/* * SMP support for power macintosh. * * We support both the old "powersurge" SMP architecture * and the current Core99 (G4 PowerMac) machines. * * Note that we don't support the very first rev. of * Apple/DayStar 2 CPUs board, the one with the funky * watchdog. Hopefully, none of these should be there except * maybe internally to Apple. I should probably still add some * code to detect this card though and disable SMP. --BenH. * * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net) * and Ben Herrenschmidt <benh@kernel.crashing.org>. * * Support for DayStar quad CPU cards * Copyright (C) XLR8, Inc. 1994-2000 * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/delay.h> #define __KERNEL_SYSCALLS__ #include <linux/unistd.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <asm/ptrace.h> #include <asm/atomic.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/hardirq.h> #include <asm/sections.h> #include <asm/io.h> #include <asm/prom.h> #include <asm/smp.h> #include <asm/residual.h> #include <asm/machdep.h> #include <asm/pmac_feature.h> #include <asm/time.h> #include <asm/open_pic.h> #include <asm/cacheflush.h> #include <asm/keylargo.h> /* * Powersurge (old powermac SMP) support. */ extern void __secondary_start_psurge(void); extern void __secondary_start_psurge2(void); /* Temporary horrible hack */ extern void __secondary_start_psurge3(void); /* Temporary horrible hack */ /* Addresses for powersurge registers */ #define HAMMERHEAD_BASE 0xf8000000 #define HHEAD_CONFIG 0x90 #define HHEAD_SEC_INTR 0xc0 /* register for interrupting the primary processor on the powersurge */ /* N.B. this is actually the ethernet ROM! */ #define PSURGE_PRI_INTR 0xf3019000 /* register for storing the start address for the secondary processor */ /* N.B. this is the PCI config space address register for the 1st bridge */ #define PSURGE_START 0xf2800000 /* Daystar/XLR8 4-CPU card */ #define PSURGE_QUAD_REG_ADDR 0xf8800000 #define PSURGE_QUAD_IRQ_SET 0 #define PSURGE_QUAD_IRQ_CLR 1 #define PSURGE_QUAD_IRQ_PRIMARY 2 #define PSURGE_QUAD_CKSTOP_CTL 3 #define PSURGE_QUAD_PRIMARY_ARB 4 #define PSURGE_QUAD_BOARD_ID 6 #define PSURGE_QUAD_WHICH_CPU 7 #define PSURGE_QUAD_CKSTOP_RDBK 8 #define PSURGE_QUAD_RESET_CTL 11 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v))) #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f) #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v))) #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v))) /* virtual addresses for the above */ static volatile u8 *hhead_base; static volatile u8 *quad_base; static volatile u32 *psurge_pri_intr; static volatile u8 *psurge_sec_intr; static volatile u32 *psurge_start; /* values for psurge_type */ #define PSURGE_NONE -1 #define PSURGE_DUAL 0 #define PSURGE_QUAD_OKEE 1 #define PSURGE_QUAD_COTTON 2 #define PSURGE_QUAD_ICEGRASS 3 /* what sort of powersurge board we have */ static int psurge_type = PSURGE_NONE; /* L2 and L3 cache settings to pass from CPU0 to CPU1 */ volatile static long int core99_l2_cache; volatile static long int core99_l3_cache; /* Timebase freeze GPIO */ static unsigned int core99_tb_gpio; /* Sync flag for HW tb sync */ static volatile int sec_tb_reset = 0; static void __init core99_init_caches(int cpu) { if (!(cur_cpu_spec[0]->cpu_features & CPU_FTR_L2CR)) return; if (cpu == 0) { core99_l2_cache = _get_L2CR(); printk("CPU0: L2CR is %lx\n", core99_l2_cache); } else { printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR()); _set_L2CR(0); _set_L2CR(core99_l2_cache); printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache); } if (!(cur_cpu_spec[0]->cpu_features & CPU_FTR_L3CR)) return; if (cpu == 0){ core99_l3_cache = _get_L3CR(); printk("CPU0: L3CR is %lx\n", core99_l3_cache); } else { printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR()); _set_L3CR(0); _set_L3CR(core99_l3_cache); printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache); } } /* * Set and clear IPIs for powersurge. */ static inline void psurge_set_ipi(int cpu) { if (psurge_type == PSURGE_NONE) return; if (cpu == 0) in_be32(psurge_pri_intr); else if (psurge_type == PSURGE_DUAL) out_8(psurge_sec_intr, 0); else PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu); } static inline void psurge_clr_ipi(int cpu) { if (cpu > 0) { switch(psurge_type) { case PSURGE_DUAL: out_8(psurge_sec_intr, ~0); case PSURGE_NONE: break; default: PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu); } } } /* * On powersurge (old SMP powermac architecture) we don't have * separate IPIs for separate messages like openpic does. Instead * we have a bitmap for each processor, where a 1 bit means that * the corresponding message is pending for that processor. * Ideally each cpu's entry would be in a different cache line. * -- paulus. */ static unsigned long psurge_smp_message[NR_CPUS]; void __pmac psurge_smp_message_recv(struct pt_regs *regs) { int cpu = smp_processor_id(); int msg; /* clear interrupt */ psurge_clr_ipi(cpu); if (num_online_cpus() < 2) return; /* make sure there is a message there */ for (msg = 0; msg < 4; msg++) if (test_and_clear_bit(msg, &psurge_smp_message[cpu])) smp_message_recv(msg, regs); } irqreturn_t __pmac psurge_primary_intr(int irq, void *d, struct pt_regs *regs) { psurge_smp_message_recv(regs); return IRQ_HANDLED; } static void __pmac smp_psurge_message_pass(int target, int msg, unsigned long data, int wait) { int i; if (num_online_cpus() < 2) return; for (i = 0; i < NR_CPUS; i++) { if (!cpu_online(i)) continue; if (target == MSG_ALL || (target == MSG_ALL_BUT_SELF && i != smp_processor_id()) || target == i) { set_bit(msg, &psurge_smp_message[i]); psurge_set_ipi(i); } } } /* * Determine a quad card presence. We read the board ID register, we * force the data bus to change to something else, and we read it again. * It it's stable, then the register probably exist (ugh !) */ static int __init psurge_quad_probe(void) { int type; unsigned int i; type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID); if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) return PSURGE_DUAL; /* looks OK, try a slightly more rigorous test */ /* bogus is not necessarily cacheline-aligned, though I don't suppose that really matters. -- paulus */ for (i = 0; i < 100; i++) { volatile u32 bogus[8]; bogus[(0+i)%8] = 0x00000000; bogus[(1+i)%8] = 0x55555555; bogus[(2+i)%8] = 0xFFFFFFFF; bogus[(3+i)%8] = 0xAAAAAAAA; bogus[(4+i)%8] = 0x33333333; bogus[(5+i)%8] = 0xCCCCCCCC; bogus[(6+i)%8] = 0xCCCCCCCC; bogus[(7+i)%8] = 0x33333333; wmb(); asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory"); mb(); if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) return PSURGE_DUAL; } return type; } static void __init psurge_quad_init(void) { int procbits; if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351); procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU); if (psurge_type == PSURGE_QUAD_ICEGRASS) PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); else PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits); mdelay(33); out_8(psurge_sec_intr, ~0); PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits); PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); if (psurge_type != PSURGE_QUAD_ICEGRASS) PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits); PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits); mdelay(33); PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits); mdelay(33); PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits); mdelay(33); } static int __init smp_psurge_probe(void) { int i, ncpus; /* We don't do SMP on the PPC601 -- paulus */ if (PVR_VER(mfspr(PVR)) == 1) return 1; /* * The powersurge cpu board can be used in the generation * of powermacs that have a socket for an upgradeable cpu card, * including the 7500, 8500, 9500, 9600. * The device tree doesn't tell you if you have 2 cpus because * OF doesn't know anything about the 2nd processor. * Instead we look for magic bits in magic registers, * in the hammerhead memory controller in the case of the * dual-cpu powersurge board. -- paulus. */ if (find_devices("hammerhead") == NULL) return 1; hhead_base = ioremap(HAMMERHEAD_BASE, 0x800); quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024); psurge_sec_intr = hhead_base + HHEAD_SEC_INTR; psurge_type = psurge_quad_probe(); if (psurge_type != PSURGE_DUAL) { psurge_quad_init(); /* All released cards using this HW design have 4 CPUs */ ncpus = 4; } else { iounmap((void *) quad_base); if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) { /* not a dual-cpu card */ iounmap((void *) hhead_base); psurge_type = PSURGE_NONE; return 1; } ncpus = 2; } psurge_start = ioremap(PSURGE_START, 4); psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4); /* this is not actually strictly necessary -- paulus. */ for (i = 1; i < ncpus; ++i) smp_hw_index[i] = i; if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352); return ncpus; } static void __init smp_psurge_kick_cpu(int nr) { void (*start)(void) = __secondary_start_psurge; unsigned long a; /* may need to flush here if secondary bats aren't setup */ for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32) asm volatile("dcbf 0,%0" : : "r" (a) : "memory"); asm volatile("sync"); if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353); /* setup entry point of secondary processor */ switch (nr) { case 2: start = __secondary_start_psurge2; break; case 3: start = __secondary_start_psurge3; break; } out_be32(psurge_start, __pa(start)); mb(); psurge_set_ipi(nr); udelay(10); psurge_clr_ipi(nr); if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354); } /* * With the dual-cpu powersurge board, the decrementers and timebases * of both cpus are frozen after the secondary cpu is started up, * until we give the secondary cpu another interrupt. This routine * uses this to get the timebases synchronized. * -- paulus. */ static void __init psurge_dual_sync_tb(int cpu_nr) { int t; set_dec(tb_ticks_per_jiffy); set_tb(0, 0); last_jiffy_stamp(cpu_nr) = 0; if (cpu_nr > 0) { mb(); sec_tb_reset = 1; return; } /* wait for the secondary to have reset its TB before proceeding */ for (t = 10000000; t > 0 && !sec_tb_reset; --t) ; /* now interrupt the secondary, starting both TBs */ psurge_set_ipi(1); smp_tb_synchronized = 1; } static void __init smp_psurge_setup_cpu(int cpu_nr) { if (cpu_nr == 0) { /* If we failed to start the second CPU, we should still * send it an IPI to start the timebase & DEC or we might * have them stuck. */ if (num_online_cpus() < 2) { if (psurge_type == PSURGE_DUAL) psurge_set_ipi(1); return; } /* reset the entry point so if we get another intr we won't * try to startup again */ out_be32(psurge_start, 0x100); if (request_irq(30, psurge_primary_intr, SA_INTERRUPT, "primary IPI", 0)) printk(KERN_ERR "Couldn't get primary IPI interrupt"); } if (psurge_type == PSURGE_DUAL) psurge_dual_sync_tb(cpu_nr); } void __init smp_psurge_take_timebase(void) { /* Dummy implementation */ } void __init smp_psurge_give_timebase(void) { /* Dummy implementation */ } static int __init smp_core99_probe(void) { #ifdef CONFIG_6xx extern int powersave_nap; #endif struct device_node *cpus, *firstcpu; int i, ncpus = 0, boot_cpu = -1; u32 *tbprop; if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345); cpus = firstcpu = find_type_devices("cpu"); while(cpus != NULL) { u32 *regprop = (u32 *)get_property(cpus, "reg", NULL); char *stateprop = (char *)get_property(cpus, "state", NULL); if (regprop != NULL && stateprop != NULL && !strncmp(stateprop, "running", 7)) boot_cpu = *regprop; ++ncpus; cpus = cpus->next; } if (boot_cpu == -1) printk(KERN_WARNING "Couldn't detect boot CPU !\n"); if (boot_cpu != 0) printk(KERN_WARNING "Boot CPU is %d, unsupported setup !\n", boot_cpu); if (machine_is_compatible("MacRISC4")) { extern struct smp_ops_t core99_smp_ops; core99_smp_ops.take_timebase = smp_generic_take_timebase; core99_smp_ops.give_timebase = smp_generic_give_timebase; } else { if (firstcpu != NULL) tbprop = (u32 *)get_property(firstcpu, "timebase-enable", NULL); if (tbprop) core99_tb_gpio = *tbprop; else core99_tb_gpio = KL_GPIO_TB_ENABLE; } if (ncpus > 1) { openpic_request_IPIs(); for (i = 1; i < ncpus; ++i) smp_hw_index[i] = i; #ifdef CONFIG_6xx powersave_nap = 0; #endif core99_init_caches(0); } return ncpus; } static void __init smp_core99_kick_cpu(int nr) { unsigned long save_vector, new_vector; unsigned long flags; volatile unsigned long *vector = ((volatile unsigned long *)(KERNELBASE+0x100)); if (nr < 1 || nr > 3) return; if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346); local_irq_save(flags); local_irq_disable(); /* Save reset vector */ save_vector = *vector; /* Setup fake reset vector that does * b __secondary_start_psurge - KERNELBASE */ switch(nr) { case 1: new_vector = (unsigned long)__secondary_start_psurge; break; case 2: new_vector = (unsigned long)__secondary_start_psurge2; break; case 3: new_vector = (unsigned long)__secondary_start_psurge3; break; } *vector = 0x48000002 + new_vector - KERNELBASE; /* flush data cache and inval instruction cache */ flush_icache_range((unsigned long) vector, (unsigned long) vector + 4); /* Put some life in our friend */ pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0); /* FIXME: We wait a bit for the CPU to take the exception, I should * instead wait for the entry code to set something for me. Well, * ideally, all that crap will be done in prom.c and the CPU left * in a RAM-based wait loop like CHRP. */ mdelay(1); /* Restore our exception vector */ *vector = save_vector; flush_icache_range((unsigned long) vector, (unsigned long) vector + 4); local_irq_restore(flags); if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347); } static void __init smp_core99_setup_cpu(int cpu_nr) { /* Setup L2/L3 */ if (cpu_nr != 0) core99_init_caches(cpu_nr); /* Setup openpic */ do_openpic_setup_cpu(); /* Setup L2/L3 */ if (cpu_nr == 0) if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349); } void __init smp_core99_take_timebase(void) { /* Secondary processor "takes" the timebase by freezing * it, resetting its local TB and telling CPU 0 to go on */ pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4); pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); mb(); set_dec(tb_ticks_per_jiffy); set_tb(0, 0); last_jiffy_stamp(smp_processor_id()) = 0; mb(); sec_tb_reset = 1; } void __init smp_core99_give_timebase(void) { unsigned int t; /* Primary processor waits for secondary to have frozen * the timebase, resets local TB, and kick timebase again */ /* wait for the secondary to have reset its TB before proceeding */ for (t = 1000; t > 0 && !sec_tb_reset; --t) udelay(1000); if (t == 0) printk(KERN_WARNING "Timeout waiting sync on second CPU\n"); set_dec(tb_ticks_per_jiffy); set_tb(0, 0); last_jiffy_stamp(smp_processor_id()) = 0; mb(); /* Now, restart the timebase by leaving the GPIO to an open collector */ pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0); pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); smp_tb_synchronized = 1; } /* PowerSurge-style Macs */ struct smp_ops_t psurge_smp_ops __pmacdata = { .message_pass = smp_psurge_message_pass, .probe = smp_psurge_probe, .kick_cpu = smp_psurge_kick_cpu, .setup_cpu = smp_psurge_setup_cpu, .give_timebase = smp_psurge_give_timebase, .take_timebase = smp_psurge_take_timebase, }; /* Core99 Macs (dual G4s) */ struct smp_ops_t core99_smp_ops __pmacdata = { .message_pass = smp_openpic_message_pass, .probe = smp_core99_probe, .kick_cpu = smp_core99_kick_cpu, .setup_cpu = smp_core99_setup_cpu, .give_timebase = smp_core99_give_timebase, .take_timebase = smp_core99_take_timebase, };