Commit f69d1c2a authored by Mark Florisson's avatar Mark Florisson

Add Cython.Compiler.Importer to import code which relies on functionality that...

Add Cython.Compiler.Importer to import code which relies on functionality that is not portable across python versions
parent 5e6496af
......@@ -1943,7 +1943,9 @@ class PyrexCodeWriter(object):
class PyxCodeWriter(object):
"""
Can be used for writing out some Cython code.
Can be used for writing out some Cython code. To use the indenter
functionality, the Cython.Compiler.Importer module will have to be used
to load the code to support python 2.4
"""
def __init__(self, buffer=None, indent_level=0, context=None):
......
import copy
from Cython.Compiler import (ExprNodes, PyrexTypes, MemoryView,
ParseTreeTransforms, StringEncoding,
Errors)
from Cython.Compiler.ExprNodes import CloneNode, ProxyNode, TupleNode
from Cython.Compiler.Nodes import (FuncDefNode, CFuncDefNode, StatListNode,
DefNode)
class FusedCFuncDefNode(StatListNode):
"""
This node replaces a function with fused arguments. It deep-copies the
function for every permutation of fused types, and allocates a new local
scope for it. It keeps track of the original function in self.node, and
the entry of the original function in the symbol table is given the
'fused_cfunction' attribute which points back to us.
Then when a function lookup occurs (to e.g. call it), the call can be
dispatched to the right function.
node FuncDefNode the original function
nodes [FuncDefNode] list of copies of node with different specific types
py_func DefNode the fused python function subscriptable from
Python space
__signatures__ A DictNode mapping signature specialization strings
to PyCFunction nodes
resulting_fused_function PyCFunction for the fused DefNode that delegates
to specializations
fused_func_assignment Assignment of the fused function to the function name
defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
defaults would result in many different tuples)
specialized_pycfuncs List of synthesized pycfunction nodes for the
specializations
code_object CodeObjectNode shared by all specializations and the
fused function
"""
__signatures__ = None
resulting_fused_function = None
fused_func_assignment = None
defaults_tuple = None
def __init__(self, node, env):
super(FusedCFuncDefNode, self).__init__(node.pos)
self.nodes = []
self.node = node
is_def = isinstance(self.node, DefNode)
if is_def:
self.copy_def(env)
else:
self.copy_cdef(env)
# Perform some sanity checks. If anything fails, it's a bug
for n in self.nodes:
assert not n.entry.type.is_fused
assert not n.local_scope.return_type.is_fused
if node.return_type.is_fused:
assert not n.return_type.is_fused
if not is_def and n.cfunc_declarator.optional_arg_count:
assert n.type.op_arg_struct
node.entry.fused_cfunction = self
# Copy the nodes as AnalyseDeclarationsTransform will prepend
# self.py_func to self.stats, as we only want specialized
# CFuncDefNodes in self.nodes
self.stats = self.nodes[:]
def copy_def(self, env):
"""
Create a copy of the original def or lambda function for specialized
versions.
"""
fused_compound_types = PyrexTypes.unique(
[arg.type for arg in self.node.args if arg.type.is_fused])
permutations = PyrexTypes.get_all_specialized_permutations(fused_compound_types)
if self.node.entry in env.pyfunc_entries:
env.pyfunc_entries.remove(self.node.entry)
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
self._specialize_function_args(copied_node.args, fused_to_specific)
copied_node.return_type = self.node.return_type.specialize(
fused_to_specific)
copied_node.analyse_declarations(env)
self.create_new_local_scope(copied_node, env, fused_to_specific)
self.specialize_copied_def(copied_node, cname, self.node.entry,
fused_to_specific, fused_compound_types)
PyrexTypes.specialize_entry(copied_node.entry, cname)
copied_node.entry.used = True
env.entries[copied_node.entry.name] = copied_node.entry
if not self.replace_fused_typechecks(copied_node):
break
self.orig_py_func = self.node
self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
def copy_cdef(self, env):
"""
Create a copy of the original c(p)def function for all specialized
versions.
"""
permutations = self.node.type.get_all_specialized_permutations()
# print 'Node %s has %d specializations:' % (self.node.entry.name,
# len(permutations))
# import pprint; pprint.pprint([d for cname, d in permutations])
if self.node.entry in env.cfunc_entries:
env.cfunc_entries.remove(self.node.entry)
# Prevent copying of the python function
self.orig_py_func = orig_py_func = self.node.py_func
self.node.py_func = None
if orig_py_func:
env.pyfunc_entries.remove(orig_py_func.entry)
fused_types = self.node.type.get_fused_types()
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# Make the types in our CFuncType specific
type = copied_node.type.specialize(fused_to_specific)
entry = copied_node.entry
copied_node.type = type
entry.type, type.entry = type, entry
entry.used = (entry.used or
self.node.entry.defined_in_pxd or
env.is_c_class_scope or
entry.is_cmethod)
if self.node.cfunc_declarator.optional_arg_count:
self.node.cfunc_declarator.declare_optional_arg_struct(
type, env, fused_cname=cname)
copied_node.return_type = type.return_type
self.create_new_local_scope(copied_node, env, fused_to_specific)
# Make the argument types in the CFuncDeclarator specific
self._specialize_function_args(copied_node.cfunc_declarator.args,
fused_to_specific)
type.specialize_entry(entry, cname)
env.cfunc_entries.append(entry)
# If a cpdef, declare all specialized cpdefs (this
# also calls analyse_declarations)
copied_node.declare_cpdef_wrapper(env)
if copied_node.py_func:
env.pyfunc_entries.remove(copied_node.py_func.entry)
self.specialize_copied_def(
copied_node.py_func, cname, self.node.entry.as_variable,
fused_to_specific, fused_types)
if not self.replace_fused_typechecks(copied_node):
break
if orig_py_func:
self.py_func = self.make_fused_cpdef(orig_py_func, env,
is_def=False)
else:
self.py_func = orig_py_func
def _specialize_function_args(self, args, fused_to_specific):
for arg in args:
if arg.type.is_fused:
arg.type = arg.type.specialize(fused_to_specific)
if arg.type.is_memoryviewslice:
MemoryView.validate_memslice_dtype(arg.pos, arg.type.dtype)
def create_new_local_scope(self, node, env, f2s):
"""
Create a new local scope for the copied node and append it to
self.nodes. A new local scope is needed because the arguments with the
fused types are aready in the local scope, and we need the specialized
entries created after analyse_declarations on each specialized version
of the (CFunc)DefNode.
f2s is a dict mapping each fused type to its specialized version
"""
node.create_local_scope(env)
node.local_scope.fused_to_specific = f2s
# This is copied from the original function, set it to false to
# stop recursion
node.has_fused_arguments = False
self.nodes.append(node)
def specialize_copied_def(self, node, cname, py_entry, f2s, fused_types):
"""Specialize the copy of a DefNode given the copied node,
the specialization cname and the original DefNode entry"""
type_strings = [
PyrexTypes.specialization_signature_string(fused_type, f2s)
for fused_type in fused_types
]
node.specialized_signature_string = ', '.join(type_strings)
node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
cname, node.entry.pymethdef_cname)
node.entry.doc = py_entry.doc
node.entry.doc_cname = py_entry.doc_cname
def replace_fused_typechecks(self, copied_node):
"""
Branch-prune fused type checks like
if fused_t is int:
...
Returns whether an error was issued and whether we should stop in
in order to prevent a flood of errors.
"""
num_errors = Errors.num_errors
transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
copied_node.local_scope)
transform(copied_node)
if Errors.num_errors > num_errors:
return False
return True
def _fused_instance_checks(self, normal_types, pyx_code, env):
"""
Genereate Cython code for instance checks, matching an object to
specialized types.
"""
if_ = 'if'
for specialized_type in normal_types:
# all_numeric = all_numeric and specialized_type.is_numeric
py_type_name = specialized_type.py_type_name()
# in the case of long, unicode or bytes we need to instance
# check for long_, unicode_, bytes_ (long = long is no longer
# valid code with control flow analysis)
specialized_check_name = py_type_name
if py_type_name in ('long', 'unicode', 'bytes'):
specialized_check_name += '_'
specialized_type_name = specialized_type.specialization_string
pyx_code.context.update(locals())
pyx_code.put_chunk(
u"""
{{if_}} isinstance(arg, {{specialized_check_name}}):
dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'
""")
if_ = 'elif'
if not normal_types:
# we need an 'if' to match the following 'else'
pyx_code.putln("if 0: pass")
def _dtype_name(self, dtype):
if dtype.is_typedef:
return '___pyx_%s' % dtype
return str(dtype).replace(' ', '_')
def _dtype_type(self, dtype):
if dtype.is_typedef:
return self._dtype_name(dtype)
return str(dtype)
def _sizeof_dtype(self, dtype):
if dtype.is_pyobject:
return 'sizeof(void *)'
else:
return "sizeof(%s)" % self._dtype_type(dtype)
def _buffer_check_numpy_dtype_setup_cases(self, pyx_code):
"Setup some common cases to match dtypes against specializations"
with pyx_code.indenter("if dtype.kind in ('i', 'u'):"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_int")
with pyx_code.indenter("elif dtype.kind == 'f':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_float")
with pyx_code.indenter("elif dtype.kind == 'c':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_complex")
with pyx_code.indenter("elif dtype.kind == 'O':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_object")
match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'"
no_match = "dest_sig[{{dest_sig_idx}}] = None"
def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types):
"""
Match a numpy dtype object to the individual specializations.
"""
self._buffer_check_numpy_dtype_setup_cases(pyx_code)
for specialized_type in specialized_buffer_types:
dtype = specialized_type.dtype
pyx_code.context.update(
itemsize_match=self._sizeof_dtype(dtype) + " == itemsize",
signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype),
dtype=dtype,
specialized_type_name=specialized_type.specialization_string)
dtypes = [
(dtype.is_int, pyx_code.dtype_int),
(dtype.is_float, pyx_code.dtype_float),
(dtype.is_complex, pyx_code.dtype_complex)
]
for dtype_category, codewriter in dtypes:
if dtype_category:
cond = '{{itemsize_match}}'
if dtype.is_int:
cond += ' and {{signed_match}}'
with codewriter.indenter("if %s:" % cond):
# codewriter.putln("print 'buffer match found based on numpy dtype'")
codewriter.putln(self.match)
codewriter.putln("break")
def _buffer_parse_format_string_check(self, pyx_code, decl_code,
specialized_type, env):
"""
For each specialized type, try to coerce the object to a memoryview
slice of that type. This means obtaining a buffer and parsing the
format string.
TODO: separate buffer acquisition from format parsing
"""
dtype = specialized_type.dtype
if specialized_type.is_buffer:
axes = [('direct', 'strided')] * specialized_type.ndim
else:
axes = specialized_type.axes
memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes)
memslice_type.create_from_py_utility_code(env)
pyx_code.context.update(
coerce_from_py_func=memslice_type.from_py_function,
dtype=dtype)
decl_code.putln(
"{{memviewslice_cname}} {{coerce_from_py_func}}(object)")
pyx_code.context.update(
specialized_type_name=specialized_type.specialization_string,
sizeof_dtype=self._sizeof_dtype(dtype))
pyx_code.put_chunk(
u"""
# try {{dtype}}
if itemsize == -1 or itemsize == {{sizeof_dtype}}:
memslice = {{coerce_from_py_func}}(arg)
if memslice.memview:
__PYX_XDEC_MEMVIEW(&memslice, 1)
# print 'found a match for the buffer through format parsing'
%s
break
else:
PyErr_Clear()
""" % self.match)
def _buffer_checks(self, buffer_types, pyx_code, decl_code, env):
"""
Generate Cython code to match objects to buffer specializations.
First try to get a numpy dtype object and match it against the individual
specializations. If that fails, try naively to coerce the object
to each specialization, which obtains the buffer each time and tries
to match the format string.
"""
from Cython.Compiler import ExprNodes
if buffer_types:
with pyx_code.indenter(u"else:"):
# The first thing to find a match in this loop breaks out of the loop
with pyx_code.indenter(u"while 1:"):
pyx_code.put_chunk(
u"""
if numpy is not None:
if isinstance(arg, numpy.ndarray):
dtype = arg.dtype
elif (__pyx_memoryview_check(arg) and
isinstance(arg.base, numpy.ndarray)):
dtype = arg.base.dtype
else:
dtype = None
itemsize = -1
if dtype is not None:
itemsize = dtype.itemsize
kind = ord(dtype.kind)
dtype_signed = kind == ord('i')
""")
pyx_code.indent(2)
pyx_code.named_insertion_point("numpy_dtype_checks")
self._buffer_check_numpy_dtype(pyx_code, buffer_types)
pyx_code.dedent(2)
for specialized_type in buffer_types:
self._buffer_parse_format_string_check(
pyx_code, decl_code, specialized_type, env)
pyx_code.putln(self.no_match)
pyx_code.putln("break")
else:
pyx_code.putln("else: %s" % self.no_match)
def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types):
"""
If we have any buffer specializations, write out some variable
declarations and imports.
"""
decl_code.put_chunk(
u"""
ctypedef struct {{memviewslice_cname}}:
void *memview
void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil)
bint __pyx_memoryview_check(object)
""")
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef {{memviewslice_cname}} memslice
cdef Py_ssize_t itemsize
cdef bint dtype_signed
cdef char kind
itemsize = -1
""")
pyx_code.imports.put_chunk(
u"""
try:
import numpy
except ImportError:
numpy = None
""")
seen_int_dtypes = set()
for buffer_type in all_buffer_types:
dtype = buffer_type.dtype
if dtype.is_typedef:
#decl_code.putln("ctypedef %s %s" % (dtype.resolve(),
# self._dtype_name(dtype)))
decl_code.putln('ctypedef %s %s "%s"' % (dtype.resolve(),
self._dtype_name(dtype),
dtype.declaration_code("")))
if buffer_type.dtype.is_int:
if str(dtype) not in seen_int_dtypes:
seen_int_dtypes.add(str(dtype))
pyx_code.context.update(dtype_name=self._dtype_name(dtype),
dtype_type=self._dtype_type(dtype))
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef bint {{dtype_name}}_is_signed
{{dtype_name}}_is_signed = <{{dtype_type}}> -1 < 0
""")
def _split_fused_types(self, arg):
"""
Specialize fused types and split into normal types and buffer types.
"""
specialized_types = PyrexTypes.get_specialized_types(arg.type)
# Prefer long over int, etc
# specialized_types.sort()
seen_py_type_names = set()
normal_types, buffer_types = [], []
for specialized_type in specialized_types:
py_type_name = specialized_type.py_type_name()
if py_type_name:
if py_type_name in seen_py_type_names:
continue
seen_py_type_names.add(py_type_name)
normal_types.append(specialized_type)
elif specialized_type.is_buffer or specialized_type.is_memoryviewslice:
buffer_types.append(specialized_type)
return normal_types, buffer_types
def _unpack_argument(self, pyx_code):
pyx_code.put_chunk(
u"""
# PROCESSING ARGUMENT {{arg_tuple_idx}}
if {{arg_tuple_idx}} < len(args):
arg = args[{{arg_tuple_idx}}]
elif '{{arg.name}}' in kwargs:
arg = kwargs['{{arg.name}}']
else:
{{if arg.default:}}
arg = defaults[{{default_idx}}]
{{else}}
raise TypeError("Expected at least %d arguments" % len(args))
{{endif}}
""")
def make_fused_cpdef(self, orig_py_func, env, is_def):
"""
This creates the function that is indexable from Python and does
runtime dispatch based on the argument types. The function gets the
arg tuple and kwargs dict (or None) and the defaults tuple
as arguments from the Binding Fused Function's tp_call.
"""
from Cython.Compiler import TreeFragment, Code, MemoryView, UtilityCode
# { (arg_pos, FusedType) : specialized_type }
seen_fused_types = set()
context = {
'memviewslice_cname': MemoryView.memviewslice_cname,
'func_args': self.node.args,
'n_fused': len([arg for arg in self.node.args]),
'name': orig_py_func.entry.name,
}
pyx_code = Code.PyxCodeWriter(context=context)
decl_code = Code.PyxCodeWriter(context=context)
decl_code.put_chunk(
u"""
cdef extern from *:
void PyErr_Clear()
""")
decl_code.indent()
pyx_code.put_chunk(
u"""
def __pyx_fused_cpdef(signatures, args, kwargs, defaults):
import sys
if sys.version_info >= (3, 0):
long_ = int
unicode_ = str
bytes_ = bytes
else:
long_ = long
unicode_ = unicode
bytes_ = str
dest_sig = [None] * {{n_fused}}
if kwargs is None:
kwargs = {}
cdef Py_ssize_t i
# instance check body
""")
pyx_code.indent() # indent following code to function body
pyx_code.named_insertion_point("imports")
pyx_code.named_insertion_point("local_variable_declarations")
fused_index = 0
default_idx = 0
all_buffer_types = set()
for i, arg in enumerate(self.node.args):
if arg.type.is_fused and arg.type not in seen_fused_types:
seen_fused_types.add(arg.type)
context.update(
arg_tuple_idx=i,
arg=arg,
dest_sig_idx=fused_index,
default_idx=default_idx,
)
normal_types, buffer_types = self._split_fused_types(arg)
self._unpack_argument(pyx_code)
self._fused_instance_checks(normal_types, pyx_code, env)
self._buffer_checks(buffer_types, pyx_code, decl_code, env)
fused_index += 1
all_buffer_types.update(buffer_types)
if arg.default:
default_idx += 1
if all_buffer_types:
self._buffer_declarations(pyx_code, decl_code, all_buffer_types)
pyx_code.put_chunk(
u"""
candidates = []
for sig in signatures:
match_found = filter(None, dest_sig)
for src_type, dst_type in zip(sig.strip('()').split(', '), dest_sig):
if dst_type is not None and match_found:
match_found = src_type == dst_type
if match_found:
candidates.append(sig)
if not candidates:
raise TypeError("No matching signature found")
elif len(candidates) > 1:
raise TypeError("Function call with ambiguous argument types")
else:
return signatures[candidates[0]]
""")
fragment_code = pyx_code.getvalue()
# print decl_code.getvalue()
# print fragment_code
fragment = TreeFragment.TreeFragment(fragment_code.decode('ascii'),
level='module')
ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root)
UtilityCode.declare_declarations_in_scope(decl_code.getvalue(), env)
ast.scope = env
ast.analyse_declarations(env)
py_func = ast.stats[-1] # the DefNode
self.fragment_scope = ast.scope
if isinstance(self.node, DefNode):
py_func.specialized_cpdefs = self.nodes[:]
else:
py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
return py_func
def update_fused_defnode_entry(self, env):
copy_attributes = (
'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname',
'pymethdef_cname', 'doc', 'doc_cname', 'is_member',
'scope'
)
entry = self.py_func.entry
for attr in copy_attributes:
setattr(entry, attr,
getattr(self.orig_py_func.entry, attr))
self.py_func.name = self.orig_py_func.name
self.py_func.doc = self.orig_py_func.doc
env.entries.pop('__pyx_fused_cpdef', None)
if isinstance(self.node, DefNode):
env.entries[entry.name] = entry
else:
env.entries[entry.name].as_variable = entry
env.pyfunc_entries.append(entry)
self.py_func.entry.fused_cfunction = self
for node in self.nodes:
if isinstance(self.node, DefNode):
node.fused_py_func = self.py_func
else:
node.py_func.fused_py_func = self.py_func
node.entry.as_variable = entry
self.synthesize_defnodes()
self.stats.append(self.__signatures__)
env.use_utility_code(ExprNodes.import_utility_code)
def analyse_expressions(self, env):
"""
Analyse the expressions. Take care to only evaluate default arguments
once and clone the result for all specializations
"""
if self.py_func:
self.__signatures__.analyse_expressions(env)
self.py_func.analyse_expressions(env)
self.resulting_fused_function.analyse_expressions(env)
self.fused_func_assignment.analyse_expressions(env)
self.defaults = defaults = []
for arg in self.node.args:
if arg.default:
arg.default.analyse_expressions(env)
defaults.append(ProxyNode(arg.default))
else:
defaults.append(None)
for node in self.stats:
node.analyse_expressions(env)
if isinstance(node, FuncDefNode):
for arg, default in zip(node.args, defaults):
if default is not None:
arg.default = CloneNode(default).coerce_to(arg.type, env)
if self.py_func:
args = [CloneNode(default) for default in defaults if default]
defaults_tuple = TupleNode(self.pos, args=args)
defaults_tuple.analyse_types(env, skip_children=True)
self.defaults_tuple = ProxyNode(defaults_tuple)
self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
fused_func = self.resulting_fused_function.arg
fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
fused_func.code_object = CloneNode(self.code_object)
for pycfunc in self.specialized_pycfuncs:
pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
pycfunc.code_object = CloneNode(self.code_object)
def synthesize_defnodes(self):
"""
Create the __signatures__ dict of PyCFunctionNode specializations.
"""
if isinstance(self.nodes[0], CFuncDefNode):
nodes = [node.py_func for node in self.nodes]
else:
nodes = self.nodes
signatures = [
StringEncoding.EncodedString(node.specialized_signature_string)
for node in nodes]
keys = [ExprNodes.StringNode(node.pos, value=sig)
for node, sig in zip(nodes, signatures)]
values = [ExprNodes.PyCFunctionNode.from_defnode(node, True)
for node in nodes]
self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos,
zip(keys, values))
self.specialized_pycfuncs = values
for pycfuncnode in values:
pycfuncnode.is_specialization = True
def generate_function_definitions(self, env, code):
if self.py_func:
self.py_func.pymethdef_required = True
self.fused_func_assignment.generate_function_definitions(env, code)
for stat in self.stats:
if isinstance(stat, FuncDefNode) and stat.entry.used:
code.mark_pos(stat.pos)
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
for default in self.defaults:
if default is not None:
default.generate_evaluation_code(code)
if self.py_func:
self.defaults_tuple.generate_evaluation_code(code)
self.code_object.generate_evaluation_code(code)
for stat in self.stats:
code.mark_pos(stat.pos)
if isinstance(stat, ExprNodes.ExprNode):
stat.generate_evaluation_code(code)
elif not isinstance(stat, FuncDefNode) or stat.entry.used:
stat.generate_execution_code(code)
if self.__signatures__:
self.resulting_fused_function.generate_evaluation_code(code)
code.putln(
"((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
(self.resulting_fused_function.result(),
self.__signatures__.result()))
code.put_giveref(self.__signatures__.result())
self.fused_func_assignment.generate_execution_code(code)
# Dispose of results
self.resulting_fused_function.generate_disposal_code(code)
self.defaults_tuple.generate_disposal_code(code)
self.code_object.generate_disposal_code(code)
for default in self.defaults:
if default is not None:
default.generate_disposal_code(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
\ No newline at end of file
"""
Transparently import a module from the compiler on which the compiler
does not depend for its bootstrapping. This way one can write code
that is not supported in certain Python versions but which is supported
by Cython.
"""
import sys
import imp
import pyximport
# set up the PyxArgs global variable in pyximport (why is that a global :)
importers = pyximport.install(pyimport=True)
pyximport.uninstall(*importers)
def _import_normal(modulename):
# __import__ does not take keyword arguments under 2.4
return __import__(modulename, None, None, [''])
def _import_compile(modulename):
if '.' in modulename:
packagename, modulename = modulename.rsplit('.', 1)
__path__ = _import_normal(packagename).__path__
else:
__path__ = None
file, filename, description = imp.find_module(modulename, __path__)
if file:
file.close()
else:
raise ImportError(modulename)
return pyximport.load_module(modulename, filename)
def importer(modulename, compile=False, version=None):
"""
Import a module. If compile is true, always try to compile the .py file.
Otherwise, try a regular import and if that fails (i.e. there is a
syntax error, try to compile it.
"""
if version is not None and sys.version_info[:2] >= version:
return _import_normal(modulename)
if compile:
return _import_compile(modulename)
else:
try:
return _import_normal(modulename)
except SyntaxError:
return _import_compile(modulename)
......@@ -2222,785 +2222,6 @@ class CFuncDefNode(FuncDefNode):
code.putln('}')
class FusedCFuncDefNode(StatListNode):
"""
This node replaces a function with fused arguments. It deep-copies the
function for every permutation of fused types, and allocates a new local
scope for it. It keeps track of the original function in self.node, and
the entry of the original function in the symbol table is given the
'fused_cfunction' attribute which points back to us.
Then when a function lookup occurs (to e.g. call it), the call can be
dispatched to the right function.
node FuncDefNode the original function
nodes [FuncDefNode] list of copies of node with different specific types
py_func DefNode the fused python function subscriptable from
Python space
__signatures__ A DictNode mapping signature specialization strings
to PyCFunction nodes
resulting_fused_function PyCFunction for the fused DefNode that delegates
to specializations
fused_func_assignment Assignment of the fused function to the function name
defaults_tuple TupleNode of defaults (letting PyCFunctionNode build
defaults would result in many different tuples)
specialized_pycfuncs List of synthesized pycfunction nodes for the
specializations
code_object CodeObjectNode shared by all specializations and the
fused function
"""
__signatures__ = None
resulting_fused_function = None
fused_func_assignment = None
defaults_tuple = None
def __init__(self, node, env):
super(FusedCFuncDefNode, self).__init__(node.pos)
self.nodes = []
self.node = node
is_def = isinstance(self.node, DefNode)
if is_def:
self.copy_def(env)
else:
self.copy_cdef(env)
# Perform some sanity checks. If anything fails, it's a bug
for n in self.nodes:
assert not n.entry.type.is_fused
assert not n.local_scope.return_type.is_fused
if node.return_type.is_fused:
assert not n.return_type.is_fused
if not is_def and n.cfunc_declarator.optional_arg_count:
assert n.type.op_arg_struct
node.entry.fused_cfunction = self
# Copy the nodes as AnalyseDeclarationsTransform will prepend
# self.py_func to self.stats, as we only want specialized
# CFuncDefNodes in self.nodes
self.stats = self.nodes[:]
def copy_def(self, env):
"""
Create a copy of the original def or lambda function for specialized
versions.
"""
fused_compound_types = PyrexTypes.unique(
[arg.type for arg in self.node.args if arg.type.is_fused])
permutations = PyrexTypes.get_all_specialized_permutations(fused_compound_types)
if self.node.entry in env.pyfunc_entries:
env.pyfunc_entries.remove(self.node.entry)
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
self._specialize_function_args(copied_node.args, fused_to_specific)
copied_node.return_type = self.node.return_type.specialize(
fused_to_specific)
copied_node.analyse_declarations(env)
self.create_new_local_scope(copied_node, env, fused_to_specific)
self.specialize_copied_def(copied_node, cname, self.node.entry,
fused_to_specific, fused_compound_types)
PyrexTypes.specialize_entry(copied_node.entry, cname)
copied_node.entry.used = True
env.entries[copied_node.entry.name] = copied_node.entry
if not self.replace_fused_typechecks(copied_node):
break
self.orig_py_func = self.node
self.py_func = self.make_fused_cpdef(self.node, env, is_def=True)
def copy_cdef(self, env):
"""
Create a copy of the original c(p)def function for all specialized
versions.
"""
permutations = self.node.type.get_all_specialized_permutations()
# print 'Node %s has %d specializations:' % (self.node.entry.name,
# len(permutations))
# import pprint; pprint.pprint([d for cname, d in permutations])
if self.node.entry in env.cfunc_entries:
env.cfunc_entries.remove(self.node.entry)
# Prevent copying of the python function
self.orig_py_func = orig_py_func = self.node.py_func
self.node.py_func = None
if orig_py_func:
env.pyfunc_entries.remove(orig_py_func.entry)
fused_types = self.node.type.get_fused_types()
for cname, fused_to_specific in permutations:
copied_node = copy.deepcopy(self.node)
# Make the types in our CFuncType specific
type = copied_node.type.specialize(fused_to_specific)
entry = copied_node.entry
copied_node.type = type
entry.type, type.entry = type, entry
entry.used = (entry.used or
self.node.entry.defined_in_pxd or
env.is_c_class_scope or
entry.is_cmethod)
if self.node.cfunc_declarator.optional_arg_count:
self.node.cfunc_declarator.declare_optional_arg_struct(
type, env, fused_cname=cname)
copied_node.return_type = type.return_type
self.create_new_local_scope(copied_node, env, fused_to_specific)
# Make the argument types in the CFuncDeclarator specific
self._specialize_function_args(copied_node.cfunc_declarator.args,
fused_to_specific)
type.specialize_entry(entry, cname)
env.cfunc_entries.append(entry)
# If a cpdef, declare all specialized cpdefs (this
# also calls analyse_declarations)
copied_node.declare_cpdef_wrapper(env)
if copied_node.py_func:
env.pyfunc_entries.remove(copied_node.py_func.entry)
self.specialize_copied_def(
copied_node.py_func, cname, self.node.entry.as_variable,
fused_to_specific, fused_types)
if not self.replace_fused_typechecks(copied_node):
break
if orig_py_func:
self.py_func = self.make_fused_cpdef(orig_py_func, env,
is_def=False)
else:
self.py_func = orig_py_func
def _specialize_function_args(self, args, fused_to_specific):
import MemoryView
for arg in args:
if arg.type.is_fused:
arg.type = arg.type.specialize(fused_to_specific)
if arg.type.is_memoryviewslice:
MemoryView.validate_memslice_dtype(arg.pos, arg.type.dtype)
def create_new_local_scope(self, node, env, f2s):
"""
Create a new local scope for the copied node and append it to
self.nodes. A new local scope is needed because the arguments with the
fused types are aready in the local scope, and we need the specialized
entries created after analyse_declarations on each specialized version
of the (CFunc)DefNode.
f2s is a dict mapping each fused type to its specialized version
"""
node.create_local_scope(env)
node.local_scope.fused_to_specific = f2s
# This is copied from the original function, set it to false to
# stop recursion
node.has_fused_arguments = False
self.nodes.append(node)
def specialize_copied_def(self, node, cname, py_entry, f2s, fused_types):
"""Specialize the copy of a DefNode given the copied node,
the specialization cname and the original DefNode entry"""
type_strings = [
PyrexTypes.specialization_signature_string(fused_type, f2s)
for fused_type in fused_types
]
node.specialized_signature_string = ', '.join(type_strings)
node.entry.pymethdef_cname = PyrexTypes.get_fused_cname(
cname, node.entry.pymethdef_cname)
node.entry.doc = py_entry.doc
node.entry.doc_cname = py_entry.doc_cname
def replace_fused_typechecks(self, copied_node):
"""
Branch-prune fused type checks like
if fused_t is int:
...
Returns whether an error was issued and whether we should stop in
in order to prevent a flood of errors.
"""
from Cython.Compiler import ParseTreeTransforms
num_errors = Errors.num_errors
transform = ParseTreeTransforms.ReplaceFusedTypeChecks(
copied_node.local_scope)
transform(copied_node)
if Errors.num_errors > num_errors:
return False
return True
def _fused_instance_checks(self, normal_types, pyx_code, env):
"""
Genereate Cython code for instance checks, matching an object to
specialized types.
"""
if_ = 'if'
for specialized_type in normal_types:
# all_numeric = all_numeric and specialized_type.is_numeric
py_type_name = specialized_type.py_type_name()
# in the case of long, unicode or bytes we need to instance
# check for long_, unicode_, bytes_ (long = long is no longer
# valid code with control flow analysis)
specialized_check_name = py_type_name
if py_type_name in ('long', 'unicode', 'bytes'):
specialized_check_name += '_'
specialized_type_name = specialized_type.specialization_string
pyx_code.context.update(locals())
pyx_code.put_chunk(
u"""
{{if_}} isinstance(arg, {{specialized_check_name}}):
dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'
""")
if_ = 'elif'
if not normal_types:
# we need an 'if' to match the following 'else'
pyx_code.putln("if 0: pass")
def _dtype_name(self, dtype):
if dtype.is_typedef:
return '___pyx_%s' % dtype
return str(dtype).replace(' ', '_')
def _dtype_type(self, dtype):
if dtype.is_typedef:
return self._dtype_name(dtype)
return str(dtype)
def _sizeof_dtype(self, dtype):
if dtype.is_pyobject:
return 'sizeof(void *)'
else:
return "sizeof(%s)" % self._dtype_type(dtype)
def _buffer_check_numpy_dtype_setup_cases(self, pyx_code):
"Setup some common cases to match dtypes against specializations"
with pyx_code.indenter("if dtype.kind in ('i', 'u'):"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_int")
with pyx_code.indenter("elif dtype.kind == 'f':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_float")
with pyx_code.indenter("elif dtype.kind == 'c':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_complex")
with pyx_code.indenter("elif dtype.kind == 'O':"):
pyx_code.putln("pass")
pyx_code.named_insertion_point("dtype_object")
match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'"
no_match = "dest_sig[{{dest_sig_idx}}] = None"
def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types):
"""
Match a numpy dtype object to the individual specializations.
"""
self._buffer_check_numpy_dtype_setup_cases(pyx_code)
for specialized_type in specialized_buffer_types:
dtype = specialized_type.dtype
pyx_code.context.update(
itemsize_match=self._sizeof_dtype(dtype) + " == itemsize",
signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype),
dtype=dtype,
specialized_type_name=specialized_type.specialization_string)
dtypes = [
(dtype.is_int, pyx_code.dtype_int),
(dtype.is_float, pyx_code.dtype_float),
(dtype.is_complex, pyx_code.dtype_complex)
]
for dtype_category, codewriter in dtypes:
if dtype_category:
cond = '{{itemsize_match}}'
if dtype.is_int:
cond += ' and {{signed_match}}'
with codewriter.indenter("if %s:" % cond):
# codewriter.putln("print 'buffer match found based on numpy dtype'")
codewriter.putln(self.match)
codewriter.putln("break")
def _buffer_parse_format_string_check(self, pyx_code, decl_code,
specialized_type, env):
"""
For each specialized type, try to coerce the object to a memoryview
slice of that type. This means obtaining a buffer and parsing the
format string.
TODO: separate buffer acquisition from format parsing
"""
dtype = specialized_type.dtype
if specialized_type.is_buffer:
axes = [('direct', 'strided')] * specialized_type.ndim
else:
axes = specialized_type.axes
memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes)
memslice_type.create_from_py_utility_code(env)
pyx_code.context.update(
coerce_from_py_func=memslice_type.from_py_function,
dtype=dtype)
decl_code.putln(
"{{memviewslice_cname}} {{coerce_from_py_func}}(object)")
pyx_code.context.update(
specialized_type_name=specialized_type.specialization_string,
sizeof_dtype=self._sizeof_dtype(dtype))
pyx_code.put_chunk(
u"""
# try {{dtype}}
if itemsize == -1 or itemsize == {{sizeof_dtype}}:
memslice = {{coerce_from_py_func}}(arg)
if memslice.memview:
__PYX_XDEC_MEMVIEW(&memslice, 1)
# print 'found a match for the buffer through format parsing'
%s
break
else:
PyErr_Clear()
""" % self.match)
def _buffer_checks(self, buffer_types, pyx_code, decl_code, env):
"""
Generate Cython code to match objects to buffer specializations.
First try to get a numpy dtype object and match it against the individual
specializations. If that fails, try naively to coerce the object
to each specialization, which obtains the buffer each time and tries
to match the format string.
"""
from Cython.Compiler import ExprNodes
if buffer_types:
with pyx_code.indenter(u"else:"):
# The first thing to find a match in this loop breaks out of the loop
with pyx_code.indenter(u"while 1:"):
pyx_code.put_chunk(
u"""
if numpy is not None:
if isinstance(arg, numpy.ndarray):
dtype = arg.dtype
elif (__pyx_memoryview_check(arg) and
isinstance(arg.base, numpy.ndarray)):
dtype = arg.base.dtype
else:
dtype = None
itemsize = -1
if dtype is not None:
itemsize = dtype.itemsize
kind = ord(dtype.kind)
dtype_signed = kind == ord('i')
""")
pyx_code.indent(2)
pyx_code.named_insertion_point("numpy_dtype_checks")
self._buffer_check_numpy_dtype(pyx_code, buffer_types)
pyx_code.dedent(2)
for specialized_type in buffer_types:
self._buffer_parse_format_string_check(
pyx_code, decl_code, specialized_type, env)
pyx_code.putln(self.no_match)
pyx_code.putln("break")
else:
pyx_code.putln("else: %s" % self.no_match)
def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types):
"""
If we have any buffer specializations, write out some variable
declarations and imports.
"""
decl_code.put_chunk(
u"""
ctypedef struct {{memviewslice_cname}}:
void *memview
void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil)
bint __pyx_memoryview_check(object)
""")
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef {{memviewslice_cname}} memslice
cdef Py_ssize_t itemsize
cdef bint dtype_signed
cdef char kind
itemsize = -1
""")
pyx_code.imports.put_chunk(
u"""
try:
import numpy
except ImportError:
numpy = None
""")
seen_int_dtypes = set()
for buffer_type in all_buffer_types:
dtype = buffer_type.dtype
if dtype.is_typedef:
#decl_code.putln("ctypedef %s %s" % (dtype.resolve(),
# self._dtype_name(dtype)))
decl_code.putln('ctypedef %s %s "%s"' % (dtype.resolve(),
self._dtype_name(dtype),
dtype.declaration_code("")))
if buffer_type.dtype.is_int:
if str(dtype) not in seen_int_dtypes:
seen_int_dtypes.add(str(dtype))
pyx_code.context.update(dtype_name=self._dtype_name(dtype),
dtype_type=self._dtype_type(dtype))
pyx_code.local_variable_declarations.put_chunk(
u"""
cdef bint {{dtype_name}}_is_signed
{{dtype_name}}_is_signed = <{{dtype_type}}> -1 < 0
""")
def _split_fused_types(self, arg):
"""
Specialize fused types and split into normal types and buffer types.
"""
specialized_types = PyrexTypes.get_specialized_types(arg.type)
# Prefer long over int, etc
# specialized_types.sort()
seen_py_type_names = set()
normal_types, buffer_types = [], []
for specialized_type in specialized_types:
py_type_name = specialized_type.py_type_name()
if py_type_name:
if py_type_name in seen_py_type_names:
continue
seen_py_type_names.add(py_type_name)
normal_types.append(specialized_type)
elif specialized_type.is_buffer or specialized_type.is_memoryviewslice:
buffer_types.append(specialized_type)
return normal_types, buffer_types
def _unpack_argument(self, pyx_code):
pyx_code.put_chunk(
u"""
# PROCESSING ARGUMENT {{arg_tuple_idx}}
if {{arg_tuple_idx}} < len(args):
arg = args[{{arg_tuple_idx}}]
elif '{{arg.name}}' in kwargs:
arg = kwargs['{{arg.name}}']
else:
{{if arg.default:}}
arg = defaults[{{default_idx}}]
{{else}}
raise TypeError("Expected at least %d arguments" % len(args))
{{endif}}
""")
def make_fused_cpdef(self, orig_py_func, env, is_def):
"""
This creates the function that is indexable from Python and does
runtime dispatch based on the argument types. The function gets the
arg tuple and kwargs dict (or None) and the defaults tuple
as arguments from the Binding Fused Function's tp_call.
"""
from Cython.Compiler import TreeFragment, Code, MemoryView, UtilityCode
# { (arg_pos, FusedType) : specialized_type }
seen_fused_types = set()
context = {
'memviewslice_cname': MemoryView.memviewslice_cname,
'func_args': self.node.args,
'n_fused': len([arg for arg in self.node.args]),
'name': orig_py_func.entry.name,
}
pyx_code = Code.PyxCodeWriter(context=context)
decl_code = Code.PyxCodeWriter(context=context)
decl_code.put_chunk(
u"""
cdef extern from *:
void PyErr_Clear()
""")
decl_code.indent()
pyx_code.put_chunk(
u"""
def __pyx_fused_cpdef(signatures, args, kwargs, defaults):
import sys
if sys.version_info >= (3, 0):
long_ = int
unicode_ = str
bytes_ = bytes
else:
long_ = long
unicode_ = unicode
bytes_ = str
dest_sig = [None] * {{n_fused}}
if kwargs is None:
kwargs = {}
cdef Py_ssize_t i
# instance check body
""")
pyx_code.indent() # indent following code to function body
pyx_code.named_insertion_point("imports")
pyx_code.named_insertion_point("local_variable_declarations")
fused_index = 0
default_idx = 0
all_buffer_types = set()
for i, arg in enumerate(self.node.args):
if arg.type.is_fused and arg.type not in seen_fused_types:
seen_fused_types.add(arg.type)
context.update(
arg_tuple_idx=i,
arg=arg,
dest_sig_idx=fused_index,
default_idx=default_idx,
)
normal_types, buffer_types = self._split_fused_types(arg)
self._unpack_argument(pyx_code)
self._fused_instance_checks(normal_types, pyx_code, env)
self._buffer_checks(buffer_types, pyx_code, decl_code, env)
fused_index += 1
all_buffer_types.update(buffer_types)
if arg.default:
default_idx += 1
if all_buffer_types:
self._buffer_declarations(pyx_code, decl_code, all_buffer_types)
pyx_code.put_chunk(
u"""
candidates = []
for sig in signatures:
match_found = filter(None, dest_sig)
for src_type, dst_type in zip(sig.strip('()').split(', '), dest_sig):
if dst_type is not None and match_found:
match_found = src_type == dst_type
if match_found:
candidates.append(sig)
if not candidates:
raise TypeError("No matching signature found")
elif len(candidates) > 1:
raise TypeError("Function call with ambiguous argument types")
else:
return signatures[candidates[0]]
""")
fragment_code = pyx_code.getvalue()
# print decl_code.getvalue()
# print fragment_code
fragment = TreeFragment.TreeFragment(fragment_code.decode('ascii'),
level='module')
ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root)
UtilityCode.declare_declarations_in_scope(decl_code.getvalue(), env)
ast.scope = env
ast.analyse_declarations(env)
py_func = ast.stats[-1] # the DefNode
self.fragment_scope = ast.scope
if isinstance(self.node, DefNode):
py_func.specialized_cpdefs = self.nodes[:]
else:
py_func.specialized_cpdefs = [n.py_func for n in self.nodes]
return py_func
def update_fused_defnode_entry(self, env):
import ExprNodes
copy_attributes = (
'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname',
'pymethdef_cname', 'doc', 'doc_cname', 'is_member',
'scope'
)
entry = self.py_func.entry
for attr in copy_attributes:
setattr(entry, attr,
getattr(self.orig_py_func.entry, attr))
self.py_func.name = self.orig_py_func.name
self.py_func.doc = self.orig_py_func.doc
env.entries.pop('__pyx_fused_cpdef', None)
if isinstance(self.node, DefNode):
env.entries[entry.name] = entry
else:
env.entries[entry.name].as_variable = entry
env.pyfunc_entries.append(entry)
self.py_func.entry.fused_cfunction = self
for node in self.nodes:
if isinstance(self.node, DefNode):
node.fused_py_func = self.py_func
else:
node.py_func.fused_py_func = self.py_func
node.entry.as_variable = entry
self.synthesize_defnodes()
self.stats.append(self.__signatures__)
env.use_utility_code(ExprNodes.import_utility_code)
def analyse_expressions(self, env):
"""
Analyse the expressions. Take care to only evaluate default arguments
once and clone the result for all specializations
"""
from ExprNodes import CloneNode, ProxyNode, TupleNode
if self.py_func:
self.__signatures__.analyse_expressions(env)
self.py_func.analyse_expressions(env)
self.resulting_fused_function.analyse_expressions(env)
self.fused_func_assignment.analyse_expressions(env)
self.defaults = defaults = []
for arg in self.node.args:
if arg.default:
arg.default.analyse_expressions(env)
defaults.append(ProxyNode(arg.default))
else:
defaults.append(None)
for node in self.stats:
node.analyse_expressions(env)
if isinstance(node, FuncDefNode):
for arg, default in zip(node.args, defaults):
if default is not None:
arg.default = CloneNode(default).coerce_to(arg.type, env)
if self.py_func:
args = [CloneNode(default) for default in defaults if default]
defaults_tuple = TupleNode(self.pos, args=args)
defaults_tuple.analyse_types(env, skip_children=True)
self.defaults_tuple = ProxyNode(defaults_tuple)
self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object)
fused_func = self.resulting_fused_function.arg
fused_func.defaults_tuple = CloneNode(self.defaults_tuple)
fused_func.code_object = CloneNode(self.code_object)
for pycfunc in self.specialized_pycfuncs:
pycfunc.defaults_tuple = CloneNode(self.defaults_tuple)
pycfunc.code_object = CloneNode(self.code_object)
def synthesize_defnodes(self):
"""
Create the __signatures__ dict of PyCFunctionNode specializations.
"""
import ExprNodes, StringEncoding
if isinstance(self.nodes[0], CFuncDefNode):
nodes = [node.py_func for node in self.nodes]
else:
nodes = self.nodes
signatures = [
StringEncoding.EncodedString(node.specialized_signature_string)
for node in nodes]
keys = [ExprNodes.StringNode(node.pos, value=sig)
for node, sig in zip(nodes, signatures)]
values = [ExprNodes.PyCFunctionNode.from_defnode(node, True)
for node in nodes]
self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos,
zip(keys, values))
self.specialized_pycfuncs = values
for pycfuncnode in values:
pycfuncnode.is_specialization = True
def generate_function_definitions(self, env, code):
if self.py_func:
self.py_func.pymethdef_required = True
self.fused_func_assignment.generate_function_definitions(env, code)
for stat in self.stats:
if isinstance(stat, FuncDefNode) and stat.entry.used:
code.mark_pos(stat.pos)
stat.generate_function_definitions(env, code)
def generate_execution_code(self, code):
import ExprNodes
for default in self.defaults:
if default is not None:
default.generate_evaluation_code(code)
if self.py_func:
self.defaults_tuple.generate_evaluation_code(code)
self.code_object.generate_evaluation_code(code)
for stat in self.stats:
code.mark_pos(stat.pos)
if isinstance(stat, ExprNodes.ExprNode):
stat.generate_evaluation_code(code)
elif not isinstance(stat, FuncDefNode) or stat.entry.used:
stat.generate_execution_code(code)
if self.__signatures__:
self.resulting_fused_function.generate_evaluation_code(code)
code.putln(
"((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" %
(self.resulting_fused_function.result(),
self.__signatures__.result()))
code.put_giveref(self.__signatures__.result())
self.fused_func_assignment.generate_execution_code(code)
# Dispose of results
self.resulting_fused_function.generate_disposal_code(code)
self.defaults_tuple.generate_disposal_code(code)
self.code_object.generate_disposal_code(code)
for default in self.defaults:
if default is not None:
default.generate_disposal_code(code)
def annotate(self, code):
for stat in self.stats:
stat.annotate(code)
class PyArgDeclNode(Node):
# Argument which must be a Python object (used
# for * and ** arguments).
......
......@@ -18,6 +18,7 @@ from Cython.Compiler.TreeFragment import TreeFragment
from Cython.Compiler.StringEncoding import EncodedString
from Cython.Compiler.Errors import error, warning, CompileError, InternalError
from Cython.Compiler.Code import UtilityCode
from Cython.Compiler import Importer
import copy
......@@ -1488,7 +1489,8 @@ if VALUE is not None:
return node
node = Nodes.FusedCFuncDefNode(node, env)
FusedNode = Importer.importer("Cython.Compiler.FusedNode", version=(2, 5))
node = FusedNode.FusedCFuncDefNode(node, env)
self.fused_function = node
self.visitchildren(node)
......
......@@ -782,10 +782,9 @@ class BufferType(BaseType):
def __str__(self):
# avoid ', ', as fused functions split the signature string on ', '
cast_str = ''
if self.cast:
cast_str = ',cast=True'
else:
cast_str = ''
return "%s[%s,ndim=%d%s]" % (self.base, self.dtype, self.ndim,
cast_str)
......
......@@ -417,7 +417,8 @@ class Scope(object):
# Add an entry for a type definition.
if not cname:
cname = name
entry = self.declare(name, cname, type, pos, visibility, shadow, True)
entry = self.declare(name, cname, type, pos, visibility, shadow,
is_type=True)
entry.is_type = 1
entry.api = api
if defining:
......
......@@ -239,4 +239,4 @@ class SetPosTransform(VisitorTransform):
def visit_Node(self, node):
node.pos = self.pos
self.visitchildren(node)
return node
\ No newline at end of file
return node
......@@ -373,7 +373,19 @@ class PyxArgs(object):
setup_args={} #None
##pyxargs=None
def _have_importers():
has_py_importer = False
has_pyx_importer = False
for importer in sys.meta_path:
if isinstance(importer, PyxImporter):
if isinstance(importer, PyImporter):
has_py_importer = True
else:
has_pyx_importer = True
return has_py_importer, has_pyx_importer
def install(pyximport=True, pyimport=False, build_dir=None, build_in_temp=True,
setup_args={}, reload_support=False,
load_py_module_on_import_failure=False):
......@@ -426,23 +438,32 @@ def install(pyximport=True, pyimport=False, build_dir=None, build_in_temp=True,
pyxargs.reload_support = reload_support
pyxargs.load_py_module_on_import_failure = load_py_module_on_import_failure
has_py_importer = False
has_pyx_importer = False
for importer in sys.meta_path:
if isinstance(importer, PyxImporter):
if isinstance(importer, PyImporter):
has_py_importer = True
else:
has_pyx_importer = True
has_py_importer, has_pyx_importer = _have_importers()
py_importer, pyx_importer = None, None
if pyimport and not has_py_importer:
importer = PyImporter(pyxbuild_dir=build_dir)
sys.meta_path.insert(0, importer)
py_importer = PyImporter(pyxbuild_dir=build_dir)
sys.meta_path.insert(0, py_importer)
if pyximport and not has_pyx_importer:
importer = PyxImporter(pyxbuild_dir=build_dir)
sys.meta_path.append(importer)
pyx_importer = PyxImporter(pyxbuild_dir=build_dir)
sys.meta_path.append(pyx_importer)
return py_importer, pyx_importer
def uninstall(py_importer, pyx_importer):
"""
Uninstall an import hook.
"""
try:
sys.meta_path.remove(py_importer)
except ValueError:
pass
try:
sys.meta_path.remove(pyx_importer)
except ValueError:
pass
# MAIN
......
......@@ -112,6 +112,7 @@ def compile_cython_modules(profile=False, compile_more=False, cython_with_refnan
"Cython.Compiler.FlowControl",
"Cython.Compiler.Code",
"Cython.Runtime.refnanny",
"Cython.Compiler.FusedNode",
]
if compile_more:
compiled_modules.extend([
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment