Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
K
kdtree
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
2
Merge Requests
2
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
cython-plus
kdtree
Commits
2b26f7d8
Commit
2b26f7d8
authored
Nov 04, 2021
by
Julien Jerphanion
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add heuristic for dimension choice
parent
78ab113b
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
55 additions
and
5 deletions
+55
-5
kdtree.pyx
kdtree.pyx
+55
-5
No files found.
kdtree.pyx
View file @
2b26f7d8
...
...
@@ -6,7 +6,7 @@ import numpy as np
np
.
import_array
()
from
runtime.runtime
cimport
BatchMailBox
,
NullResult
,
Scheduler
,
WaitResult
from
libc.math
cimport
log2
,
fmax
from
libc.math
cimport
log2
,
fmax
,
fmin
from
libc.stdio
cimport
printf
from
libc.stdlib
cimport
malloc
,
free
from
openmp
cimport
omp_get_max_threads
...
...
@@ -75,6 +75,54 @@ cdef extern from *:
I
n_features
)
nogil
except
+
cdef
I_t
find_node_split_dim
(
D_t
*
data
,
I_t
*
node_indices
,
I_t
n_features
,
I_t
n_points
)
nogil
except
-
1
:
"""Find the dimension with the largest spread.
Parameters
----------
data : double pointer
Pointer to a 2D array of the training data, of shape (n_samples, n_features).
n_samples must be greater than any of the values in node_indices.
node_indices : int pointer
Pointer to a 1D array of length n_points. This lists the indices of
each of the points within the current node.
Returns
-------
j_max : int
The index of the feature (dimension) within the node that has the
largest spread.
Notes
-----
In numpy, this operation is equivalent to
def find_node_split_dim(data, node_indices):
return np.argmax(data[node_indices].max(0) - data[node_indices].min(0))
The cython version is much more efficient in both computation and memory.
"""
cdef
D_t
min_val
,
max_val
,
val
,
spread
,
max_spread
cdef
I_t
i
,
j
,
j_max
j_max
=
0
max_spread
=
0
for
j
in
range
(
n_features
):
max_val
=
data
[
node_indices
[
0
]
*
n_features
+
j
]
min_val
=
max_val
for
i
in
range
(
1
,
n_points
):
val
=
data
[
node_indices
[
i
]
*
n_features
+
j
]
max_val
=
fmax
(
max_val
,
val
)
min_val
=
fmin
(
min_val
,
val
)
spread
=
max_val
-
min_val
if
spread
>
max_spread
:
max_spread
=
spread
j_max
=
j
return
j_max
cdef
cypclass
Counter
activable
:
""" A simple Counter.
...
...
@@ -379,9 +427,11 @@ cdef cypclass Node activable:
I_t
end
,
active
Counter
counter
,
):
# Simple round-robin on dimensions.
# TODO: Choose the dimension with maximum spread at each recursion instead.
cdef
I_t
next_dim
=
(
dim
+
1
)
%
n_dims
# Choose the dimension with maximum spread at each recursion instead.
cdef
I_t
next_dim
=
find_node_split_dim
(
data_ptr
,
indices_ptr
+
start
,
n_dims
,
end
-
start
)
cdef
I_t
mid
=
(
start
+
end
)
//
2
cdef
NodeData_t
*
node_data
=
self
.
_node_data_ptr
+
node_index
...
...
@@ -391,7 +441,7 @@ cdef cypclass Node activable:
if
(
end
-
start
<=
leaf_size
):
deref
(
node_data
).
is_leaf
=
True
# Adding to the global counter the number
# of samples the leaf is responsible
of
.
# of samples the leaf is responsible
for
.
counter
.
add
(
NULL
,
end
-
start
)
return
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment