/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Author: Shobhit Kumar <shobhit.kumar@intel.com> * */ #include <drm/drmP.h> #include <drm/drm_crtc.h> #include <drm/drm_edid.h> #include <drm/i915_drm.h> #include <linux/slab.h> #include <video/mipi_display.h> #include <asm/intel-mid.h> #include <video/mipi_display.h> #include "i915_drv.h" #include "intel_drv.h" #include "intel_dsi.h" #include "intel_dsi_cmd.h" #define MIPI_TRANSFER_MODE_SHIFT 0 #define MIPI_VIRTUAL_CHANNEL_SHIFT 1 #define MIPI_PORT_SHIFT 3 #define PREPARE_CNT_MAX 0x3F #define EXIT_ZERO_CNT_MAX 0x3F #define CLK_ZERO_CNT_MAX 0xFF #define TRAIL_CNT_MAX 0x1F #define NS_KHZ_RATIO 1000000 #define GPI0_NC_0_HV_DDI0_HPD 0x4130 #define GPIO_NC_0_HV_DDI0_PAD 0x4138 #define GPIO_NC_1_HV_DDI0_DDC_SDA 0x4120 #define GPIO_NC_1_HV_DDI0_DDC_SDA_PAD 0x4128 #define GPIO_NC_2_HV_DDI0_DDC_SCL 0x4110 #define GPIO_NC_2_HV_DDI0_DDC_SCL_PAD 0x4118 #define GPIO_NC_3_PANEL0_VDDEN 0x4140 #define GPIO_NC_3_PANEL0_VDDEN_PAD 0x4148 #define GPIO_NC_4_PANEL0_BLKEN 0x4150 #define GPIO_NC_4_PANEL0_BLKEN_PAD 0x4158 #define GPIO_NC_5_PANEL0_BLKCTL 0x4160 #define GPIO_NC_5_PANEL0_BLKCTL_PAD 0x4168 #define GPIO_NC_6_PCONF0 0x4180 #define GPIO_NC_6_PAD 0x4188 #define GPIO_NC_7_PCONF0 0x4190 #define GPIO_NC_7_PAD 0x4198 #define GPIO_NC_8_PCONF0 0x4170 #define GPIO_NC_8_PAD 0x4178 #define GPIO_NC_9_PCONF0 0x4100 #define GPIO_NC_9_PAD 0x4108 #define GPIO_NC_10_PCONF0 0x40E0 #define GPIO_NC_10_PAD 0x40E8 #define GPIO_NC_11_PCONF0 0x40F0 #define GPIO_NC_11_PAD 0x40F8 struct gpio_table { u16 function_reg; u16 pad_reg; u8 init; }; static struct gpio_table gtable[] = { { GPI0_NC_0_HV_DDI0_HPD, GPIO_NC_0_HV_DDI0_PAD, 0 }, { GPIO_NC_1_HV_DDI0_DDC_SDA, GPIO_NC_1_HV_DDI0_DDC_SDA_PAD, 0 }, { GPIO_NC_2_HV_DDI0_DDC_SCL, GPIO_NC_2_HV_DDI0_DDC_SCL_PAD, 0 }, { GPIO_NC_3_PANEL0_VDDEN, GPIO_NC_3_PANEL0_VDDEN_PAD, 0 }, { GPIO_NC_4_PANEL0_BLKEN, GPIO_NC_4_PANEL0_BLKEN_PAD, 0 }, { GPIO_NC_5_PANEL0_BLKCTL, GPIO_NC_5_PANEL0_BLKCTL_PAD, 0 }, { GPIO_NC_6_PCONF0, GPIO_NC_6_PAD, 0 }, { GPIO_NC_7_PCONF0, GPIO_NC_7_PAD, 0 }, { GPIO_NC_8_PCONF0, GPIO_NC_8_PAD, 0 }, { GPIO_NC_9_PCONF0, GPIO_NC_9_PAD, 0 }, { GPIO_NC_10_PCONF0, GPIO_NC_10_PAD, 0}, { GPIO_NC_11_PCONF0, GPIO_NC_11_PAD, 0} }; static inline enum port intel_dsi_seq_port_to_port(u8 port) { return port ? PORT_C : PORT_A; } static u8 *mipi_exec_send_packet(struct intel_dsi *intel_dsi, u8 *data) { u8 type, byte, mode, vc, seq_port; u16 len; enum port port; byte = *data++; mode = (byte >> MIPI_TRANSFER_MODE_SHIFT) & 0x1; vc = (byte >> MIPI_VIRTUAL_CHANNEL_SHIFT) & 0x3; seq_port = (byte >> MIPI_PORT_SHIFT) & 0x3; /* For DSI single link on Port A & C, the seq_port value which is * parsed from Sequence Block#53 of VBT has been set to 0 * Now, read/write of packets for the DSI single link on Port A and * Port C will based on the DVO port from VBT block 2. */ if (intel_dsi->ports == (1 << PORT_C)) port = PORT_C; else port = intel_dsi_seq_port_to_port(seq_port); /* LP or HS mode */ intel_dsi->hs = mode; /* get packet type and increment the pointer */ type = *data++; len = *((u16 *) data); data += 2; switch (type) { case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM: dsi_vc_generic_write_0(intel_dsi, vc, port); break; case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM: dsi_vc_generic_write_1(intel_dsi, vc, *data, port); break; case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM: dsi_vc_generic_write_2(intel_dsi, vc, *data, *(data + 1), port); break; case MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM: case MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM: case MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM: DRM_DEBUG_DRIVER("Generic Read not yet implemented or used\n"); break; case MIPI_DSI_GENERIC_LONG_WRITE: dsi_vc_generic_write(intel_dsi, vc, data, len, port); break; case MIPI_DSI_DCS_SHORT_WRITE: dsi_vc_dcs_write_0(intel_dsi, vc, *data, port); break; case MIPI_DSI_DCS_SHORT_WRITE_PARAM: dsi_vc_dcs_write_1(intel_dsi, vc, *data, *(data + 1), port); break; case MIPI_DSI_DCS_READ: DRM_DEBUG_DRIVER("DCS Read not yet implemented or used\n"); break; case MIPI_DSI_DCS_LONG_WRITE: dsi_vc_dcs_write(intel_dsi, vc, data, len, port); break; } data += len; return data; } static u8 *mipi_exec_delay(struct intel_dsi *intel_dsi, u8 *data) { u32 delay = *((u32 *) data); usleep_range(delay, delay + 10); data += 4; return data; } static u8 *mipi_exec_gpio(struct intel_dsi *intel_dsi, u8 *data) { u8 gpio, action; u16 function, pad; u32 val; struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; gpio = *data++; /* pull up/down */ action = *data++; function = gtable[gpio].function_reg; pad = gtable[gpio].pad_reg; mutex_lock(&dev_priv->dpio_lock); if (!gtable[gpio].init) { /* program the function */ /* FIXME: remove constant below */ vlv_gpio_nc_write(dev_priv, function, 0x2000CC00); gtable[gpio].init = 1; } val = 0x4 | action; /* pull up/down */ vlv_gpio_nc_write(dev_priv, pad, val); mutex_unlock(&dev_priv->dpio_lock); return data; } typedef u8 * (*fn_mipi_elem_exec)(struct intel_dsi *intel_dsi, u8 *data); static const fn_mipi_elem_exec exec_elem[] = { NULL, /* reserved */ mipi_exec_send_packet, mipi_exec_delay, mipi_exec_gpio, NULL, /* status read; later */ }; /* * MIPI Sequence from VBT #53 parsing logic * We have already separated each seqence during bios parsing * Following is generic execution function for any sequence */ static const char * const seq_name[] = { "UNDEFINED", "MIPI_SEQ_ASSERT_RESET", "MIPI_SEQ_INIT_OTP", "MIPI_SEQ_DISPLAY_ON", "MIPI_SEQ_DISPLAY_OFF", "MIPI_SEQ_DEASSERT_RESET" }; static void generic_exec_sequence(struct intel_dsi *intel_dsi, char *sequence) { u8 *data = sequence; fn_mipi_elem_exec mipi_elem_exec; int index; if (!sequence) return; DRM_DEBUG_DRIVER("Starting MIPI sequence - %s\n", seq_name[*data]); /* go to the first element of the sequence */ data++; /* parse each byte till we reach end of sequence byte - 0x00 */ while (1) { index = *data; mipi_elem_exec = exec_elem[index]; if (!mipi_elem_exec) { DRM_ERROR("Unsupported MIPI element, skipping sequence execution\n"); return; } /* goto element payload */ data++; /* execute the element specific rotines */ data = mipi_elem_exec(intel_dsi, data); /* * After processing the element, data should point to * next element or end of sequence * check if have we reached end of sequence */ if (*data == 0x00) break; } } static bool generic_init(struct intel_dsi_device *dsi) { struct intel_dsi *intel_dsi = container_of(dsi, struct intel_dsi, dev); struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct mipi_config *mipi_config = dev_priv->vbt.dsi.config; struct mipi_pps_data *pps = dev_priv->vbt.dsi.pps; struct drm_display_mode *mode = dev_priv->vbt.lfp_lvds_vbt_mode; u32 bits_per_pixel = 24; u32 tlpx_ns, extra_byte_count, bitrate, tlpx_ui; u32 ui_num, ui_den; u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt; u32 ths_prepare_ns, tclk_trail_ns; u32 tclk_prepare_clkzero, ths_prepare_hszero; u32 lp_to_hs_switch, hs_to_lp_switch; u32 pclk, computed_ddr; u16 burst_mode_ratio; DRM_DEBUG_KMS("\n"); intel_dsi->eotp_pkt = mipi_config->eot_pkt_disabled ? 0 : 1; intel_dsi->clock_stop = mipi_config->enable_clk_stop ? 1 : 0; intel_dsi->lane_count = mipi_config->lane_cnt + 1; intel_dsi->pixel_format = mipi_config->videomode_color_format << 7; intel_dsi->dual_link = mipi_config->dual_link; intel_dsi->pixel_overlap = mipi_config->pixel_overlap; if (intel_dsi->dual_link) intel_dsi->ports = ((1 << PORT_A) | (1 << PORT_C)); if (intel_dsi->pixel_format == VID_MODE_FORMAT_RGB666) bits_per_pixel = 18; else if (intel_dsi->pixel_format == VID_MODE_FORMAT_RGB565) bits_per_pixel = 16; intel_dsi->operation_mode = mipi_config->is_cmd_mode; intel_dsi->video_mode_format = mipi_config->video_transfer_mode; intel_dsi->escape_clk_div = mipi_config->byte_clk_sel; intel_dsi->lp_rx_timeout = mipi_config->lp_rx_timeout; intel_dsi->turn_arnd_val = mipi_config->turn_around_timeout; intel_dsi->rst_timer_val = mipi_config->device_reset_timer; intel_dsi->init_count = mipi_config->master_init_timer; intel_dsi->bw_timer = mipi_config->dbi_bw_timer; intel_dsi->video_frmt_cfg_bits = mipi_config->bta_enabled ? DISABLE_VIDEO_BTA : 0; pclk = mode->clock; /* In dual link mode each port needs half of pixel clock */ if (intel_dsi->dual_link) { pclk = pclk / 2; /* we can enable pixel_overlap if needed by panel. In this * case we need to increase the pixelclock for extra pixels */ if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) { pclk += DIV_ROUND_UP(mode->vtotal * intel_dsi->pixel_overlap * 60, 1000); } } /* Burst Mode Ratio * Target ddr frequency from VBT / non burst ddr freq * multiply by 100 to preserve remainder */ if (intel_dsi->video_mode_format == VIDEO_MODE_BURST) { if (mipi_config->target_burst_mode_freq) { computed_ddr = (pclk * bits_per_pixel) / intel_dsi->lane_count; if (mipi_config->target_burst_mode_freq < computed_ddr) { DRM_ERROR("Burst mode freq is less than computed\n"); return false; } burst_mode_ratio = DIV_ROUND_UP( mipi_config->target_burst_mode_freq * 100, computed_ddr); pclk = DIV_ROUND_UP(pclk * burst_mode_ratio, 100); } else { DRM_ERROR("Burst mode target is not set\n"); return false; } } else burst_mode_ratio = 100; intel_dsi->burst_mode_ratio = burst_mode_ratio; intel_dsi->pclk = pclk; bitrate = (pclk * bits_per_pixel) / intel_dsi->lane_count; switch (intel_dsi->escape_clk_div) { case 0: tlpx_ns = 50; break; case 1: tlpx_ns = 100; break; case 2: tlpx_ns = 200; break; default: tlpx_ns = 50; break; } switch (intel_dsi->lane_count) { case 1: case 2: extra_byte_count = 2; break; case 3: extra_byte_count = 4; break; case 4: default: extra_byte_count = 3; break; } /* * ui(s) = 1/f [f in hz] * ui(ns) = 10^9 / (f*10^6) [f in Mhz] -> 10^3/f(Mhz) */ /* in Kbps */ ui_num = NS_KHZ_RATIO; ui_den = bitrate; tclk_prepare_clkzero = mipi_config->tclk_prepare_clkzero; ths_prepare_hszero = mipi_config->ths_prepare_hszero; /* * B060 * LP byte clock = TLPX/ (8UI) */ intel_dsi->lp_byte_clk = DIV_ROUND_UP(tlpx_ns * ui_den, 8 * ui_num); /* count values in UI = (ns value) * (bitrate / (2 * 10^6)) * * Since txddrclkhs_i is 2xUI, all the count values programmed in * DPHY param register are divided by 2 * * prepare count */ ths_prepare_ns = max(mipi_config->ths_prepare, mipi_config->tclk_prepare); prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * ui_den, ui_num * 2); /* exit zero count */ exit_zero_cnt = DIV_ROUND_UP( (ths_prepare_hszero - ths_prepare_ns) * ui_den, ui_num * 2 ); /* * Exit zero is unified val ths_zero and ths_exit * minimum value for ths_exit = 110ns * min (exit_zero_cnt * 2) = 110/UI * exit_zero_cnt = 55/UI */ if (exit_zero_cnt < (55 * ui_den / ui_num)) if ((55 * ui_den) % ui_num) exit_zero_cnt += 1; /* clk zero count */ clk_zero_cnt = DIV_ROUND_UP( (tclk_prepare_clkzero - ths_prepare_ns) * ui_den, 2 * ui_num); /* trail count */ tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail); trail_cnt = DIV_ROUND_UP(tclk_trail_ns * ui_den, 2 * ui_num); if (prepare_cnt > PREPARE_CNT_MAX || exit_zero_cnt > EXIT_ZERO_CNT_MAX || clk_zero_cnt > CLK_ZERO_CNT_MAX || trail_cnt > TRAIL_CNT_MAX) DRM_DEBUG_DRIVER("Values crossing maximum limits, restricting to max values\n"); if (prepare_cnt > PREPARE_CNT_MAX) prepare_cnt = PREPARE_CNT_MAX; if (exit_zero_cnt > EXIT_ZERO_CNT_MAX) exit_zero_cnt = EXIT_ZERO_CNT_MAX; if (clk_zero_cnt > CLK_ZERO_CNT_MAX) clk_zero_cnt = CLK_ZERO_CNT_MAX; if (trail_cnt > TRAIL_CNT_MAX) trail_cnt = TRAIL_CNT_MAX; /* B080 */ intel_dsi->dphy_reg = exit_zero_cnt << 24 | trail_cnt << 16 | clk_zero_cnt << 8 | prepare_cnt; /* * LP to HS switch count = 4TLPX + PREP_COUNT * 2 + EXIT_ZERO_COUNT * 2 * + 10UI + Extra Byte Count * * HS to LP switch count = THS-TRAIL + 2TLPX + Extra Byte Count * Extra Byte Count is calculated according to number of lanes. * High Low Switch Count is the Max of LP to HS and * HS to LP switch count * */ tlpx_ui = DIV_ROUND_UP(tlpx_ns * ui_den, ui_num); /* B044 */ /* FIXME: * The comment above does not match with the code */ lp_to_hs_switch = DIV_ROUND_UP(4 * tlpx_ui + prepare_cnt * 2 + exit_zero_cnt * 2 + 10, 8); hs_to_lp_switch = DIV_ROUND_UP(mipi_config->ths_trail + 2 * tlpx_ui, 8); intel_dsi->hs_to_lp_count = max(lp_to_hs_switch, hs_to_lp_switch); intel_dsi->hs_to_lp_count += extra_byte_count; /* B088 */ /* LP -> HS for clock lanes * LP clk sync + LP11 + LP01 + tclk_prepare + tclk_zero + * extra byte count * 2TPLX + 1TLPX + 1 TPLX(in ns) + prepare_cnt * 2 + clk_zero_cnt * * 2(in UI) + extra byte count * In byteclks = (4TLPX + prepare_cnt * 2 + clk_zero_cnt *2 (in UI)) / * 8 + extra byte count */ intel_dsi->clk_lp_to_hs_count = DIV_ROUND_UP( 4 * tlpx_ui + prepare_cnt * 2 + clk_zero_cnt * 2, 8); intel_dsi->clk_lp_to_hs_count += extra_byte_count; /* HS->LP for Clock Lanes * Low Power clock synchronisations + 1Tx byteclk + tclk_trail + * Extra byte count * 2TLPX + 8UI + (trail_count*2)(in UI) + Extra byte count * In byteclks = (2*TLpx(in UI) + trail_count*2 +8)(in UI)/8 + * Extra byte count */ intel_dsi->clk_hs_to_lp_count = DIV_ROUND_UP(2 * tlpx_ui + trail_cnt * 2 + 8, 8); intel_dsi->clk_hs_to_lp_count += extra_byte_count; DRM_DEBUG_KMS("Eot %s\n", intel_dsi->eotp_pkt ? "enabled" : "disabled"); DRM_DEBUG_KMS("Clockstop %s\n", intel_dsi->clock_stop ? "disabled" : "enabled"); DRM_DEBUG_KMS("Mode %s\n", intel_dsi->operation_mode ? "command" : "video"); if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_FRONT_BACK\n"); else if (intel_dsi->dual_link == DSI_DUAL_LINK_PIXEL_ALT) DRM_DEBUG_KMS("Dual link: DSI_DUAL_LINK_PIXEL_ALT\n"); else DRM_DEBUG_KMS("Dual link: NONE\n"); DRM_DEBUG_KMS("Pixel Format %d\n", intel_dsi->pixel_format); DRM_DEBUG_KMS("TLPX %d\n", intel_dsi->escape_clk_div); DRM_DEBUG_KMS("LP RX Timeout 0x%x\n", intel_dsi->lp_rx_timeout); DRM_DEBUG_KMS("Turnaround Timeout 0x%x\n", intel_dsi->turn_arnd_val); DRM_DEBUG_KMS("Init Count 0x%x\n", intel_dsi->init_count); DRM_DEBUG_KMS("HS to LP Count 0x%x\n", intel_dsi->hs_to_lp_count); DRM_DEBUG_KMS("LP Byte Clock %d\n", intel_dsi->lp_byte_clk); DRM_DEBUG_KMS("DBI BW Timer 0x%x\n", intel_dsi->bw_timer); DRM_DEBUG_KMS("LP to HS Clock Count 0x%x\n", intel_dsi->clk_lp_to_hs_count); DRM_DEBUG_KMS("HS to LP Clock Count 0x%x\n", intel_dsi->clk_hs_to_lp_count); DRM_DEBUG_KMS("BTA %s\n", intel_dsi->video_frmt_cfg_bits & DISABLE_VIDEO_BTA ? "disabled" : "enabled"); /* delays in VBT are in unit of 100us, so need to convert * here in ms * Delay (100us) * 100 /1000 = Delay / 10 (ms) */ intel_dsi->backlight_off_delay = pps->bl_disable_delay / 10; intel_dsi->backlight_on_delay = pps->bl_enable_delay / 10; intel_dsi->panel_on_delay = pps->panel_on_delay / 10; intel_dsi->panel_off_delay = pps->panel_off_delay / 10; intel_dsi->panel_pwr_cycle_delay = pps->panel_power_cycle_delay / 10; return true; } static int generic_mode_valid(struct intel_dsi_device *dsi, struct drm_display_mode *mode) { return MODE_OK; } static bool generic_mode_fixup(struct intel_dsi_device *dsi, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static void generic_panel_reset(struct intel_dsi_device *dsi) { struct intel_dsi *intel_dsi = container_of(dsi, struct intel_dsi, dev); struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; char *sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET]; generic_exec_sequence(intel_dsi, sequence); } static void generic_disable_panel_power(struct intel_dsi_device *dsi) { struct intel_dsi *intel_dsi = container_of(dsi, struct intel_dsi, dev); struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; char *sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET]; generic_exec_sequence(intel_dsi, sequence); } static void generic_send_otp_cmds(struct intel_dsi_device *dsi) { struct intel_dsi *intel_dsi = container_of(dsi, struct intel_dsi, dev); struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; char *sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP]; generic_exec_sequence(intel_dsi, sequence); } static void generic_enable(struct intel_dsi_device *dsi) { struct intel_dsi *intel_dsi = container_of(dsi, struct intel_dsi, dev); struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; char *sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_ON]; generic_exec_sequence(intel_dsi, sequence); } static void generic_disable(struct intel_dsi_device *dsi) { struct intel_dsi *intel_dsi = container_of(dsi, struct intel_dsi, dev); struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; char *sequence = dev_priv->vbt.dsi.sequence[MIPI_SEQ_DISPLAY_OFF]; generic_exec_sequence(intel_dsi, sequence); } static enum drm_connector_status generic_detect(struct intel_dsi_device *dsi) { return connector_status_connected; } static bool generic_get_hw_state(struct intel_dsi_device *dev) { return true; } static struct drm_display_mode *generic_get_modes(struct intel_dsi_device *dsi) { struct intel_dsi *intel_dsi = container_of(dsi, struct intel_dsi, dev); struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->vbt.lfp_lvds_vbt_mode->type |= DRM_MODE_TYPE_PREFERRED; return dev_priv->vbt.lfp_lvds_vbt_mode; } static void generic_destroy(struct intel_dsi_device *dsi) { } /* Callbacks. We might not need them all. */ struct intel_dsi_dev_ops vbt_generic_dsi_display_ops = { .init = generic_init, .mode_valid = generic_mode_valid, .mode_fixup = generic_mode_fixup, .panel_reset = generic_panel_reset, .disable_panel_power = generic_disable_panel_power, .send_otp_cmds = generic_send_otp_cmds, .enable = generic_enable, .disable = generic_disable, .detect = generic_detect, .get_hw_state = generic_get_hw_state, .get_modes = generic_get_modes, .destroy = generic_destroy, };