Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Boxiang Sun
cython
Commits
c3f2d977
Commit
c3f2d977
authored
Sep 09, 2016
by
Robert Bradshaw
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Distinguish between math suffix and type suffix for complex arithmetic.
This closes #1433.
parent
9e641a60
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
50 additions
and
51 deletions
+50
-51
Cython/Compiler/ExprNodes.py
Cython/Compiler/ExprNodes.py
+1
-1
Cython/Compiler/PyrexTypes.py
Cython/Compiler/PyrexTypes.py
+7
-8
Cython/Utility/Complex.c
Cython/Utility/Complex.c
+42
-42
No files found.
Cython/Compiler/ExprNodes.py
View file @
c3f2d977
...
...
@@ -11116,7 +11116,7 @@ class PowNode(NumBinopNode):
if
self
.
type
.
real_type
.
is_float
:
self
.
operand1
=
self
.
operand1
.
coerce_to
(
self
.
type
,
env
)
self
.
operand2
=
self
.
operand2
.
coerce_to
(
self
.
type
,
env
)
self
.
pow_func
=
"__Pyx_c_pow"
+
self
.
type
.
real_type
.
math_h_modifier
self
.
pow_func
=
self
.
type
.
binary_op
(
'**'
)
else
:
error
(
self
.
pos
,
"complex int powers not supported"
)
self
.
pow_func
=
"<error>"
...
...
Cython/Compiler/PyrexTypes.py
View file @
c3f2d977
...
...
@@ -1968,14 +1968,11 @@ class CComplexType(CNumericType):
def
__init__
(
self
,
real_type
):
while
real_type
.
is_typedef
and
not
real_type
.
typedef_is_external
:
real_type
=
real_type
.
typedef_base_type
if
real_type
.
is_typedef
and
real_type
.
typedef_is_external
:
# The below is not actually used: Coercions are currently disabled
# so that complex types of external types can not be created
self
.
funcsuffix
=
"_%s"
%
real_type
.
specialization_name
()
elif
hasattr
(
real_type
,
'math_h_modifier'
)
:
self
.
funcsuffix
=
real_type
.
math_h_modifier
if
real_type
.
is_float
:
self
.
math_h_modifier
=
real_type
.
math_h_modifier
else
:
self
.
funcsuffix
=
"_%s"
%
real_type
.
specialization_name
()
self
.
math_h_modifier
=
"_UNUSED"
self
.
real_type
=
real_type
CNumericType
.
__init__
(
self
,
real_type
.
rank
+
0.5
,
real_type
.
signed
)
...
...
@@ -2059,7 +2056,8 @@ class CComplexType(CNumericType):
'type'
:
self
.
empty_declaration_code
(),
'type_name'
:
self
.
specialization_name
(),
'real_type'
:
self
.
real_type
.
empty_declaration_code
(),
'm'
:
self
.
funcsuffix
,
'func_suffix'
:
self
.
funcsuffix
,
'm'
:
self
.
math_h_modifier
,
'is_float'
:
int
(
self
.
real_type
.
is_float
)
}
...
...
@@ -2118,6 +2116,7 @@ complex_ops = {
(
2
,
'-'
):
'diff'
,
(
2
,
'*'
):
'prod'
,
(
2
,
'/'
):
'quot'
,
(
2
,
'**'
):
'pow'
,
(
2
,
'=='
):
'eq'
,
}
...
...
Cython/Utility/Complex.c
View file @
c3f2d977
...
...
@@ -115,39 +115,39 @@ static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
/////////////// Arithmetic.proto ///////////////
#if CYTHON_CCOMPLEX
#define __Pyx_c_eq{{
m
}}(a, b) ((a)==(b))
#define __Pyx_c_sum{{
m
}}(a, b) ((a)+(b))
#define __Pyx_c_diff{{
m
}}(a, b) ((a)-(b))
#define __Pyx_c_prod{{
m
}}(a, b) ((a)*(b))
#define __Pyx_c_quot{{
m
}}(a, b) ((a)/(b))
#define __Pyx_c_neg{{
m
}}(a) (-(a))
#define __Pyx_c_eq{{
func_suffix
}}(a, b) ((a)==(b))
#define __Pyx_c_sum{{
func_suffix
}}(a, b) ((a)+(b))
#define __Pyx_c_diff{{
func_suffix
}}(a, b) ((a)-(b))
#define __Pyx_c_prod{{
func_suffix
}}(a, b) ((a)*(b))
#define __Pyx_c_quot{{
func_suffix
}}(a, b) ((a)/(b))
#define __Pyx_c_neg{{
func_suffix
}}(a) (-(a))
#ifdef __cplusplus
#define __Pyx_c_is_zero{{
m
}}(z) ((z)==({{real_type}})0)
#define __Pyx_c_conj{{
m
}}(z) (::std::conj(z))
#define __Pyx_c_is_zero{{
func_suffix
}}(z) ((z)==({{real_type}})0)
#define __Pyx_c_conj{{
func_suffix
}}(z) (::std::conj(z))
#if {{is_float}}
#define __Pyx_c_abs{{
m
}}(z) (::std::abs(z))
#define __Pyx_c_pow{{
m
}}(a, b) (::std::pow(a, b))
#define __Pyx_c_abs{{
func_suffix
}}(z) (::std::abs(z))
#define __Pyx_c_pow{{
func_suffix
}}(a, b) (::std::pow(a, b))
#endif
#else
#define __Pyx_c_is_zero{{
m
}}(z) ((z)==0)
#define __Pyx_c_conj{{
m
}}(z) (conj{{m}}(z))
#define __Pyx_c_is_zero{{
func_suffix
}}(z) ((z)==0)
#define __Pyx_c_conj{{
func_suffix
}}(z) (conj{{m}}(z))
#if {{is_float}}
#define __Pyx_c_abs{{
m
}}(z) (cabs{{m}}(z))
#define __Pyx_c_pow{{
m
}}(a, b) (cpow{{m}}(a, b))
#define __Pyx_c_abs{{
func_suffix
}}(z) (cabs{{m}}(z))
#define __Pyx_c_pow{{
func_suffix
}}(a, b) (cpow{{m}}(a, b))
#endif
#endif
#else
static
CYTHON_INLINE
int
__Pyx_c_eq
{{
m
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_sum
{{
m
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_diff
{{
m
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_prod
{{
m
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_quot
{{
m
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_neg
{{
m
}}({{
type
}});
static
CYTHON_INLINE
int
__Pyx_c_is_zero
{{
m
}}({{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_conj
{{
m
}}({{
type
}});
static
CYTHON_INLINE
int
__Pyx_c_eq
{{
func_suffix
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_sum
{{
func_suffix
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_diff
{{
func_suffix
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_prod
{{
func_suffix
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_quot
{{
func_suffix
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_neg
{{
func_suffix
}}({{
type
}});
static
CYTHON_INLINE
int
__Pyx_c_is_zero
{{
func_suffix
}}({{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_conj
{{
func_suffix
}}({{
type
}});
#if {{is_float}}
static
CYTHON_INLINE
{{
real_type
}}
__Pyx_c_abs
{{
m
}}({{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_pow
{{
m
}}({{
type
}},
{{
type
}});
static
CYTHON_INLINE
{{
real_type
}}
__Pyx_c_abs
{{
func_suffix
}}({{
type
}});
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_pow
{{
func_suffix
}}({{
type
}},
{{
type
}});
#endif
#endif
...
...
@@ -155,22 +155,22 @@ static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
#if CYTHON_CCOMPLEX
#else
static
CYTHON_INLINE
int
__Pyx_c_eq
{{
m
}}({{
type
}}
a
,
{{
type
}}
b
)
{
static
CYTHON_INLINE
int
__Pyx_c_eq
{{
func_suffix
}}({{
type
}}
a
,
{{
type
}}
b
)
{
return
(
a
.
real
==
b
.
real
)
&&
(
a
.
imag
==
b
.
imag
);
}
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_sum
{{
m
}}({{
type
}}
a
,
{{
type
}}
b
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_sum
{{
func_suffix
}}({{
type
}}
a
,
{{
type
}}
b
)
{
{{
type
}}
z
;
z
.
real
=
a
.
real
+
b
.
real
;
z
.
imag
=
a
.
imag
+
b
.
imag
;
return
z
;
}
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_diff
{{
m
}}({{
type
}}
a
,
{{
type
}}
b
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_diff
{{
func_suffix
}}({{
type
}}
a
,
{{
type
}}
b
)
{
{{
type
}}
z
;
z
.
real
=
a
.
real
-
b
.
real
;
z
.
imag
=
a
.
imag
-
b
.
imag
;
return
z
;
}
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_prod
{{
m
}}({{
type
}}
a
,
{{
type
}}
b
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_prod
{{
func_suffix
}}({{
type
}}
a
,
{{
type
}}
b
)
{
{{
type
}}
z
;
z
.
real
=
a
.
real
*
b
.
real
-
a
.
imag
*
b
.
imag
;
z
.
imag
=
a
.
real
*
b
.
imag
+
a
.
imag
*
b
.
real
;
...
...
@@ -178,7 +178,7 @@ static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
}
#if {{is_float}}
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_quot
{{
m
}}({{
type
}}
a
,
{{
type
}}
b
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_quot
{{
func_suffix
}}({{
type
}}
a
,
{{
type
}}
b
)
{
if
(
b
.
imag
==
0
)
{
return
{{
type_name
}}
_from_parts
(
a
.
real
/
b
.
real
,
a
.
imag
/
b
.
real
);
}
else
if
(
fabs
{{
m
}}(
b
.
real
)
>=
fabs
{{
m
}}(
b
.
imag
))
{
...
...
@@ -198,7 +198,7 @@ static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
}
}
#else
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_quot
{{
m
}}({{
type
}}
a
,
{{
type
}}
b
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_quot
{{
func_suffix
}}({{
type
}}
a
,
{{
type
}}
b
)
{
if
(
b
.
imag
==
0
)
{
return
{{
type_name
}}
_from_parts
(
a
.
real
/
b
.
real
,
a
.
imag
/
b
.
real
);
}
else
{
...
...
@@ -210,30 +210,30 @@ static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
}
#endif
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_neg
{{
m
}}({{
type
}}
a
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_neg
{{
func_suffix
}}({{
type
}}
a
)
{
{{
type
}}
z
;
z
.
real
=
-
a
.
real
;
z
.
imag
=
-
a
.
imag
;
return
z
;
}
static
CYTHON_INLINE
int
__Pyx_c_is_zero
{{
m
}}({{
type
}}
a
)
{
static
CYTHON_INLINE
int
__Pyx_c_is_zero
{{
func_suffix
}}({{
type
}}
a
)
{
return
(
a
.
real
==
0
)
&&
(
a
.
imag
==
0
);
}
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_conj
{{
m
}}({{
type
}}
a
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_conj
{{
func_suffix
}}({{
type
}}
a
)
{
{{
type
}}
z
;
z
.
real
=
a
.
real
;
z
.
imag
=
-
a
.
imag
;
return
z
;
}
#if {{is_float}}
static
CYTHON_INLINE
{{
real_type
}}
__Pyx_c_abs
{{
m
}}({{
type
}}
z
)
{
static
CYTHON_INLINE
{{
real_type
}}
__Pyx_c_abs
{{
func_suffix
}}({{
type
}}
z
)
{
#if !defined(HAVE_HYPOT) || defined(_MSC_VER)
return
sqrt
{{
m
}}(
z
.
real
*
z
.
real
+
z
.
imag
*
z
.
imag
);
#else
return
hypot
{{
m
}}(
z
.
real
,
z
.
imag
);
#endif
}
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_pow
{{
m
}}({{
type
}}
a
,
{{
type
}}
b
)
{
static
CYTHON_INLINE
{{
type
}}
__Pyx_c_pow
{{
func_suffix
}}({{
type
}}
a
,
{{
type
}}
b
)
{
{{
type
}}
z
;
{{
real_type
}}
r
,
lnr
,
theta
,
z_r
,
z_theta
;
if
(
b
.
imag
==
0
&&
b
.
real
==
(
int
)
b
.
real
)
{
...
...
@@ -251,14 +251,14 @@ static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
case
1
:
return
a
;
case
2
:
z
=
__Pyx_c_prod
{{
m
}}(
a
,
a
);
return
__Pyx_c_prod
{{
m
}}(
a
,
a
);
z
=
__Pyx_c_prod
{{
func_suffix
}}(
a
,
a
);
return
__Pyx_c_prod
{{
func_suffix
}}(
a
,
a
);
case
3
:
z
=
__Pyx_c_prod
{{
m
}}(
a
,
a
);
return
__Pyx_c_prod
{{
m
}}(
z
,
a
);
z
=
__Pyx_c_prod
{{
func_suffix
}}(
a
,
a
);
return
__Pyx_c_prod
{{
func_suffix
}}(
z
,
a
);
case
4
:
z
=
__Pyx_c_prod
{{
m
}}(
a
,
a
);
return
__Pyx_c_prod
{{
m
}}(
z
,
z
);
z
=
__Pyx_c_prod
{{
func_suffix
}}(
a
,
a
);
return
__Pyx_c_prod
{{
func_suffix
}}(
z
,
z
);
}
}
if
(
a
.
imag
==
0
)
{
...
...
@@ -268,7 +268,7 @@ static {{type}} __Pyx_PyComplex_As_{{type_name}}(PyObject* o) {
r
=
a
.
real
;
theta
=
0
;
}
else
{
r
=
__Pyx_c_abs
{{
m
}}(
a
);
r
=
__Pyx_c_abs
{{
func_suffix
}}(
a
);
theta
=
atan2
{{
m
}}(
a
.
imag
,
a
.
real
);
}
lnr
=
log
{{
m
}}(
r
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment