/* * Extensible Firmware Interface * * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999 * * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 1999-2003 Hewlett-Packard Co. * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * * All EFI Runtime Services are not implemented yet as EFI only * supports physical mode addressing on SoftSDV. This is to be fixed * in a future version. --drummond 1999-07-20 * * Implemented EFI runtime services and virtual mode calls. --davidm * * Goutham Rao: <goutham.rao@intel.com> * Skip non-WB memory and ignore empty memory ranges. */ #include <linux/config.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/types.h> #include <linux/time.h> #include <linux/efi.h> #include <asm/io.h> #include <asm/kregs.h> #include <asm/meminit.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/mca.h> #define EFI_DEBUG 0 extern efi_status_t efi_call_phys (void *, ...); struct efi efi; EXPORT_SYMBOL(efi); static efi_runtime_services_t *runtime; static unsigned long mem_limit = ~0UL, max_addr = ~0UL; #define efi_call_virt(f, args...) (*(f))(args) #define STUB_GET_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \ { \ struct ia64_fpreg fr[6]; \ efi_time_cap_t *atc = NULL; \ efi_status_t ret; \ \ if (tc) \ atc = adjust_arg(tc); \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_SET_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_set_time (efi_time_t *tm) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \ adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \ static efi_status_t \ prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \ { \ struct ia64_fpreg fr[6]; \ efi_time_t *atm = NULL; \ efi_status_t ret; \ \ if (tm) \ atm = adjust_arg(tm); \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \ enabled, atm); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_VARIABLE(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \ unsigned long *data_size, void *data) \ { \ struct ia64_fpreg fr[6]; \ u32 *aattr = NULL; \ efi_status_t ret; \ \ if (attr) \ aattr = adjust_arg(attr); \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \ adjust_arg(name), adjust_arg(vendor), aattr, \ adjust_arg(data_size), adjust_arg(data)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \ adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_SET_VARIABLE(prefix, adjust_arg) \ static efi_status_t \ prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \ unsigned long data_size, void *data) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \ adjust_arg(name), adjust_arg(vendor), attr, data_size, \ adjust_arg(data)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \ static efi_status_t \ prefix##_get_next_high_mono_count (u32 *count) \ { \ struct ia64_fpreg fr[6]; \ efi_status_t ret; \ \ ia64_save_scratch_fpregs(fr); \ ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \ __va(runtime->get_next_high_mono_count), adjust_arg(count)); \ ia64_load_scratch_fpregs(fr); \ return ret; \ } #define STUB_RESET_SYSTEM(prefix, adjust_arg) \ static void \ prefix##_reset_system (int reset_type, efi_status_t status, \ unsigned long data_size, efi_char16_t *data) \ { \ struct ia64_fpreg fr[6]; \ efi_char16_t *adata = NULL; \ \ if (data) \ adata = adjust_arg(data); \ \ ia64_save_scratch_fpregs(fr); \ efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \ reset_type, status, data_size, adata); \ /* should not return, but just in case... */ \ ia64_load_scratch_fpregs(fr); \ } #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg)) STUB_GET_TIME(phys, phys_ptr) STUB_SET_TIME(phys, phys_ptr) STUB_GET_WAKEUP_TIME(phys, phys_ptr) STUB_SET_WAKEUP_TIME(phys, phys_ptr) STUB_GET_VARIABLE(phys, phys_ptr) STUB_GET_NEXT_VARIABLE(phys, phys_ptr) STUB_SET_VARIABLE(phys, phys_ptr) STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) STUB_RESET_SYSTEM(phys, phys_ptr) #define id(arg) arg STUB_GET_TIME(virt, id) STUB_SET_TIME(virt, id) STUB_GET_WAKEUP_TIME(virt, id) STUB_SET_WAKEUP_TIME(virt, id) STUB_GET_VARIABLE(virt, id) STUB_GET_NEXT_VARIABLE(virt, id) STUB_SET_VARIABLE(virt, id) STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) STUB_RESET_SYSTEM(virt, id) void efi_gettimeofday (struct timespec *ts) { efi_time_t tm; memset(ts, 0, sizeof(ts)); if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) return; ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second); ts->tv_nsec = tm.nanosecond; } static int is_available_memory (efi_memory_desc_t *md) { if (!(md->attribute & EFI_MEMORY_WB)) return 0; switch (md->type) { case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: return 1; } return 0; } typedef struct kern_memdesc { u64 attribute; u64 start; u64 num_pages; } kern_memdesc_t; static kern_memdesc_t *kern_memmap; #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT) static inline u64 kmd_end(kern_memdesc_t *kmd) { return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); } static inline u64 efi_md_end(efi_memory_desc_t *md) { return (md->phys_addr + efi_md_size(md)); } static inline int efi_wb(efi_memory_desc_t *md) { return (md->attribute & EFI_MEMORY_WB); } static inline int efi_uc(efi_memory_desc_t *md) { return (md->attribute & EFI_MEMORY_UC); } static void walk (efi_freemem_callback_t callback, void *arg, u64 attr) { kern_memdesc_t *k; u64 start, end, voff; voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; for (k = kern_memmap; k->start != ~0UL; k++) { if (k->attribute != attr) continue; start = PAGE_ALIGN(k->start); end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; if (start < end) if ((*callback)(start + voff, end + voff, arg) < 0) return; } } /* * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that * has memory that is available for OS use. */ void efi_memmap_walk (efi_freemem_callback_t callback, void *arg) { walk(callback, arg, EFI_MEMORY_WB); } /* * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that * has memory that is available for uncached allocator. */ void efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) { walk(callback, arg, EFI_MEMORY_UC); } /* * Look for the PAL_CODE region reported by EFI and maps it using an * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor * Abstraction Layer chapter 11 in ADAG */ void * efi_get_pal_addr (void) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; int pal_code_count = 0; u64 vaddr, mask; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type != EFI_PAL_CODE) continue; if (++pal_code_count > 1) { printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n", md->phys_addr); continue; } /* * The only ITLB entry in region 7 that is used is the one installed by * __start(). That entry covers a 64MB range. */ mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); vaddr = PAGE_OFFSET + md->phys_addr; /* * We must check that the PAL mapping won't overlap with the kernel * mapping. * * PAL code is guaranteed to be aligned on a power of 2 between 4k and * 256KB and that only one ITR is needed to map it. This implies that the * PAL code is always aligned on its size, i.e., the closest matching page * size supported by the TLB. Therefore PAL code is guaranteed never to * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for * now the following test is enough to determine whether or not we need a * dedicated ITR for the PAL code. */ if ((vaddr & mask) == (KERNEL_START & mask)) { printk(KERN_INFO "%s: no need to install ITR for PAL code\n", __FUNCTION__); continue; } if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE) panic("Woah! PAL code size bigger than a granule!"); #if EFI_DEBUG mask = ~((1 << IA64_GRANULE_SHIFT) - 1); printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n", smp_processor_id(), md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); #endif return __va(md->phys_addr); } printk(KERN_WARNING "%s: no PAL-code memory-descriptor found", __FUNCTION__); return NULL; } void efi_map_pal_code (void) { void *pal_vaddr = efi_get_pal_addr (); u64 psr; if (!pal_vaddr) return; /* * Cannot write to CRx with PSR.ic=1 */ psr = ia64_clear_ic(); ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr), pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), IA64_GRANULE_SHIFT); ia64_set_psr(psr); /* restore psr */ ia64_srlz_i(); } void __init efi_init (void) { void *efi_map_start, *efi_map_end; efi_config_table_t *config_tables; efi_char16_t *c16; u64 efi_desc_size; char *cp, vendor[100] = "unknown"; extern char saved_command_line[]; int i; /* it's too early to be able to use the standard kernel command line support... */ for (cp = saved_command_line; *cp; ) { if (memcmp(cp, "mem=", 4) == 0) { mem_limit = memparse(cp + 4, &cp); } else if (memcmp(cp, "max_addr=", 9) == 0) { max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); } else { while (*cp != ' ' && *cp) ++cp; while (*cp == ' ') ++cp; } } if (max_addr != ~0UL) printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20); efi.systab = __va(ia64_boot_param->efi_systab); /* * Verify the EFI Table */ if (efi.systab == NULL) panic("Woah! Can't find EFI system table.\n"); if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) panic("Woah! EFI system table signature incorrect\n"); if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0) printk(KERN_WARNING "Warning: EFI system table major version mismatch: " "got %d.%02d, expected %d.%02d\n", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff); config_tables = __va(efi.systab->tables); /* Show what we know for posterity */ c16 = __va(efi.systab->fw_vendor); if (c16) { for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) vendor[i] = *c16++; vendor[i] = '\0'; } printk(KERN_INFO "EFI v%u.%.02u by %s:", efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor); for (i = 0; i < (int) efi.systab->nr_tables; i++) { if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { efi.mps = __va(config_tables[i].table); printk(" MPS=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { efi.acpi20 = __va(config_tables[i].table); printk(" ACPI 2.0=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { efi.acpi = __va(config_tables[i].table); printk(" ACPI=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { efi.smbios = __va(config_tables[i].table); printk(" SMBIOS=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { efi.sal_systab = __va(config_tables[i].table); printk(" SALsystab=0x%lx", config_tables[i].table); } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { efi.hcdp = __va(config_tables[i].table); printk(" HCDP=0x%lx", config_tables[i].table); } } printk("\n"); runtime = __va(efi.systab->runtime); efi.get_time = phys_get_time; efi.set_time = phys_set_time; efi.get_wakeup_time = phys_get_wakeup_time; efi.set_wakeup_time = phys_set_wakeup_time; efi.get_variable = phys_get_variable; efi.get_next_variable = phys_get_next_variable; efi.set_variable = phys_set_variable; efi.get_next_high_mono_count = phys_get_next_high_mono_count; efi.reset_system = phys_reset_system; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; #if EFI_DEBUG /* print EFI memory map: */ { efi_memory_desc_t *md; void *p; for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) { md = p; printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n", i, md->type, md->attribute, md->phys_addr, md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT), md->num_pages >> (20 - EFI_PAGE_SHIFT)); } } #endif efi_map_pal_code(); efi_enter_virtual_mode(); } void efi_enter_virtual_mode (void) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; efi_status_t status; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->attribute & EFI_MEMORY_RUNTIME) { /* * Some descriptors have multiple bits set, so the order of * the tests is relevant. */ if (md->attribute & EFI_MEMORY_WB) { md->virt_addr = (u64) __va(md->phys_addr); } else if (md->attribute & EFI_MEMORY_UC) { md->virt_addr = (u64) ioremap(md->phys_addr, 0); } else if (md->attribute & EFI_MEMORY_WC) { #if 0 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WC | _PAGE_PL_0 | _PAGE_AR_RW)); #else printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); md->virt_addr = (u64) ioremap(md->phys_addr, 0); #endif } else if (md->attribute & EFI_MEMORY_WT) { #if 0 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WT | _PAGE_PL_0 | _PAGE_AR_RW)); #else printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); md->virt_addr = (u64) ioremap(md->phys_addr, 0); #endif } } } status = efi_call_phys(__va(runtime->set_virtual_address_map), ia64_boot_param->efi_memmap_size, efi_desc_size, ia64_boot_param->efi_memdesc_version, ia64_boot_param->efi_memmap); if (status != EFI_SUCCESS) { printk(KERN_WARNING "warning: unable to switch EFI into virtual mode " "(status=%lu)\n", status); return; } /* * Now that EFI is in virtual mode, we call the EFI functions more efficiently: */ efi.get_time = virt_get_time; efi.set_time = virt_set_time; efi.get_wakeup_time = virt_get_wakeup_time; efi.set_wakeup_time = virt_set_wakeup_time; efi.get_variable = virt_get_variable; efi.get_next_variable = virt_get_next_variable; efi.set_variable = virt_set_variable; efi.get_next_high_mono_count = virt_get_next_high_mono_count; efi.reset_system = virt_reset_system; } /* * Walk the EFI memory map looking for the I/O port range. There can only be one entry of * this type, other I/O port ranges should be described via ACPI. */ u64 efi_get_iobase (void) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { if (md->attribute & EFI_MEMORY_UC) return md->phys_addr; } } return 0; } static efi_memory_desc_t * efi_memory_descriptor (unsigned long phys_addr) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT)) return md; } return 0; } static int efi_memmap_has_mmio (void) { void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->type == EFI_MEMORY_MAPPED_IO) return 1; } return 0; } u32 efi_mem_type (unsigned long phys_addr) { efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); if (md) return md->type; return 0; } u64 efi_mem_attributes (unsigned long phys_addr) { efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); if (md) return md->attribute; return 0; } EXPORT_SYMBOL(efi_mem_attributes); /* * Determines whether the memory at phys_addr supports the desired * attribute (WB, UC, etc). If this returns 1, the caller can safely * access *size bytes at phys_addr with the specified attribute. */ static int efi_mem_attribute_range (unsigned long phys_addr, unsigned long *size, u64 attr) { efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); unsigned long md_end; if (!md || (md->attribute & attr) != attr) return 0; do { md_end = efi_md_end(md); if (phys_addr + *size <= md_end) return 1; md = efi_memory_descriptor(md_end); if (!md || (md->attribute & attr) != attr) { *size = md_end - phys_addr; return 1; } } while (md); return 0; } /* * For /dev/mem, we only allow read & write system calls to access * write-back memory, because read & write don't allow the user to * control access size. */ int valid_phys_addr_range (unsigned long phys_addr, unsigned long *size) { return efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB); } /* * We allow mmap of anything in the EFI memory map that supports * either write-back or uncacheable access. For uncacheable regions, * the supported access sizes are system-dependent, and the user is * responsible for using the correct size. * * Note that this doesn't currently allow access to hot-added memory, * because that doesn't appear in the boot-time EFI memory map. */ int valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long *size) { if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_WB)) return 1; if (efi_mem_attribute_range(phys_addr, size, EFI_MEMORY_UC)) return 1; /* * Some firmware doesn't report MMIO regions in the EFI memory map. * The Intel BigSur (a.k.a. HP i2000) has this problem. In this * case, we can't use the EFI memory map to validate mmap requests. */ if (!efi_memmap_has_mmio()) return 1; return 0; } int __init efi_uart_console_only(void) { efi_status_t status; char *s, name[] = "ConOut"; efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; efi_char16_t *utf16, name_utf16[32]; unsigned char data[1024]; unsigned long size = sizeof(data); struct efi_generic_dev_path *hdr, *end_addr; int uart = 0; /* Convert to UTF-16 */ utf16 = name_utf16; s = name; while (*s) *utf16++ = *s++ & 0x7f; *utf16 = 0; status = efi.get_variable(name_utf16, &guid, NULL, &size, data); if (status != EFI_SUCCESS) { printk(KERN_ERR "No EFI %s variable?\n", name); return 0; } hdr = (struct efi_generic_dev_path *) data; end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); while (hdr < end_addr) { if (hdr->type == EFI_DEV_MSG && hdr->sub_type == EFI_DEV_MSG_UART) uart = 1; else if (hdr->type == EFI_DEV_END_PATH || hdr->type == EFI_DEV_END_PATH2) { if (!uart) return 0; if (hdr->sub_type == EFI_DEV_END_ENTIRE) return 1; uart = 0; } hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length); } printk(KERN_ERR "Malformed %s value\n", name); return 0; } /* * Look for the first granule aligned memory descriptor memory * that is big enough to hold EFI memory map. Make sure this * descriptor is atleast granule sized so it does not get trimmed */ struct kern_memdesc * find_memmap_space (void) { u64 contig_low=0, contig_high=0; u64 as = 0, ae; void *efi_map_start, *efi_map_end, *p, *q; efi_memory_desc_t *md, *pmd = NULL, *check_md; u64 space_needed, efi_desc_size; unsigned long total_mem = 0; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; /* * Worst case: we need 3 kernel descriptors for each efi descriptor * (if every entry has a WB part in the middle, and UC head and tail), * plus one for the end marker. */ space_needed = sizeof(kern_memdesc_t) * (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { md = p; if (!efi_wb(md)) { continue; } if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { contig_low = GRANULEROUNDUP(md->phys_addr); contig_high = efi_md_end(md); for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { check_md = q; if (!efi_wb(check_md)) break; if (contig_high != check_md->phys_addr) break; contig_high = efi_md_end(check_md); } contig_high = GRANULEROUNDDOWN(contig_high); } if (!is_available_memory(md) || md->type == EFI_LOADER_DATA) continue; /* Round ends inward to granule boundaries */ as = max(contig_low, md->phys_addr); ae = min(contig_high, efi_md_end(md)); /* keep within max_addr= command line arg */ ae = min(ae, max_addr); if (ae <= as) continue; /* avoid going over mem= command line arg */ if (total_mem + (ae - as) > mem_limit) ae -= total_mem + (ae - as) - mem_limit; if (ae <= as) continue; if (ae - as > space_needed) break; } if (p >= efi_map_end) panic("Can't allocate space for kernel memory descriptors"); return __va(as); } /* * Walk the EFI memory map and gather all memory available for kernel * to use. We can allocate partial granules only if the unavailable * parts exist, and are WB. */ void efi_memmap_init(unsigned long *s, unsigned long *e) { struct kern_memdesc *k, *prev = 0; u64 contig_low=0, contig_high=0; u64 as, ae, lim; void *efi_map_start, *efi_map_end, *p, *q; efi_memory_desc_t *md, *pmd = NULL, *check_md; u64 efi_desc_size; unsigned long total_mem = 0; k = kern_memmap = find_memmap_space(); efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { md = p; if (!efi_wb(md)) { if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY || md->type == EFI_BOOT_SERVICES_DATA)) { k->attribute = EFI_MEMORY_UC; k->start = md->phys_addr; k->num_pages = md->num_pages; k++; } continue; } if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) { contig_low = GRANULEROUNDUP(md->phys_addr); contig_high = efi_md_end(md); for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) { check_md = q; if (!efi_wb(check_md)) break; if (contig_high != check_md->phys_addr) break; contig_high = efi_md_end(check_md); } contig_high = GRANULEROUNDDOWN(contig_high); } if (!is_available_memory(md)) continue; /* * Round ends inward to granule boundaries * Give trimmings to uncached allocator */ if (md->phys_addr < contig_low) { lim = min(efi_md_end(md), contig_low); if (efi_uc(md)) { if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC && kmd_end(k-1) == md->phys_addr) { (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT; } else { k->attribute = EFI_MEMORY_UC; k->start = md->phys_addr; k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT; k++; } } as = contig_low; } else as = md->phys_addr; if (efi_md_end(md) > contig_high) { lim = max(md->phys_addr, contig_high); if (efi_uc(md)) { if (lim == md->phys_addr && k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC && kmd_end(k-1) == md->phys_addr) { (k-1)->num_pages += md->num_pages; } else { k->attribute = EFI_MEMORY_UC; k->start = lim; k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT; k++; } } ae = contig_high; } else ae = efi_md_end(md); /* keep within max_addr= command line arg */ ae = min(ae, max_addr); if (ae <= as) continue; /* avoid going over mem= command line arg */ if (total_mem + (ae - as) > mem_limit) ae -= total_mem + (ae - as) - mem_limit; if (ae <= as) continue; if (prev && kmd_end(prev) == md->phys_addr) { prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; total_mem += ae - as; continue; } k->attribute = EFI_MEMORY_WB; k->start = as; k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; total_mem += ae - as; prev = k++; } k->start = ~0L; /* end-marker */ /* reserve the memory we are using for kern_memmap */ *s = (u64)kern_memmap; *e = (u64)++k; } void efi_initialize_iomem_resources(struct resource *code_resource, struct resource *data_resource) { struct resource *res; void *efi_map_start, *efi_map_end, *p; efi_memory_desc_t *md; u64 efi_desc_size; char *name; unsigned long flags; efi_map_start = __va(ia64_boot_param->efi_memmap); efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size; efi_desc_size = ia64_boot_param->efi_memdesc_size; res = NULL; for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { md = p; if (md->num_pages == 0) /* should not happen */ continue; flags = IORESOURCE_MEM; switch (md->type) { case EFI_MEMORY_MAPPED_IO: case EFI_MEMORY_MAPPED_IO_PORT_SPACE: continue; case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_CONVENTIONAL_MEMORY: if (md->attribute & EFI_MEMORY_WP) { name = "System ROM"; flags |= IORESOURCE_READONLY; } else { name = "System RAM"; } break; case EFI_ACPI_MEMORY_NVS: name = "ACPI Non-volatile Storage"; flags |= IORESOURCE_BUSY; break; case EFI_UNUSABLE_MEMORY: name = "reserved"; flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED; break; case EFI_RESERVED_TYPE: case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: case EFI_ACPI_RECLAIM_MEMORY: default: name = "reserved"; flags |= IORESOURCE_BUSY; break; } if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { printk(KERN_ERR "failed to alocate resource for iomem\n"); return; } res->name = name; res->start = md->phys_addr; res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1; res->flags = flags; if (insert_resource(&iomem_resource, res) < 0) kfree(res); else { /* * We don't know which region contains * kernel data so we try it repeatedly and * let the resource manager test it. */ insert_resource(res, code_resource); insert_resource(res, data_resource); } } }