Commit dd5c9a50 authored by Stefan Behnel's avatar Stefan Behnel

merge

parents 84e977c8 4ce2f147
...@@ -52,8 +52,13 @@ cdef extern from "numpy/arrayobject.h": ...@@ -52,8 +52,13 @@ cdef extern from "numpy/arrayobject.h":
# requirements, and does not yet fullfill the PEP. # requirements, and does not yet fullfill the PEP.
# In particular strided access is always provided regardless # In particular strided access is always provided regardless
# of flags # of flags
cdef int copy_shape, i, ndim
ndim = PyArray_NDIM(self)
if sizeof(npy_intp) != sizeof(Py_ssize_t): if sizeof(npy_intp) != sizeof(Py_ssize_t):
raise RuntimeError("Py_intptr_t and Py_ssize_t differs in size, numpy.pxd does not support this") copy_shape = 1
else:
copy_shape = 0
if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS) if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)): and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
...@@ -64,7 +69,16 @@ cdef extern from "numpy/arrayobject.h": ...@@ -64,7 +69,16 @@ cdef extern from "numpy/arrayobject.h":
raise ValueError("ndarray is not Fortran contiguous") raise ValueError("ndarray is not Fortran contiguous")
info.buf = PyArray_DATA(self) info.buf = PyArray_DATA(self)
info.ndim = PyArray_NDIM(self) info.ndim = ndim
if copy_shape:
# Allocate new buffer for strides and shape info. This is allocated
# as one block, strides first.
info.strides = <Py_ssize_t*>stdlib.malloc(sizeof(Py_ssize_t) * ndim * 2)
info.shape = info.strides + ndim
for i in range(ndim):
info.strides[i] = PyArray_STRIDES(self)[i]
info.shape[i] = PyArray_DIMS(self)[i]
else:
info.strides = <Py_ssize_t*>PyArray_STRIDES(self) info.strides = <Py_ssize_t*>PyArray_STRIDES(self)
info.shape = <Py_ssize_t*>PyArray_DIMS(self) info.shape = <Py_ssize_t*>PyArray_DIMS(self)
info.suboffsets = NULL info.suboffsets = NULL
...@@ -86,9 +100,14 @@ cdef extern from "numpy/arrayobject.h": ...@@ -86,9 +100,14 @@ cdef extern from "numpy/arrayobject.h":
# (this would look much prettier if we could use utility # (this would look much prettier if we could use utility
# functions). # functions).
if not hasfields and not copy_shape:
# do not call releasebuffer
info.obj = None
else:
# need to call releasebuffer
info.obj = self
if not hasfields: if not hasfields:
info.obj = None # do not call releasebuffer
t = descr.type_num t = descr.type_num
if t == NPY_BYTE: f = "b" if t == NPY_BYTE: f = "b"
elif t == NPY_UBYTE: f = "B" elif t == NPY_UBYTE: f = "B"
...@@ -112,7 +131,6 @@ cdef extern from "numpy/arrayobject.h": ...@@ -112,7 +131,6 @@ cdef extern from "numpy/arrayobject.h":
info.format = f info.format = f
return return
else: else:
info.obj = self # need to call releasebuffer
info.format = <char*>stdlib.malloc(255) # static size info.format = <char*>stdlib.malloc(255) # static size
f = info.format f = info.format
stack = [iter(descr.fields.iteritems())] stack = [iter(descr.fields.iteritems())]
...@@ -167,9 +185,11 @@ cdef extern from "numpy/arrayobject.h": ...@@ -167,9 +185,11 @@ cdef extern from "numpy/arrayobject.h":
stack.append(iter(descr.fields.iteritems())) stack.append(iter(descr.fields.iteritems()))
def __releasebuffer__(ndarray self, Py_buffer* info): def __releasebuffer__(ndarray self, Py_buffer* info):
# This can not be called unless format needs to be freed (as if PyArray_HASFIELDS(self):
# obj is set to NULL in those case)
stdlib.free(info.format) stdlib.free(info.format)
if sizeof(npy_intp) != sizeof(Py_ssize_t):
stdlib.free(info.strides)
# info.shape was stored after info.strides in the same block
cdef void* PyArray_DATA(ndarray arr) cdef void* PyArray_DATA(ndarray arr)
...@@ -180,7 +200,7 @@ cdef extern from "numpy/arrayobject.h": ...@@ -180,7 +200,7 @@ cdef extern from "numpy/arrayobject.h":
cdef npy_intp* PyArray_DIMS(ndarray arr) cdef npy_intp* PyArray_DIMS(ndarray arr)
cdef int PyArray_ITEMSIZE(ndarray arr) cdef int PyArray_ITEMSIZE(ndarray arr)
cdef int PyArray_CHKFLAGS(ndarray arr, int flags) cdef int PyArray_CHKFLAGS(ndarray arr, int flags)
cdef int PyArray_HASFIELDS(ndarray arr, int flags) cdef int PyArray_HASFIELDS(ndarray arr)
cdef int PyDataType_HASFIELDS(dtype obj) cdef int PyDataType_HASFIELDS(dtype obj)
...@@ -220,6 +240,18 @@ cdef extern from "numpy/arrayobject.h": ...@@ -220,6 +240,18 @@ cdef extern from "numpy/arrayobject.h":
ctypedef float npy_float96 ctypedef float npy_float96
ctypedef float npy_float128 ctypedef float npy_float128
ctypedef struct npy_cfloat:
float real
float imag
ctypedef struct npy_cdouble:
double real
double imag
ctypedef struct npy_clongdouble:
long double real
long double imag
# Typedefs that matches the runtime dtype objects in # Typedefs that matches the runtime dtype objects in
# the numpy module. # the numpy module.
...@@ -257,3 +289,6 @@ ctypedef npy_double float_t ...@@ -257,3 +289,6 @@ ctypedef npy_double float_t
ctypedef npy_double double_t ctypedef npy_double double_t
ctypedef npy_longdouble longdouble_t ctypedef npy_longdouble longdouble_t
ctypedef npy_cfloat cfloat_t
ctypedef npy_cdouble cdouble_t
ctypedef npy_clongdouble clongdouble_t
...@@ -202,18 +202,6 @@ def test_f_contig(np.ndarray[int, ndim=2, mode='fortran'] arr): ...@@ -202,18 +202,6 @@ def test_f_contig(np.ndarray[int, ndim=2, mode='fortran'] arr):
for i in range(arr.shape[0]): for i in range(arr.shape[0]):
print " ".join([str(arr[i, j]) for j in range(arr.shape[1])]) print " ".join([str(arr[i, j]) for j in range(arr.shape[1])])
cdef struct cfloat:
float real
float imag
cdef struct cdouble:
double real
double imag
cdef struct clongdouble:
long double real
long double imag
# Exhaustive dtype tests -- increments element [1] by 1 (or 1+1j) for all dtypes # Exhaustive dtype tests -- increments element [1] by 1 (or 1+1j) for all dtypes
def inc1_byte(np.ndarray[char] arr): arr[1] += 1 def inc1_byte(np.ndarray[char] arr): arr[1] += 1
def inc1_ubyte(np.ndarray[unsigned char] arr): arr[1] += 1 def inc1_ubyte(np.ndarray[unsigned char] arr): arr[1] += 1
...@@ -230,15 +218,15 @@ def inc1_float(np.ndarray[float] arr): arr[1] += 1 ...@@ -230,15 +218,15 @@ def inc1_float(np.ndarray[float] arr): arr[1] += 1
def inc1_double(np.ndarray[double] arr): arr[1] += 1 def inc1_double(np.ndarray[double] arr): arr[1] += 1
def inc1_longdouble(np.ndarray[long double] arr): arr[1] += 1 def inc1_longdouble(np.ndarray[long double] arr): arr[1] += 1
def inc1_cfloat(np.ndarray[cfloat] arr): def inc1_cfloat(np.ndarray[np.cfloat_t] arr):
arr[1].real += 1 arr[1].real += 1
arr[1].imag += 1 arr[1].imag += 1
def inc1_cdouble(np.ndarray[cdouble] arr): def inc1_cdouble(np.ndarray[np.cdouble_t] arr):
arr[1].real += 1 arr[1].real += 1
arr[1].imag += 1 arr[1].imag += 1
def inc1_clongdouble(np.ndarray[clongdouble] arr): def inc1_clongdouble(np.ndarray[np.clongdouble_t] arr):
cdef long double x cdef long double x
x = arr[1].real + 1 x = arr[1].real + 1
arr[1].real = x arr[1].real = x
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment