN_DEBUG "\nprinting PIC contents\n"); spin_lock_irqsave(&i8259A_lock, flags); v = inb(0xa1) << 8 | inb(0x21); printk(KERN_DEBUG "... PIC IMR: %04x\n", v); v = inb(0xa0) << 8 | inb(0x20); printk(KERN_DEBUG "... PIC IRR: %04x\n", v); outb(0x0b,0xa0); outb(0x0b,0x20); v = inb(0xa0) << 8 | inb(0x20); outb(0x0a,0xa0); outb(0x0a,0x20); spin_unlock_irqrestore(&i8259A_lock, flags); printk(KERN_DEBUG "... PIC ISR: %04x\n", v); v = inb(0x4d1) << 8 | inb(0x4d0); printk(KERN_DEBUG "... PIC ELCR: %04x\n", v); } static void __init enable_IO_APIC(void) { struct IO_APIC_reg_01 reg_01; int i; unsigned long flags; for (i = 0; i < PIN_MAP_SIZE; i++) { irq_2_pin[i].pin = -1; irq_2_pin[i].next = 0; } if (!pirqs_enabled) for (i = 0; i < MAX_PIRQS; i++) pirq_entries[i] = -1; /* * The number of IO-APIC IRQ registers (== #pins): */ for (i = 0; i < nr_ioapics; i++) { spin_lock_irqsave(&ioapic_lock, flags); *(int *)®_01 = io_apic_read(i, 1); spin_unlock_irqrestore(&ioapic_lock, flags); nr_ioapic_registers[i] = reg_01.entries+1; } /* * Do not trust the IO-APIC being empty at bootup */ clear_IO_APIC(); } /* * Not an __init, needed by the reboot code */ void disable_IO_APIC(void) { /* * Clear the IO-APIC before rebooting: */ clear_IO_APIC(); disconnect_bsp_APIC(); } /* * function to set the IO-APIC physical IDs based on the * values stored in the MPC table. * * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999 */ #ifndef CONFIG_X86_NUMAQ static void __init setup_ioapic_ids_from_mpc(void) { struct IO_APIC_reg_00 reg_00; unsigned long phys_id_present_map; int apic; int i; unsigned char old_id; unsigned long flags; if (acpi_ioapic) /* This gets done during IOAPIC enumeration for ACPI. */ return; phys_id_present_map = ioapic_phys_id_map(phys_cpu_present_map); /* * Set the IOAPIC ID to the value stored in the MPC table. */ for (apic = 0; apic < nr_ioapics; apic++) { /* Read the register 0 value */ spin_lock_irqsave(&ioapic_lock, flags); *(int *)®_00 = io_apic_read(apic, 0); spin_unlock_irqrestore(&ioapic_lock, flags); old_id = mp_ioapics[apic].mpc_apicid; if (mp_ioapics[apic].mpc_apicid >= APIC_BROADCAST_ID) { printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n", apic, mp_ioapics[apic].mpc_apicid); printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", reg_00.ID); mp_ioapics[apic].mpc_apicid = reg_00.ID; } /* * Sanity check, is the ID really free? Every APIC in a * system must have a unique ID or we get lots of nice * 'stuck on smp_invalidate_needed IPI wait' messages. */ if (check_apicid_used(phys_id_present_map, mp_ioapics[apic].mpc_apicid)) { printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n", apic, mp_ioapics[apic].mpc_apicid); for (i = 0; i < 0xf; i++) if (!(phys_id_present_map & (1 << i))) break; if (i >= 0xf) panic("Max APIC ID exceeded!\n"); printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n", i); phys_id_present_map |= 1 << i; mp_ioapics[apic].mpc_apicid = i; } else { printk("Setting %d in the phys_id_present_map\n", mp_ioapics[apic].mpc_apicid); phys_id_present_map |= apicid_to_cpu_present(mp_ioapics[apic].mpc_apicid); } /* * We need to adjust the IRQ routing table * if the ID changed. */ if (old_id != mp_ioapics[apic].mpc_apicid) for (i = 0; i < mp_irq_entries; i++) if (mp_irqs[i].mpc_dstapic == old_id) mp_irqs[i].mpc_dstapic = mp_ioapics[apic].mpc_apicid; /* * Read the right value from the MPC table and * write it into the ID register. */ printk(KERN_INFO "...changing IO-APIC physical APIC ID to %d ...", mp_ioapics[apic].mpc_apicid); reg_00.ID = mp_ioapics[apic].mpc_apicid; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(apic, 0, *(int *)®_00); spin_unlock_irqrestore(&ioapic_lock, flags); /* * Sanity check */ spin_lock_irqsave(&ioapic_lock, flags); *(int *)®_00 = io_apic_read(apic, 0); spin_unlock_irqrestore(&ioapic_lock, flags); if (reg_00.ID != mp_ioapics[apic].mpc_apicid) panic("could not set ID!\n"); else printk(" ok.\n"); } } #else static void __init setup_ioapic_ids_from_mpc(void) { } #endif /* * There is a nasty bug in some older SMP boards, their mptable lies * about the timer IRQ. We do the following to work around the situation: * * - timer IRQ defaults to IO-APIC IRQ * - if this function detects that timer IRQs are defunct, then we fall * back to ISA timer IRQs */ static int __init timer_irq_works(void) { unsigned long t1 = jiffies; local_irq_enable(); /* Let ten ticks pass... */ mdelay((10 * 1000) / HZ); /* * Expect a few ticks at least, to be sure some possible * glue logic does not lock up after one or two first * ticks in a non-ExtINT mode. Also the local APIC * might have cached one ExtINT interrupt. Finally, at * least one tick may be lost due to delays. */ if (jiffies - t1 > 4) return 1; return 0; } /* * In the SMP+IOAPIC case it might happen that there are an unspecified * number of pending IRQ events unhandled. These cases are very rare, * so we 'resend' these IRQs via IPIs, to the same CPU. It's much * better to do it this way as thus we do not have to be aware of * 'pending' interrupts in the IRQ path, except at this point. */ /* * Edge triggered needs to resend any interrupt * that was delayed but this is now handled in the device * independent code. */ #define enable_edge_ioapic_irq unmask_IO_APIC_irq static void disable_edge_ioapic_irq (unsigned int irq) { /* nothing */ } /* * Starting up a edge-triggered IO-APIC interrupt is * nasty - we need to make sure that we get the edge. * If it is already asserted for some reason, we need * return 1 to indicate that is was pending. * * This is not complete - we should be able to fake * an edge even if it isn't on the 8259A... */ static unsigned int startup_edge_ioapic_irq(unsigned int irq) { int was_pending = 0; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); if (irq < 16) { disable_8259A_irq(irq); if (i8259A_irq_pending(irq)) was_pending = 1; } __unmask_IO_APIC_irq(irq); spin_unlock_irqrestore(&ioapic_lock, flags); return was_pending; } #define shutdown_edge_ioapic_irq disable_edge_ioapic_irq /* * Once we have recorded IRQ_PENDING already, we can mask the * interrupt for real. This prevents IRQ storms from unhandled * devices. */ static void ack_edge_ioapic_irq(unsigned int irq) { move_irq(irq); if ((irq_desc[irq].status & (IRQ_PENDING | IRQ_DISABLED)) == (IRQ_PENDING | IRQ_DISABLED)) mask_IO_APIC_irq(irq); ack_APIC_irq(); } static void end_edge_ioapic_irq (unsigned int i) { /* nothing */ } /* * Level triggered interrupts can just be masked, * and shutting down and starting up the interrupt * is the same as enabling and disabling them -- except * with a startup need to return a "was pending" value. * * Level triggered interrupts are special because we * do not touch any IO-APIC register while handling * them. We ack the APIC in the end-IRQ handler, not * in the start-IRQ-handler. Protection against reentrance * from the same interrupt is still provided, both by the * generic IRQ layer and by the fact that an unacked local * APIC does not accept IRQs. */ static unsigned int startup_level_ioapic_irq (unsigned int irq) { unmask_IO_APIC_irq(irq); return 0; /* don't check for pending */ } #define shutdown_level_ioapic_irq mask_IO_APIC_irq #define enable_level_ioapic_irq unmask_IO_APIC_irq #define disable_level_ioapic_irq mask_IO_APIC_irq static void end_level_ioapic_irq (unsigned int irq) { unsigned long v; int i; move_irq(irq); /* * It appears there is an erratum which affects at least version 0x11 * of I/O APIC (that's the 82093AA and cores integrated into various * chipsets). Under certain conditions a level-triggered interrupt is * erroneously delivered as edge-triggered one but the respective IRR * bit gets set nevertheless. As a result the I/O unit expects an EOI * message but it will never arrive and further interrupts are blocked * from the source. The exact reason is so far unknown, but the * phenomenon was observed when two consecutive interrupt requests * from a given source get delivered to the same CPU and the source is * temporarily disabled in between. * * A workaround is to simulate an EOI message manually. We achieve it * by setting the trigger mode to edge and then to level when the edge * trigger mode gets detected in the TMR of a local APIC for a * level-triggered interrupt. We mask the source for the time of the * operation to prevent an edge-triggered interrupt escaping meanwhile. * The idea is from Manfred Spraul. --macro */ i = IO_APIC_VECTOR(irq); v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1)); ack_APIC_irq(); if (!(v & (1 << (i & 0x1f)))) { #ifdef APIC_LOCKUP_DEBUG struct irq_pin_list *entry; #endif #ifdef APIC_MISMATCH_DEBUG atomic_inc(&irq_mis_count); #endif spin_lock(&ioapic_lock); __mask_and_edge_IO_APIC_irq(irq); #ifdef APIC_LOCKUP_DEBUG for (entry = irq_2_pin + irq;;) { unsigned int reg; if (entry->pin == -1) break; reg = io_apic_read(entry->apic, 0x10 + entry->pin * 2); if (reg & 0x00004000) printk(KERN_CRIT "Aieee!!! Remote IRR" " still set after unlock!\n"); if (!entry->next) break; entry = irq_2_pin + entry->next; } #endif __unmask_and_level_IO_APIC_irq(irq); spin_unlock(&ioapic_lock); } } static void mask_and_ack_level_ioapic_irq (unsigned int irq) { /* nothing */ } /* * Level and edge triggered IO-APIC interrupts need different handling, * so we use two separate IRQ descriptors. Edge triggered IRQs can be * handled with the level-triggered descriptor, but that one has slightly * more overhead. Level-triggered interrupts cannot be handled with the * edge-triggered handler, without risking IRQ storms and other ugly * races. */ static struct hw_interrupt_type ioapic_edge_irq_type = { .typename = "IO-APIC-edge", .startup = startup_edge_ioapic_irq, .shutdown = shutdown_edge_ioapic_irq, .enable = enable_edge_ioapic_irq, .disable = disable_edge_ioapic_irq, .ack = ack_edge_ioapic_irq, .end = end_edge_ioapic_irq, .set_affinity = set_ioapic_affinity, }; static struct hw_interrupt_type ioapic_level_irq_type = { .typename = "IO-APIC-level", .startup = startup_level_ioapic_irq, .shutdown = shutdown_level_ioapic_irq, .enable = enable_level_ioapic_irq, .disable = disable_level_ioapic_irq, .ack = mask_and_ack_level_ioapic_irq, .end = end_level_ioapic_irq, .set_affinity = set_ioapic_affinity, }; static inline void init_IO_APIC_traps(void) { int irq; /* * NOTE! The local APIC isn't very good at handling * multiple interrupts at the same interrupt level. * As the interrupt level is determined by taking the * vector number and shifting that right by 4, we * want to spread these out a bit so that they don't * all fall in the same interrupt level. * * Also, we've got to be careful not to trash gate * 0x80, because int 0x80 is hm, kind of importantish. ;) */ for (irq = 0; irq < NR_IRQS ; irq++) { if (IO_APIC_IRQ(irq) && !IO_APIC_VECTOR(irq)) { /* * Hmm.. We don't have an entry for this, * so default to an old-fashioned 8259 * interrupt if we can.. */ if (irq < 16) make_8259A_irq(irq); else /* Strange. Oh, well.. */ irq_desc[irq].handler = &no_irq_type; } } } static void enable_lapic_irq (unsigned int irq) { unsigned long v; v = apic_read(APIC_LVT0); apic_write_around(APIC_LVT0, v & ~APIC_LVT_MASKED); } static void disable_lapic_irq (unsigned int irq) { unsigned long v; v = apic_read(APIC_LVT0); apic_write_around(APIC_LVT0, v | APIC_LVT_MASKED); } static void ack_lapic_irq (unsigned int irq) { ack_APIC_irq(); } static void end_lapic_irq (unsigned int i) { /* nothing */ } static struct hw_interrupt_type lapic_irq_type = { .typename = "local-APIC-edge", .startup = NULL, /* startup_irq() not used for IRQ0 */ .shutdown = NULL, /* shutdown_irq() not used for IRQ0 */ .enable = enable_lapic_irq, .disable = disable_lapic_irq, .ack = ack_lapic_irq, .end = end_lapic_irq }; static void setup_nmi (void) { /* * Dirty trick to enable the NMI watchdog ... * We put the 8259A master into AEOI mode and * unmask on all local APICs LVT0 as NMI. * * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire') * is from Maciej W. Rozycki - so we do not have to EOI from * the NMI handler or the timer interrupt. */ printk(KERN_INFO "activating NMI Watchdog ..."); on_each_cpu(enable_NMI_through_LVT0, NULL, 1, 1); printk(" done.\n"); } /* * This looks a bit hackish but it's about the only one way of sending * a few INTA cycles to 8259As and any associated glue logic. ICR does * not support the ExtINT mode, unfortunately. We need to send these * cycles as some i82489DX-based boards have glue logic that keeps the * 8259A interrupt line asserted until INTA. --macro */ static inline void unlock_ExtINT_logic(void) { int pin, i; struct IO_APIC_route_entry entry0, entry1; unsigned char save_control, save_freq_select; unsigned long flags; pin = find_isa_irq_pin(8, mp_INT); if (pin == -1) return; spin_lock_irqsave(&ioapic_lock, flags); *(((int *)&entry0) + 1) = io_apic_read(0, 0x11 + 2 * pin); *(((int *)&entry0) + 0) = io_apic_read(0, 0x10 + 2 * pin); spin_unlock_irqrestore(&ioapic_lock, flags); clear_IO_APIC_pin(0, pin); memset(&entry1, 0, sizeof(entry1)); entry1.dest_mode = 0; /* physical delivery */ entry1.mask = 0; /* unmask IRQ now */ entry1.dest.physical.physical_dest = hard_smp_processor_id(); entry1.delivery_mode = dest_ExtINT; entry1.polarity = entry0.polarity; entry1.trigger = 0; entry1.vector = 0; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(0, 0x11 + 2 * pin, *(((int *)&entry1) + 1)); io_apic_write(0, 0x10 + 2 * pin, *(((int *)&entry1) + 0)); spin_unlock_irqrestore(&ioapic_lock, flags); save_control = CMOS_READ(RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6, RTC_FREQ_SELECT); CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL); i = 100; while (i-- > 0) { mdelay(10); if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF) i -= 10; } CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); clear_IO_APIC_pin(0, pin); spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(0, 0x11 + 2 * pin, *(((int *)&entry0) + 1)); io_apic_write(0, 0x10 + 2 * pin, *(((int *)&entry0) + 0)); spin_unlock_irqrestore(&ioapic_lock, flags); } /* * This code may look a bit paranoid, but it's supposed to cooperate with * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ * is so screwy. Thanks to Brian Perkins for testing/hacking this beast * fanatically on his truly buggy board. */ static inline void check_timer(void) { extern int timer_ack; int pin1, pin2; int vector; /* * get/set the timer IRQ vector: */ disable_8259A_irq(0); vector = assign_irq_vector(0); set_intr_gate(vector, interrupt[0]); /* * Subtle, code in do_timer_interrupt() expects an AEOI * mode for the 8259A whenever interrupts are routed * through I/O APICs. Also IRQ0 has to be enabled in * the 8259A which implies the virtual wire has to be * disabled in the local APIC. */ apic_write_around(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT); init_8259A(1); timer_ack = 1; enable_8259A_irq(0); pin1 = find_isa_irq_pin(0, mp_INT); pin2 = find_isa_irq_pin(0, mp_ExtINT); printk(KERN_INFO "..TIMER: vector=0x%02X pin1=%d pin2=%d\n", vector, pin1, pin2); if (pin1 != -1) { /* * Ok, does IRQ0 through the IOAPIC work? */ unmask_IO_APIC_irq(0); if (timer_irq_works()) { if (nmi_watchdog == NMI_IO_APIC) { disable_8259A_irq(0); setup_nmi(); enable_8259A_irq(0); check_nmi_watchdog(); } return; } clear_IO_APIC_pin(0, pin1); printk(KERN_ERR "..MP-BIOS bug: 8254 timer not connected to IO-APIC\n"); } printk(KERN_INFO "...trying to set up timer (IRQ0) through the 8259A ... "); if (pin2 != -1) { printk("\n..... (found pin %d) ...", pin2); /* * legacy devices should be connected to IO APIC #0 */ setup_ExtINT_IRQ0_pin(pin2, vector); if (timer_irq_works()) { printk("works.\n"); if (pin1 != -1) replace_pin_at_irq(0, 0, pin1, 0, pin2); else add_pin_to_irq(0, 0, pin2); if (nmi_watchdog == NMI_IO_APIC) { setup_nmi(); check_nmi_watchdog(); } return; } /* * Cleanup, just in case ... */ clear_IO_APIC_pin(0, pin2); } printk(" failed.\n"); if (nmi_watchdog == NMI_IO_APIC) { printk(KERN_WARNING "timer doesn't work through the IO-APIC - disabling NMI Watchdog!\n"); nmi_watchdog = 0; } printk(KERN_INFO "...trying to set up timer as Virtual Wire IRQ..."); disable_8259A_irq(0); irq_desc[0].handler = &lapic_irq_type; apic_write_around(APIC_LVT0, APIC_DM_FIXED | vector); /* Fixed mode */ enable_8259A_irq(0); if (timer_irq_works()) { printk(" works.\n"); return; } apic_write_around(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | vector); printk(" failed.\n"); printk(KERN_INFO "...trying to set up timer as ExtINT IRQ..."); timer_ack = 0; init_8259A(0); make_8259A_irq(0); apic_write_around(APIC_LVT0, APIC_DM_EXTINT); unlock_ExtINT_logic(); if (timer_irq_works()) { printk(" works.\n"); return; } printk(" failed :(.\n"); panic("IO-APIC + timer doesn't work! pester mingo@redhat.com"); } /* * * IRQ's that are handled by the old PIC in all cases: * - IRQ2 is the cascade IRQ, and cannot be a io-apic IRQ. * Linux doesn't really care, as it's not actually used * for any interrupt handling anyway. * - There used to be IRQ13 here as well, but all * MPS-compliant must not use it for FPU coupling and we * want to use exception 16 anyway. And there are * systems who connect it to an I/O APIC for other uses. * Thus we don't mark it special any longer. * * Additionally, something is definitely wrong with irq9 * on PIIX4 boards. */ #define PIC_IRQS (1 << PIC_CASCADE_IR) void __init setup_IO_APIC(void) { enable_IO_APIC(); io_apic_irqs = ~PIC_IRQS; printk("ENABLING IO-APIC IRQs\n"); /* * Set up IO-APIC IRQ routing. */ setup_ioapic_ids_from_mpc(); sync_Arb_IDs(); setup_IO_APIC_irqs(); init_IO_APIC_traps(); check_timer(); print_IO_APIC(); } /* * Called after all the initialization is done. If we didnt find any * APIC bugs then we can allow the modify fast path */ static int __init io_apic_bug_finalize(void) { if(sis_apic_bug == -1) sis_apic_bug = 0; return 0; } late_initcall(io_apic_bug_finalize); /* -------------------------------------------------------------------------- ACPI-based IOAPIC Configuration -------------------------------------------------------------------------- */ #ifdef CONFIG_ACPI_BOOT #define IO_APIC_MAX_ID APIC_BROADCAST_ID int __init io_apic_get_unique_id (int ioapic, int apic_id) { struct IO_APIC_reg_00 reg_00; static unsigned long apic_id_map = 0; unsigned long flags; int i = 0; /* * The P4 platform supports up to 256 APIC IDs on two separate APIC * buses (one for LAPICs, one for IOAPICs), where predecessors only * supports up to 16 on one shared APIC bus. * * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full * advantage of new APIC bus architecture. */ if (!apic_id_map) apic_id_map = phys_cpu_present_map; spin_lock_irqsave(&ioapic_lock, flags); *(int *)®_00 = io_apic_read(ioapic, 0); spin_unlock_irqrestore(&ioapic_lock, flags); if (apic_id >= IO_APIC_MAX_ID) { printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying " "%d\n", ioapic, apic_id, reg_00.ID); apic_id = reg_00.ID; } /* * Every APIC in a system must have a unique ID or we get lots of nice * 'stuck on smp_invalidate_needed IPI wait' messages. */ if (check_apicid_used(apic_id_map, apic_id)) { for (i = 0; i < IO_APIC_MAX_ID; i++) { if (!check_apicid_used(apic_id_map, i)) break; } if (i == IO_APIC_MAX_ID) panic("Max apic_id exceeded!\n"); printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, " "trying %d\n", ioapic, apic_id, i); apic_id = i; } apic_id_map |= apicid_to_cpu_present(apic_id); if (reg_00.ID != apic_id) { reg_00.ID = apic_id; spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(ioapic, 0, *(int *)®_00); *(int *)®_00 = io_apic_read(ioapic, 0); spin_unlock_irqrestore(&ioapic_lock, flags); /* Sanity check */ if (reg_00.ID != apic_id) panic("IOAPIC[%d]: Unable change apic_id!\n", ioapic); } printk(KERN_INFO "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id); return apic_id; } int __init io_apic_get_version (int ioapic) { struct IO_APIC_reg_01 reg_01; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); *(int *)®_01 = io_apic_read(ioapic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); return reg_01.version; } int __init io_apic_get_redir_entries (int ioapic) { struct IO_APIC_reg_01 reg_01; unsigned long flags; spin_lock_irqsave(&ioapic_lock, flags); *(int *)®_01 = io_apic_read(ioapic, 1); spin_unlock_irqrestore(&ioapic_lock, flags); return reg_01.entries; } int io_apic_set_pci_routing (int ioapic, int pin, int irq) { struct IO_APIC_route_entry entry; unsigned long flags; if (!IO_APIC_IRQ(irq)) { printk(KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0/n", ioapic); return -EINVAL; } /* * Generate a PCI IRQ routing entry and program the IOAPIC accordingly. * Note that we mask (disable) IRQs now -- these get enabled when the * corresponding device driver registers for this IRQ. */ memset(&entry,0,sizeof(entry)); entry.delivery_mode = INT_DELIVERY_MODE; entry.dest_mode = INT_DEST_MODE; entry.dest.logical.logical_dest = cpu_mask_to_apicid(TARGET_CPUS); entry.mask = 1; /* Disabled (masked) */ entry.trigger = 1; /* Level sensitive */ entry.polarity = 1; /* Low active */ add_pin_to_irq(irq, ioapic, pin); entry.vector = assign_irq_vector(irq); printk(KERN_DEBUG "IOAPIC[%d]: Set PCI routing entry (%d-%d -> 0x%x -> " "IRQ %d)\n", ioapic, mp_ioapics[ioapic].mpc_apicid, pin, entry.vector, irq); irq_desc[irq].handler = &ioapic_level_irq_type; set_intr_gate(entry.vector, interrupt[irq]); if (!ioapic && (irq < 16)) disable_8259A_irq(irq); spin_lock_irqsave(&ioapic_lock, flags); io_apic_write(ioapic, 0x11+2*pin, *(((int *)&entry)+1)); io_apic_write(ioapic, 0x10+2*pin, *(((int *)&entry)+0)); spin_unlock_irqrestore(&ioapic_lock, flags); return 0; } #endif /*CONFIG_ACPI_BOOT*/