/* * VMAC: Message Authentication Code using Universal Hashing * * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01 * * Copyright (c) 2009, Intel Corporation. * Copyright (c) 2018, Google Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 Temple * Place - Suite 330, Boston, MA 02111-1307 USA. */ /* * Derived from: * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. * This implementation is herby placed in the public domain. * The authors offers no warranty. Use at your own risk. * Last modified: 17 APR 08, 1700 PDT */ #include <asm/unaligned.h> #include <linux/init.h> #include <linux/types.h> #include <linux/crypto.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <asm/byteorder.h> #include <crypto/scatterwalk.h> #include <crypto/internal/hash.h> /* * User definable settings. */ #define VMAC_TAG_LEN 64 #define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */ #define VMAC_KEY_LEN (VMAC_KEY_SIZE/8) #define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/ #define VMAC_NONCEBYTES 16 /* per-transform (per-key) context */ struct vmac_tfm_ctx { struct crypto_cipher *cipher; u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)]; u64 polykey[2*VMAC_TAG_LEN/64]; u64 l3key[2*VMAC_TAG_LEN/64]; }; /* per-request context */ struct vmac_desc_ctx { union { u8 partial[VMAC_NHBYTES]; /* partial block */ __le64 partial_words[VMAC_NHBYTES / 8]; }; unsigned int partial_size; /* size of the partial block */ bool first_block_processed; u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */ union { u8 bytes[VMAC_NONCEBYTES]; __be64 pads[VMAC_NONCEBYTES / 8]; } nonce; unsigned int nonce_size; /* nonce bytes filled so far */ }; /* * Constants and masks */ #define UINT64_C(x) x##ULL static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ #ifdef __LITTLE_ENDIAN #define INDEX_HIGH 1 #define INDEX_LOW 0 #else #define INDEX_HIGH 0 #define INDEX_LOW 1 #endif /* * The following routines are used in this implementation. They are * written via macros to simulate zero-overhead call-by-reference. * * MUL64: 64x64->128-bit multiplication * PMUL64: assumes top bits cleared on inputs * ADD128: 128x128->128-bit addition */ #define ADD128(rh, rl, ih, il) \ do { \ u64 _il = (il); \ (rl) += (_il); \ if ((rl) < (_il)) \ (rh)++; \ (rh) += (ih); \ } while (0) #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ do { \ u64 _i1 = (i1), _i2 = (i2); \ u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ rh = MUL32(_i1>>32, _i2>>32); \ rl = MUL32(_i1, _i2); \ ADD128(rh, rl, (m >> 32), (m << 32)); \ } while (0) #define MUL64(rh, rl, i1, i2) \ do { \ u64 _i1 = (i1), _i2 = (i2); \ u64 m1 = MUL32(_i1, _i2>>32); \ u64 m2 = MUL32(_i1>>32, _i2); \ rh = MUL32(_i1>>32, _i2>>32); \ rl = MUL32(_i1, _i2); \ ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ } while (0) /* * For highest performance the L1 NH and L2 polynomial hashes should be * carefully implemented to take advantage of one's target architecture. * Here these two hash functions are defined multiple time; once for * 64-bit architectures, once for 32-bit SSE2 architectures, and once * for the rest (32-bit) architectures. * For each, nh_16 *must* be defined (works on multiples of 16 bytes). * Optionally, nh_vmac_nhbytes can be defined (for multiples of * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two * NH computations at once). */ #ifdef CONFIG_64BIT #define nh_16(mp, kp, nw, rh, rl) \ do { \ int i; u64 th, tl; \ rh = rl = 0; \ for (i = 0; i < nw; i += 2) { \ MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ ADD128(rh, rl, th, tl); \ } \ } while (0) #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ do { \ int i; u64 th, tl; \ rh1 = rl1 = rh = rl = 0; \ for (i = 0; i < nw; i += 2) { \ MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ ADD128(rh1, rl1, th, tl); \ } \ } while (0) #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ do { \ int i; u64 th, tl; \ rh = rl = 0; \ for (i = 0; i < nw; i += 8) { \ MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ ADD128(rh, rl, th, tl); \ } \ } while (0) #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ do { \ int i; u64 th, tl; \ rh1 = rl1 = rh = rl = 0; \ for (i = 0; i < nw; i += 8) { \ MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ ADD128(rh1, rl1, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ ADD128(rh1, rl1, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ ADD128(rh1, rl1, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ ADD128(rh, rl, th, tl); \ MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ ADD128(rh1, rl1, th, tl); \ } \ } while (0) #endif #define poly_step(ah, al, kh, kl, mh, ml) \ do { \ u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ /* compute ab*cd, put bd into result registers */ \ PMUL64(t3h, t3l, al, kh); \ PMUL64(t2h, t2l, ah, kl); \ PMUL64(t1h, t1l, ah, 2*kh); \ PMUL64(ah, al, al, kl); \ /* add 2 * ac to result */ \ ADD128(ah, al, t1h, t1l); \ /* add together ad + bc */ \ ADD128(t2h, t2l, t3h, t3l); \ /* now (ah,al), (t2l,2*t2h) need summing */ \ /* first add the high registers, carrying into t2h */ \ ADD128(t2h, ah, z, t2l); \ /* double t2h and add top bit of ah */ \ t2h = 2 * t2h + (ah >> 63); \ ah &= m63; \ /* now add the low registers */ \ ADD128(ah, al, mh, ml); \ ADD128(ah, al, z, t2h); \ } while (0) #else /* ! CONFIG_64BIT */ #ifndef nh_16 #define nh_16(mp, kp, nw, rh, rl) \ do { \ u64 t1, t2, m1, m2, t; \ int i; \ rh = rl = t = 0; \ for (i = 0; i < nw; i += 2) { \ t1 = pe64_to_cpup(mp+i) + kp[i]; \ t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ m2 = MUL32(t1 >> 32, t2); \ m1 = MUL32(t1, t2 >> 32); \ ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ MUL32(t1, t2)); \ rh += (u64)(u32)(m1 >> 32) \ + (u32)(m2 >> 32); \ t += (u64)(u32)m1 + (u32)m2; \ } \ ADD128(rh, rl, (t >> 32), (t << 32)); \ } while (0) #endif static void poly_step_func(u64 *ahi, u64 *alo, const u64 *kh, const u64 *kl, const u64 *mh, const u64 *ml) { #define a0 (*(((u32 *)alo)+INDEX_LOW)) #define a1 (*(((u32 *)alo)+INDEX_HIGH)) #define a2 (*(((u32 *)ahi)+INDEX_LOW)) #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) #define k0 (*(((u32 *)kl)+INDEX_LOW)) #define k1 (*(((u32 *)kl)+INDEX_HIGH)) #define k2 (*(((u32 *)kh)+INDEX_LOW)) #define k3 (*(((u32 *)kh)+INDEX_HIGH)) u64 p, q, t; u32 t2; p = MUL32(a3, k3); p += p; p += *(u64 *)mh; p += MUL32(a0, k2); p += MUL32(a1, k1); p += MUL32(a2, k0); t = (u32)(p); p >>= 32; p += MUL32(a0, k3); p += MUL32(a1, k2); p += MUL32(a2, k1); p += MUL32(a3, k0); t |= ((u64)((u32)p & 0x7fffffff)) << 32; p >>= 31; p += (u64)(((u32 *)ml)[INDEX_LOW]); p += MUL32(a0, k0); q = MUL32(a1, k3); q += MUL32(a2, k2); q += MUL32(a3, k1); q += q; p += q; t2 = (u32)(p); p >>= 32; p += (u64)(((u32 *)ml)[INDEX_HIGH]); p += MUL32(a0, k1); p += MUL32(a1, k0); q = MUL32(a2, k3); q += MUL32(a3, k2); q += q; p += q; *(u64 *)(alo) = (p << 32) | t2; p >>= 32; *(u64 *)(ahi) = p + t; #undef a0 #undef a1 #undef a2 #undef a3 #undef k0 #undef k1 #undef k2 #undef k3 } #define poly_step(ah, al, kh, kl, mh, ml) \ poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) #endif /* end of specialized NH and poly definitions */ /* At least nh_16 is defined. Defined others as needed here */ #ifndef nh_16_2 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ do { \ nh_16(mp, kp, nw, rh, rl); \ nh_16(mp, ((kp)+2), nw, rh2, rl2); \ } while (0) #endif #ifndef nh_vmac_nhbytes #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ nh_16(mp, kp, nw, rh, rl) #endif #ifndef nh_vmac_nhbytes_2 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ do { \ nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ } while (0) #endif static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) { u64 rh, rl, t, z = 0; /* fully reduce (p1,p2)+(len,0) mod p127 */ t = p1 >> 63; p1 &= m63; ADD128(p1, p2, len, t); /* At this point, (p1,p2) is at most 2^127+(len<<64) */ t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); ADD128(p1, p2, z, t); p1 &= m63; /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ t = p1 + (p2 >> 32); t += (t >> 32); t += (u32)t > 0xfffffffeu; p1 += (t >> 32); p2 += (p1 << 32); /* compute (p1+k1)%p64 and (p2+k2)%p64 */ p1 += k1; p1 += (0 - (p1 < k1)) & 257; p2 += k2; p2 += (0 - (p2 < k2)) & 257; /* compute (p1+k1)*(p2+k2)%p64 */ MUL64(rh, rl, p1, p2); t = rh >> 56; ADD128(t, rl, z, rh); rh <<= 8; ADD128(t, rl, z, rh); t += t << 8; rl += t; rl += (0 - (rl < t)) & 257; rl += (0 - (rl > p64-1)) & 257; return rl; } /* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */ static void vhash_blocks(const struct vmac_tfm_ctx *tctx, struct vmac_desc_ctx *dctx, const __le64 *mptr, unsigned int blocks) { const u64 *kptr = tctx->nhkey; const u64 pkh = tctx->polykey[0]; const u64 pkl = tctx->polykey[1]; u64 ch = dctx->polytmp[0]; u64 cl = dctx->polytmp[1]; u64 rh, rl; if (!dctx->first_block_processed) { dctx->first_block_processed = true; nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); rh &= m62; ADD128(ch, cl, rh, rl); mptr += (VMAC_NHBYTES/sizeof(u64)); blocks--; } while (blocks--) { nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); rh &= m62; poly_step(ch, cl, pkh, pkl, rh, rl); mptr += (VMAC_NHBYTES/sizeof(u64)); } dctx->polytmp[0] = ch; dctx->polytmp[1] = cl; } static int vmac_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm); __be64 out[2]; u8 in[16] = { 0 }; unsigned int i; int err; if (keylen != VMAC_KEY_LEN) return -EINVAL; err = crypto_cipher_setkey(tctx->cipher, key, keylen); if (err) return err; /* Fill nh key */ in[0] = 0x80; for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) { crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in); tctx->nhkey[i] = be64_to_cpu(out[0]); tctx->nhkey[i+1] = be64_to_cpu(out[1]); in[15]++; } /* Fill poly key */ in[0] = 0xC0; in[15] = 0; for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) { crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in); tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly; tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly; in[15]++; } /* Fill ip key */ in[0] = 0xE0; in[15] = 0; for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) { do { crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in); tctx->l3key[i] = be64_to_cpu(out[0]); tctx->l3key[i+1] = be64_to_cpu(out[1]); in[15]++; } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64); } return 0; } static int vmac_init(struct shash_desc *desc) { const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); dctx->partial_size = 0; dctx->first_block_processed = false; memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp)); dctx->nonce_size = 0; return 0; } static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len) { const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); unsigned int n; /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */ if (dctx->nonce_size < VMAC_NONCEBYTES) { n = min(len, VMAC_NONCEBYTES - dctx->nonce_size); memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n); dctx->nonce_size += n; p += n; len -= n; } if (dctx->partial_size) { n = min(len, VMAC_NHBYTES - dctx->partial_size); memcpy(&dctx->partial[dctx->partial_size], p, n); dctx->partial_size += n; p += n; len -= n; if (dctx->partial_size == VMAC_NHBYTES) { vhash_blocks(tctx, dctx, dctx->partial_words, 1); dctx->partial_size = 0; } } if (len >= VMAC_NHBYTES) { n = round_down(len, VMAC_NHBYTES); /* TODO: 'p' may be misaligned here */ vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES); p += n; len -= n; } if (len) { memcpy(dctx->partial, p, len); dctx->partial_size = len; } return 0; } static u64 vhash_final(const struct vmac_tfm_ctx *tctx, struct vmac_desc_ctx *dctx) { unsigned int partial = dctx->partial_size; u64 ch = dctx->polytmp[0]; u64 cl = dctx->polytmp[1]; /* L1 and L2-hash the final block if needed */ if (partial) { /* Zero-pad to next 128-bit boundary */ unsigned int n = round_up(partial, 16); u64 rh, rl; memset(&dctx->partial[partial], 0, n - partial); nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl); rh &= m62; if (dctx->first_block_processed) poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1], rh, rl); else ADD128(ch, cl, rh, rl); } /* L3-hash the 128-bit output of L2-hash */ return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8); } static int vmac_final(struct shash_desc *desc, u8 *out) { const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); struct vmac_desc_ctx *dctx = shash_desc_ctx(desc); int index; u64 hash, pad; if (dctx->nonce_size != VMAC_NONCEBYTES) return -EINVAL; /* * The VMAC specification requires a nonce at least 1 bit shorter than * the block cipher's block length, so we actually only accept a 127-bit * nonce. We define the unused bit to be the first one and require that * it be 0, so the needed prepending of a 0 bit is implicit. */ if (dctx->nonce.bytes[0] & 0x80) return -EINVAL; /* Finish calculating the VHASH of the message */ hash = vhash_final(tctx, dctx); /* Generate pseudorandom pad by encrypting the nonce */ BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8)); index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1; dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1; crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes, dctx->nonce.bytes); pad = be64_to_cpu(dctx->nonce.pads[index]); /* The VMAC is the sum of VHASH and the pseudorandom pad */ put_unaligned_be64(hash + pad, out); return 0; } static int vmac_init_tfm(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct crypto_spawn *spawn = crypto_instance_ctx(inst); struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm); struct crypto_cipher *cipher; cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); tctx->cipher = cipher; return 0; } static void vmac_exit_tfm(struct crypto_tfm *tfm) { struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm); crypto_free_cipher(tctx->cipher); } static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) { struct shash_instance *inst; struct crypto_cipher_spawn *spawn; struct crypto_alg *alg; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); if (err) return err; inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return -ENOMEM; spawn = shash_instance_ctx(inst); err = crypto_grab_cipher(spawn, shash_crypto_instance(inst), crypto_attr_alg_name(tb[1]), 0, 0); if (err) goto err_free_inst; alg = crypto_spawn_cipher_alg(spawn); err = -EINVAL; if (alg->cra_blocksize != VMAC_NONCEBYTES) goto err_free_inst; err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg); if (err) goto err_free_inst; inst->alg.base.cra_priority = alg->cra_priority; inst->alg.base.cra_blocksize = alg->cra_blocksize; inst->alg.base.cra_alignmask = alg->cra_alignmask; inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx); inst->alg.base.cra_init = vmac_init_tfm; inst->alg.base.cra_exit = vmac_exit_tfm; inst->alg.descsize = sizeof(struct vmac_desc_ctx); inst->alg.digestsize = VMAC_TAG_LEN / 8; inst->alg.init = vmac_init; inst->alg.update = vmac_update; inst->alg.final = vmac_final; inst->alg.setkey = vmac_setkey; err = shash_register_instance(tmpl, inst); if (err) { err_free_inst: shash_free_instance(shash_crypto_instance(inst)); } return err; } static struct crypto_template vmac64_tmpl = { .name = "vmac64", .create = vmac_create, .free = shash_free_instance, .module = THIS_MODULE, }; static int __init vmac_module_init(void) { return crypto_register_template(&vmac64_tmpl); } static void __exit vmac_module_exit(void) { crypto_unregister_template(&vmac64_tmpl); } subsys_initcall(vmac_module_init); module_exit(vmac_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("VMAC hash algorithm"); MODULE_ALIAS_CRYPTO("vmac64");