/* * Copyright (C) 1999,2001-2003 Silicon Graphics, Inc. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Further, this software is distributed without any warranty that it is * free of the rightful claim of any third person regarding infringement * or the like. Any license provided herein, whether implied or * otherwise, applies only to this software file. Patent licenses, if * any, provided herein do not apply to combinations of this program with * other software, or any other product whatsoever. * * You should have received a copy of the GNU General Public * License along with this program; if not, write the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, * Mountain View, CA 94043, or: * * http://www.sgi.com * * For further information regarding this notice, see: * * http://oss.sgi.com/projects/GenInfo/NoticeExplan */ #include <linux/config.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/kdev_t.h> #include <linux/string.h> #include <linux/tty.h> #include <linux/console.h> #include <linux/timex.h> #include <linux/sched.h> #include <linux/ioport.h> #include <linux/mm.h> #include <linux/serial.h> #include <linux/irq.h> #include <linux/bootmem.h> #include <linux/mmzone.h> #include <linux/interrupt.h> #include <linux/acpi.h> #include <linux/compiler.h> #include <linux/sched.h> #include <asm/io.h> #include <asm/sal.h> #include <asm/machvec.h> #include <asm/system.h> #include <asm/processor.h> #include <asm/sn/sgi.h> #include <asm/sn/io.h> #include <asm/sn/arch.h> #include <asm/sn/addrs.h> #include <asm/sn/pda.h> #include <asm/sn/nodepda.h> #include <asm/sn/sn_cpuid.h> #include <asm/sn/sn_private.h> #include <asm/sn/simulator.h> #include <asm/sn/leds.h> #include <asm/sn/bte.h> #include <asm/sn/clksupport.h> #include <asm/sn/sn_sal.h> #include <asm/sn/sn2/shub.h> DEFINE_PER_CPU(struct pda_s, pda_percpu); #define pxm_to_nasid(pxm) ((pxm)<<1) #define MAX_PHYS_MEMORY (1UL << 49) /* 1 TB */ extern void bte_init_node (nodepda_t *, cnodeid_t); extern void bte_init_cpu (void); extern void sn_timer_init(void); extern void (*ia64_mark_idle)(int); extern void snidle(int); unsigned long sn_rtc_cycles_per_second; partid_t sn_partid = -1; char sn_system_serial_number_string[128]; u64 sn_partition_serial_number; short physical_node_map[MAX_PHYSNODE_ID]; /* * This is the address of the RRegs in the HSpace of the global * master. It is used by a hack in serial.c (serial_[in|out], * printk.c (early_printk), and kdb_io.c to put console output on that * node's Bedrock UART. It is initialized here to 0, so that * early_printk won't try to access the UART before * master_node_bedrock_address is properly calculated. */ u64 master_node_bedrock_address; static void sn_init_pdas(char **); static nodepda_t *nodepdaindr[MAX_COMPACT_NODES]; irqpda_t *irqpdaindr; /* * The format of "screen_info" is strange, and due to early i386-setup * code. This is just enough to make the console code think we're on a * VGA color display. */ struct screen_info sn_screen_info = { orig_x: 0, orig_y: 0, orig_video_mode: 3, orig_video_cols: 80, orig_video_ega_bx: 3, orig_video_lines: 25, orig_video_isVGA: 1, orig_video_points: 16 }; /* * This is here so we can use the CMOS detection in ide-probe.c to * determine what drives are present. In theory, we don't need this * as the auto-detection could be done via ide-probe.c:do_probe() but * in practice that would be much slower, which is painful when * running in the simulator. Note that passing zeroes in DRIVE_INFO * is sufficient (the IDE driver will autodetect the drive geometry). */ #ifdef CONFIG_IA64_GENERIC extern char drive_info[4*16]; #else char drive_info[4*16]; #endif /** * early_sn_setup - early setup routine for SN platforms * * Sets up an initial console to aid debugging. Intended primarily * for bringup. See start_kernel() in init/main.c. */ #if defined(CONFIG_IA64_EARLY_PRINTK) || defined(CONFIG_IA64_SGI_SN_SIM) void __init early_sn_setup(void) { void ia64_sal_handler_init (void *entry_point, void *gpval); efi_system_table_t *efi_systab; efi_config_table_t *config_tables; struct ia64_sal_systab *sal_systab; struct ia64_sal_desc_entry_point *ep; char *p; int i; /* * Parse enough of the SAL tables to locate the SAL entry point. Since, console * IO on SN2 is done via SAL calls, early_printk won't work without this. * * This code duplicates some of the ACPI table parsing that is in efi.c & sal.c. * Any changes to those file may have to be made hereas well. */ efi_systab = (efi_system_table_t*)__va(ia64_boot_param->efi_systab); config_tables = __va(efi_systab->tables); for (i = 0; i < efi_systab->nr_tables; i++) { if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { sal_systab = __va(config_tables[i].table); p = (char*)(sal_systab+1); for (i = 0; i < sal_systab->entry_count; i++) { if (*p == SAL_DESC_ENTRY_POINT) { ep = (struct ia64_sal_desc_entry_point *) p; ia64_sal_handler_init(__va(ep->sal_proc), __va(ep->gp)); break; } p += SAL_DESC_SIZE(*p); } } } if ( IS_RUNNING_ON_SIMULATOR() ) { master_node_bedrock_address = (u64)REMOTE_HUB(get_nasid(), SH_JUNK_BUS_UART0); printk(KERN_DEBUG "early_sn_setup: setting master_node_bedrock_address to 0x%lx\n", master_node_bedrock_address); } } #endif /* CONFIG_IA64_EARLY_PRINTK */ #ifdef CONFIG_IA64_MCA extern int platform_intr_list[]; #endif extern nasid_t master_nasid; static int shub_1_1_found __initdata; /* * sn_check_for_wars * * Set flag for enabling shub specific wars */ static inline int __init is_shub_1_1(int nasid) { unsigned long id; int rev; id = REMOTE_HUB_L(nasid, SH_SHUB_ID); rev = (id & SH_SHUB_ID_REVISION_MASK) >> SH_SHUB_ID_REVISION_SHFT; return rev <= 2; } static void __init sn_check_for_wars(void) { int cnode; for (cnode=0; cnode< numnodes; cnode++) if (is_shub_1_1(cnodeid_to_nasid(cnode))) shub_1_1_found = 1; } /** * sn_setup - SN platform setup routine * @cmdline_p: kernel command line * * Handles platform setup for SN machines. This includes determining * the RTC frequency (via a SAL call), initializing secondary CPUs, and * setting up per-node data areas. The console is also initialized here. */ void __init sn_setup(char **cmdline_p) { long status, ticks_per_sec, drift; int pxm; int major = sn_sal_rev_major(), minor = sn_sal_rev_minor(); extern void io_sh_swapper(int, int); extern nasid_t get_master_baseio_nasid(void); extern void sn_cpu_init(void); MAX_DMA_ADDRESS = PAGE_OFFSET + MAX_PHYS_MEMORY; memset(physical_node_map, -1, sizeof(physical_node_map)); for (pxm=0; pxm<MAX_PXM_DOMAINS; pxm++) if (pxm_to_nid_map[pxm] != -1) physical_node_map[pxm_to_nasid(pxm)] = pxm_to_nid_map[pxm]; printk("SGI SAL version %x.%02x\n", major, minor); /* * Confirm the SAL we're running on is recent enough... */ if ((major < SN_SAL_MIN_MAJOR) || (major == SN_SAL_MIN_MAJOR && minor < SN_SAL_MIN_MINOR)) { printk(KERN_ERR "This kernel needs SGI SAL version >= " "%x.%02x\n", SN_SAL_MIN_MAJOR, SN_SAL_MIN_MINOR); panic("PROM version too old\n"); } io_sh_swapper(get_nasid(), 0); master_nasid = get_nasid(); (void)get_console_nasid(); (void)get_master_baseio_nasid(); status = ia64_sal_freq_base(SAL_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec, &drift); if (status != 0 || ticks_per_sec < 100000) { printk(KERN_WARNING "unable to determine platform RTC clock frequency, guessing.\n"); /* PROM gives wrong value for clock freq. so guess */ sn_rtc_cycles_per_second = 1000000000000UL/30000UL; } else sn_rtc_cycles_per_second = ticks_per_sec; platform_intr_list[ACPI_INTERRUPT_CPEI] = IA64_PCE_VECTOR; if ( IS_RUNNING_ON_SIMULATOR() ) { master_node_bedrock_address = (u64)REMOTE_HUB(get_nasid(), SH_JUNK_BUS_UART0); printk(KERN_DEBUG "sn_setup: setting master_node_bedrock_address to 0x%lx\n", master_node_bedrock_address); } /* * Create the PDAs and NODEPDAs for all the cpus. */ sn_init_pdas(cmdline_p); /* * Check for WARs. */ sn_check_for_wars(); ia64_mark_idle = &snidle; /* * For the bootcpu, we do this here. All other cpus will make the * call as part of cpu_init in slave cpu initialization. */ sn_cpu_init(); #ifdef CONFIG_SMP init_smp_config(); #endif screen_info = sn_screen_info; sn_timer_init(); } /** * sn_init_pdas - setup node data areas * * One time setup for Node Data Area. Called by sn_setup(). */ void sn_init_pdas(char **cmdline_p) { cnodeid_t cnode; /* * Make sure that the PDA fits entirely in the same page as the * cpu_data area. */ if ((((unsigned long)pda & (~PAGE_MASK)) + sizeof(pda_t)) > PAGE_SIZE) panic("overflow of cpu_data page"); memset(pda->cnodeid_to_nasid_table, -1, sizeof(pda->cnodeid_to_nasid_table)); for (cnode=0; cnode<numnodes; cnode++) pda->cnodeid_to_nasid_table[cnode] = pxm_to_nasid(nid_to_pxm_map[cnode]); /* * Allocate & initalize the nodepda for each node. */ for (cnode=0; cnode < numnodes; cnode++) { nodepdaindr[cnode] = alloc_bootmem_node(NODE_DATA(cnode), sizeof(nodepda_t)); memset(nodepdaindr[cnode], 0, sizeof(nodepda_t)); } /* * Now copy the array of nodepda pointers to each nodepda. */ for (cnode=0; cnode < numnodes; cnode++) memcpy(nodepdaindr[cnode]->pernode_pdaindr, nodepdaindr, sizeof(nodepdaindr)); /* * Set up IO related platform-dependent nodepda fields. * The following routine actually sets up the hubinfo struct * in nodepda. */ for (cnode = 0; cnode < numnodes; cnode++) { init_platform_nodepda(nodepdaindr[cnode], cnode); bte_init_node (nodepdaindr[cnode], cnode); } } /** * sn_cpu_init - initialize per-cpu data areas * @cpuid: cpuid of the caller * * Called during cpu initialization on each cpu as it starts. * Currently, initializes the per-cpu data area for SNIA. * Also sets up a few fields in the nodepda. Also known as * platform_cpu_init() by the ia64 machvec code. */ void __init sn_cpu_init(void) { int cpuid; int cpuphyid; int nasid; int slice; int cnode, i; /* * The boot cpu makes this call again after platform initialization is * complete. */ if (nodepdaindr[0] == NULL) return; cpuid = smp_processor_id(); cpuphyid = ((ia64_get_lid() >> 16) & 0xffff); nasid = cpu_physical_id_to_nasid(cpuphyid); cnode = nasid_to_cnodeid(nasid); slice = cpu_physical_id_to_slice(cpuphyid); printk("CPU %d: nasid %d, slice %d, cnode %d\n", smp_processor_id(), nasid, slice, cnode); memset(pda, 0, sizeof(pda)); pda->p_nodepda = nodepdaindr[cnode]; pda->led_address = (typeof(pda->led_address)) (LED0 + (slice<<LED_CPU_SHIFT)); pda->led_state = LED_ALWAYS_SET; pda->hb_count = HZ/2; pda->hb_state = 0; pda->idle_flag = 0; pda->shub_1_1_found = shub_1_1_found; memset(pda->cnodeid_to_nasid_table, -1, sizeof(pda->cnodeid_to_nasid_table)); for (i=0; i<numnodes; i++) pda->cnodeid_to_nasid_table[i] = pxm_to_nasid(nid_to_pxm_map[i]); if (local_node_data->active_cpu_count == 1) nodepda->node_first_cpu = cpuid; /* * We must use different memory allocators for first cpu (bootmem * allocator) than for the other cpus (regular allocator). */ if (cpuid == 0) irqpdaindr = alloc_bootmem_node(NODE_DATA(cpuid_to_cnodeid(cpuid)),sizeof(irqpda_t)); memset(irqpdaindr, 0, sizeof(irqpda_t)); irqpdaindr->irq_flags[SGI_PCIBR_ERROR] = SN2_IRQ_SHARED; irqpdaindr->irq_flags[SGI_PCIBR_ERROR] |= SN2_IRQ_RESERVED; irqpdaindr->irq_flags[SGI_II_ERROR] = SN2_IRQ_SHARED; irqpdaindr->irq_flags[SGI_II_ERROR] |= SN2_IRQ_RESERVED; pda->pio_write_status_addr = (volatile unsigned long *) LOCAL_MMR_ADDR((slice < 2 ? SH_PIO_WRITE_STATUS_0 : SH_PIO_WRITE_STATUS_1 ) ); pda->mem_write_status_addr = (volatile u64 *) LOCAL_MMR_ADDR((slice < 2 ? SH_MEMORY_WRITE_STATUS_0 : SH_MEMORY_WRITE_STATUS_1 ) ); if (nodepda->node_first_cpu == cpuid) { int buddy_nasid; buddy_nasid = cnodeid_to_nasid(numa_node_id() == numnodes-1 ? 0 : numa_node_id()+ 1); pda->pio_shub_war_cam_addr = (volatile unsigned long*)GLOBAL_MMR_ADDR(nasid, SH_PI_CAM_CONTROL); } bte_init_cpu(); }