Commit 47e5462b authored by Jason R. Coombs's avatar Jason R. Coombs

Remove py24compat module

parent dbe5fff6
# $Id$
#
# Copyright (C) 2005 Gregory P. Smith (greg@krypto.org)
# Licensed to PSF under a Contributor Agreement.
#
__doc__ = """hashlib module - A common interface to many hash functions.
new(name, string='') - returns a new hash object implementing the
given hash function; initializing the hash
using the given string data.
Named constructor functions are also available, these are much faster
than using new():
md5(), sha1(), sha224(), sha256(), sha384(), and sha512()
More algorithms may be available on your platform but the above are
guaranteed to exist.
NOTE: If you want the adler32 or crc32 hash functions they are available in
the zlib module.
Choose your hash function wisely. Some have known collision weaknesses.
sha384 and sha512 will be slow on 32 bit platforms.
Hash objects have these methods:
- update(arg): Update the hash object with the string arg. Repeated calls
are equivalent to a single call with the concatenation of all
the arguments.
- digest(): Return the digest of the strings passed to the update() method
so far. This may contain non-ASCII characters, including
NUL bytes.
- hexdigest(): Like digest() except the digest is returned as a string of
double length, containing only hexadecimal digits.
- copy(): Return a copy (clone) of the hash object. This can be used to
efficiently compute the digests of strings that share a common
initial substring.
For example, to obtain the digest of the string 'Nobody inspects the
spammish repetition':
>>> import hashlib
>>> m = hashlib.md5()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\\xbbd\\x9c\\x83\\xdd\\x1e\\xa5\\xc9\\xd9\\xde\\xc9\\xa1\\x8d\\xf0\\xff\\xe9'
More condensed:
>>> hashlib.sha224("Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'
"""
# This tuple and __get_builtin_constructor() must be modified if a new
# always available algorithm is added.
__always_supported = ('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512')
algorithms = __always_supported
__all__ = __always_supported + ('new', 'algorithms')
def __get_builtin_constructor(name):
try:
if name in ('SHA1', 'sha1'):
import _sha
return _sha.new
elif name in ('MD5', 'md5'):
import md5
return md5.new
elif name in ('SHA256', 'sha256', 'SHA224', 'sha224'):
import _sha256
bs = name[3:]
if bs == '256':
return _sha256.sha256
elif bs == '224':
return _sha256.sha224
elif name in ('SHA512', 'sha512', 'SHA384', 'sha384'):
import _sha512
bs = name[3:]
if bs == '512':
return _sha512.sha512
elif bs == '384':
return _sha512.sha384
except ImportError:
pass # no extension module, this hash is unsupported.
raise ValueError('unsupported hash type %s' % name)
def __get_openssl_constructor(name):
try:
f = getattr(_hashlib, 'openssl_' + name)
# Allow the C module to raise ValueError. The function will be
# defined but the hash not actually available thanks to OpenSSL.
f()
# Use the C function directly (very fast)
return f
except (AttributeError, ValueError):
return __get_builtin_constructor(name)
def __py_new(name, string=''):
"""new(name, string='') - Return a new hashing object using the named algorithm;
optionally initialized with a string.
"""
return __get_builtin_constructor(name)(string)
def __hash_new(name, string=''):
"""new(name, string='') - Return a new hashing object using the named algorithm;
optionally initialized with a string.
"""
try:
return _hashlib.new(name, string)
except ValueError:
# If the _hashlib module (OpenSSL) doesn't support the named
# hash, try using our builtin implementations.
# This allows for SHA224/256 and SHA384/512 support even though
# the OpenSSL library prior to 0.9.8 doesn't provide them.
return __get_builtin_constructor(name)(string)
try:
import _hashlib
new = __hash_new
__get_hash = __get_openssl_constructor
except ImportError:
new = __py_new
__get_hash = __get_builtin_constructor
for __func_name in __always_supported:
# try them all, some may not work due to the OpenSSL
# version not supporting that algorithm.
try:
globals()[__func_name] = __get_hash(__func_name)
except ValueError:
import logging
logging.exception('code for hash %s was not found.', __func_name)
# Cleanup locals()
del __always_supported, __func_name, __get_hash
del __py_new, __hash_new, __get_openssl_constructor
# -*- coding: iso-8859-1 -*-
"""A sample implementation of SHA-1 in pure Python.
Framework adapted from Dinu Gherman's MD5 implementation by
J. Hallén and L. Creighton. SHA-1 implementation based directly on
the text of the NIST standard FIPS PUB 180-1.
"""
__date__ = '2004-11-17'
__version__ = 0.91 # Modernised by J. Hallén and L. Creighton for Pypy
import struct, copy
# ======================================================================
# Bit-Manipulation helpers
#
# _long2bytes() was contributed by Barry Warsaw
# and is reused here with tiny modifications.
# ======================================================================
def _long2bytesBigEndian(n, blocksize=0):
"""Convert a long integer to a byte string.
If optional blocksize is given and greater than zero, pad the front
of the byte string with binary zeros so that the length is a multiple
of blocksize.
"""
# After much testing, this algorithm was deemed to be the fastest.
s = ''
pack = struct.pack
while n > 0:
s = pack('>I', n & 0xffffffff) + s
n = n >> 32
# Strip off leading zeros.
for i in range(len(s)):
if s[i] != '\000':
break
else:
# Only happens when n == 0.
s = '\000'
i = 0
s = s[i:]
# Add back some pad bytes. This could be done more efficiently
# w.r.t. the de-padding being done above, but sigh...
if blocksize > 0 and len(s) % blocksize:
s = (blocksize - len(s) % blocksize) * '\000' + s
return s
def _bytelist2longBigEndian(list):
"Transform a list of characters into a list of longs."
imax = len(list) // 4
hl = [0] * imax
j = 0
i = 0
while i < imax:
b0 = ord(list[j]) << 24
b1 = ord(list[j+1]) << 16
b2 = ord(list[j+2]) << 8
b3 = ord(list[j+3])
hl[i] = b0 | b1 | b2 | b3
i = i+1
j = j+4
return hl
def _rotateLeft(x, n):
"Rotate x (32 bit) left n bits circularly."
return (x << n) | (x >> (32-n))
# ======================================================================
# The SHA transformation functions
#
# ======================================================================
def f0_19(B, C, D):
return (B & C) | ((~ B) & D)
def f20_39(B, C, D):
return B ^ C ^ D
def f40_59(B, C, D):
return (B & C) | (B & D) | (C & D)
def f60_79(B, C, D):
return B ^ C ^ D
f = [f0_19, f20_39, f40_59, f60_79]
# Constants to be used
K = [
0x5A827999, # ( 0 <= t <= 19)
0x6ED9EBA1, # (20 <= t <= 39)
0x8F1BBCDC, # (40 <= t <= 59)
0xCA62C1D6 # (60 <= t <= 79)
]
class sha:
"An implementation of the MD5 hash function in pure Python."
digest_size = digestsize = 20
block_size = 1
def __init__(self):
"Initialisation."
# Initial message length in bits(!).
self.length = 0
self.count = [0, 0]
# Initial empty message as a sequence of bytes (8 bit characters).
self.input = []
# Call a separate init function, that can be used repeatedly
# to start from scratch on the same object.
self.init()
def init(self):
"Initialize the message-digest and set all fields to zero."
self.length = 0
self.input = []
# Initial 160 bit message digest (5 times 32 bit).
self.H0 = 0x67452301
self.H1 = 0xEFCDAB89
self.H2 = 0x98BADCFE
self.H3 = 0x10325476
self.H4 = 0xC3D2E1F0
def _transform(self, W):
for t in range(16, 80):
W.append(_rotateLeft(
W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16], 1) & 0xffffffff)
A = self.H0
B = self.H1
C = self.H2
D = self.H3
E = self.H4
"""
This loop was unrolled to gain about 10% in speed
for t in range(0, 80):
TEMP = _rotateLeft(A, 5) + f[t/20] + E + W[t] + K[t/20]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
"""
for t in range(0, 20):
TEMP = _rotateLeft(A, 5) + ((B & C) | ((~ B) & D)) + E + W[t] + K[0]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
for t in range(20, 40):
TEMP = _rotateLeft(A, 5) + (B ^ C ^ D) + E + W[t] + K[1]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
for t in range(40, 60):
TEMP = _rotateLeft(A, 5) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
for t in range(60, 80):
TEMP = _rotateLeft(A, 5) + (B ^ C ^ D) + E + W[t] + K[3]
E = D
D = C
C = _rotateLeft(B, 30) & 0xffffffff
B = A
A = TEMP & 0xffffffff
self.H0 = (self.H0 + A) & 0xffffffff
self.H1 = (self.H1 + B) & 0xffffffff
self.H2 = (self.H2 + C) & 0xffffffff
self.H3 = (self.H3 + D) & 0xffffffff
self.H4 = (self.H4 + E) & 0xffffffff
# Down from here all methods follow the Python Standard Library
# API of the sha module.
def update(self, inBuf):
"""Add to the current message.
Update the md5 object with the string arg. Repeated calls
are equivalent to a single call with the concatenation of all
the arguments, i.e. m.update(a); m.update(b) is equivalent
to m.update(a+b).
The hash is immediately calculated for all full blocks. The final
calculation is made in digest(). It will calculate 1-2 blocks,
depending on how much padding we have to add. This allows us to
keep an intermediate value for the hash, so that we only need to
make minimal recalculation if we call update() to add more data
to the hashed string.
"""
leninBuf = len(inBuf)
# Compute number of bytes mod 64.
index = (self.count[1] >> 3) & 0x3F
# Update number of bits.
self.count[1] = self.count[1] + (leninBuf << 3)
if self.count[1] < (leninBuf << 3):
self.count[0] = self.count[0] + 1
self.count[0] = self.count[0] + (leninBuf >> 29)
partLen = 64 - index
if leninBuf >= partLen:
self.input[index:] = list(inBuf[:partLen])
self._transform(_bytelist2longBigEndian(self.input))
i = partLen
while i + 63 < leninBuf:
self._transform(_bytelist2longBigEndian(list(inBuf[i:i+64])))
i = i + 64
else:
self.input = list(inBuf[i:leninBuf])
else:
i = 0
self.input = self.input + list(inBuf)
def digest(self):
"""Terminate the message-digest computation and return digest.
Return the digest of the strings passed to the update()
method so far. This is a 16-byte string which may contain
non-ASCII characters, including null bytes.
"""
H0 = self.H0
H1 = self.H1
H2 = self.H2
H3 = self.H3
H4 = self.H4
input = [] + self.input
count = [] + self.count
index = (self.count[1] >> 3) & 0x3f
if index < 56:
padLen = 56 - index
else:
padLen = 120 - index
padding = ['\200'] + ['\000'] * 63
self.update(padding[:padLen])
# Append length (before padding).
bits = _bytelist2longBigEndian(self.input[:56]) + count
self._transform(bits)
# Store state in digest.
digest = _long2bytesBigEndian(self.H0, 4) + \
_long2bytesBigEndian(self.H1, 4) + \
_long2bytesBigEndian(self.H2, 4) + \
_long2bytesBigEndian(self.H3, 4) + \
_long2bytesBigEndian(self.H4, 4)
self.H0 = H0
self.H1 = H1
self.H2 = H2
self.H3 = H3
self.H4 = H4
self.input = input
self.count = count
return digest
def hexdigest(self):
"""Terminate and return digest in HEX form.
Like digest() except the digest is returned as a string of
length 32, containing only hexadecimal digits. This may be
used to exchange the value safely in email or other non-
binary environments.
"""
return ''.join(['%02x' % ord(c) for c in self.digest()])
def copy(self):
"""Return a clone object.
Return a copy ('clone') of the md5 object. This can be used
to efficiently compute the digests of strings that share
a common initial substring.
"""
return copy.deepcopy(self)
# ======================================================================
# Mimic Python top-level functions from standard library API
# for consistency with the _sha module of the standard library.
# ======================================================================
# These are mandatory variables in the module. They have constant values
# in the SHA standard.
digest_size = 20
digestsize = 20
blocksize = 1
def new(arg=None):
"""Return a new sha crypto object.
If arg is present, the method call update(arg) is made.
"""
crypto = sha()
if arg:
crypto.update(arg)
return crypto
if __name__ == "__main__":
a_str = "just a test string"
assert 'da39a3ee5e6b4b0d3255bfef95601890afd80709' == new().hexdigest()
assert '3f0cf2e3d9e5903e839417dfc47fed6bfa6457f6' == new(a_str).hexdigest()
assert '0852b254078fe3772568a4aba37b917f3d4066ba' == new(a_str*7).hexdigest()
s = new(a_str)
s.update(a_str)
assert '8862c1b50967f39d3db6bdc2877d9ccebd3102e5' == s.hexdigest()
import struct
SHA_BLOCKSIZE = 64
SHA_DIGESTSIZE = 32
def new_shaobject():
return {
'digest': [0]*8,
'count_lo': 0,
'count_hi': 0,
'data': [0]* SHA_BLOCKSIZE,
'local': 0,
'digestsize': 0
}
ROR = lambda x, y: (((x & 0xffffffff) >> (y & 31)) | (x << (32 - (y & 31)))) & 0xffffffff
Ch = lambda x, y, z: (z ^ (x & (y ^ z)))
Maj = lambda x, y, z: (((x | y) & z) | (x & y))
S = lambda x, n: ROR(x, n)
R = lambda x, n: (x & 0xffffffff) >> n
Sigma0 = lambda x: (S(x, 2) ^ S(x, 13) ^ S(x, 22))
Sigma1 = lambda x: (S(x, 6) ^ S(x, 11) ^ S(x, 25))
Gamma0 = lambda x: (S(x, 7) ^ S(x, 18) ^ R(x, 3))
Gamma1 = lambda x: (S(x, 17) ^ S(x, 19) ^ R(x, 10))
def sha_transform(sha_info):
W = []
d = sha_info['data']
for i in xrange(0,16):
W.append( (d[4*i]<<24) + (d[4*i+1]<<16) + (d[4*i+2]<<8) + d[4*i+3])
for i in xrange(16,64):
W.append( (Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]) & 0xffffffff )
ss = sha_info['digest'][:]
def RND(a,b,c,d,e,f,g,h,i,ki):
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i];
t1 = Sigma0(a) + Maj(a, b, c);
d += t0;
h = t0 + t1;
return d & 0xffffffff, h & 0xffffffff
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],0,0x428a2f98);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],1,0x71374491);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],2,0xb5c0fbcf);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],3,0xe9b5dba5);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],4,0x3956c25b);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],5,0x59f111f1);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],6,0x923f82a4);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],7,0xab1c5ed5);
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],8,0xd807aa98);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],9,0x12835b01);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],10,0x243185be);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],11,0x550c7dc3);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],12,0x72be5d74);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],13,0x80deb1fe);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],14,0x9bdc06a7);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],15,0xc19bf174);
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],16,0xe49b69c1);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],17,0xefbe4786);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],18,0x0fc19dc6);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],19,0x240ca1cc);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],20,0x2de92c6f);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],21,0x4a7484aa);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],22,0x5cb0a9dc);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],23,0x76f988da);
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],24,0x983e5152);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],25,0xa831c66d);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],26,0xb00327c8);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],27,0xbf597fc7);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],28,0xc6e00bf3);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],29,0xd5a79147);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],30,0x06ca6351);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],31,0x14292967);
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],32,0x27b70a85);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],33,0x2e1b2138);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],34,0x4d2c6dfc);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],35,0x53380d13);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],36,0x650a7354);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],37,0x766a0abb);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],38,0x81c2c92e);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],39,0x92722c85);
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],40,0xa2bfe8a1);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],41,0xa81a664b);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],42,0xc24b8b70);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],43,0xc76c51a3);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],44,0xd192e819);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],45,0xd6990624);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],46,0xf40e3585);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],47,0x106aa070);
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],48,0x19a4c116);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],49,0x1e376c08);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],50,0x2748774c);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],51,0x34b0bcb5);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],52,0x391c0cb3);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],53,0x4ed8aa4a);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],54,0x5b9cca4f);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],55,0x682e6ff3);
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],56,0x748f82ee);
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],57,0x78a5636f);
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],58,0x84c87814);
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],59,0x8cc70208);
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],60,0x90befffa);
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],61,0xa4506ceb);
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],62,0xbef9a3f7);
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],63,0xc67178f2);
dig = []
for i, x in enumerate(sha_info['digest']):
dig.append( (x + ss[i]) & 0xffffffff )
sha_info['digest'] = dig
def sha_init():
sha_info = new_shaobject()
sha_info['digest'] = [0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19]
sha_info['count_lo'] = 0
sha_info['count_hi'] = 0
sha_info['local'] = 0
sha_info['digestsize'] = 32
return sha_info
def sha224_init():
sha_info = new_shaobject()
sha_info['digest'] = [0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4]
sha_info['count_lo'] = 0
sha_info['count_hi'] = 0
sha_info['local'] = 0
sha_info['digestsize'] = 28
return sha_info
def getbuf(s):
if isinstance(s, str):
return s
elif isinstance(s, unicode):
return str(s)
else:
return buffer(s)
def sha_update(sha_info, buffer):
count = len(buffer)
buffer_idx = 0
clo = (sha_info['count_lo'] + (count << 3)) & 0xffffffff
if clo < sha_info['count_lo']:
sha_info['count_hi'] += 1
sha_info['count_lo'] = clo
sha_info['count_hi'] += (count >> 29)
if sha_info['local']:
i = SHA_BLOCKSIZE - sha_info['local']
if i > count:
i = count
# copy buffer
for x in enumerate(buffer[buffer_idx:buffer_idx+i]):
sha_info['data'][sha_info['local']+x[0]] = struct.unpack('B', x[1])[0]
count -= i
buffer_idx += i
sha_info['local'] += i
if sha_info['local'] == SHA_BLOCKSIZE:
sha_transform(sha_info)
sha_info['local'] = 0
else:
return
while count >= SHA_BLOCKSIZE:
# copy buffer
sha_info['data'] = [struct.unpack('B',c)[0] for c in buffer[buffer_idx:buffer_idx + SHA_BLOCKSIZE]]
count -= SHA_BLOCKSIZE
buffer_idx += SHA_BLOCKSIZE
sha_transform(sha_info)
# copy buffer
pos = sha_info['local']
sha_info['data'][pos:pos+count] = [struct.unpack('B',c)[0] for c in buffer[buffer_idx:buffer_idx + count]]
sha_info['local'] = count
def sha_final(sha_info):
lo_bit_count = sha_info['count_lo']
hi_bit_count = sha_info['count_hi']
count = (lo_bit_count >> 3) & 0x3f
sha_info['data'][count] = 0x80;
count += 1
if count > SHA_BLOCKSIZE - 8:
# zero the bytes in data after the count
sha_info['data'] = sha_info['data'][:count] + ([0] * (SHA_BLOCKSIZE - count))
sha_transform(sha_info)
# zero bytes in data
sha_info['data'] = [0] * SHA_BLOCKSIZE
else:
sha_info['data'] = sha_info['data'][:count] + ([0] * (SHA_BLOCKSIZE - count))
sha_info['data'][56] = (hi_bit_count >> 24) & 0xff
sha_info['data'][57] = (hi_bit_count >> 16) & 0xff
sha_info['data'][58] = (hi_bit_count >> 8) & 0xff
sha_info['data'][59] = (hi_bit_count >> 0) & 0xff
sha_info['data'][60] = (lo_bit_count >> 24) & 0xff
sha_info['data'][61] = (lo_bit_count >> 16) & 0xff
sha_info['data'][62] = (lo_bit_count >> 8) & 0xff
sha_info['data'][63] = (lo_bit_count >> 0) & 0xff
sha_transform(sha_info)
dig = []
for i in sha_info['digest']:
dig.extend([ ((i>>24) & 0xff), ((i>>16) & 0xff), ((i>>8) & 0xff), (i & 0xff) ])
return ''.join([chr(i) for i in dig])
class sha256(object):
digest_size = digestsize = SHA_DIGESTSIZE
block_size = SHA_BLOCKSIZE
def __init__(self, s=None):
self._sha = sha_init()
if s:
sha_update(self._sha, getbuf(s))
def update(self, s):
sha_update(self._sha, getbuf(s))
def digest(self):
return sha_final(self._sha.copy())[:self._sha['digestsize']]
def hexdigest(self):
return ''.join(['%.2x' % ord(i) for i in self.digest()])
def copy(self):
new = sha256.__new__(sha256)
new._sha = self._sha.copy()
return new
class sha224(sha256):
digest_size = digestsize = 28
def __init__(self, s=None):
self._sha = sha224_init()
if s:
sha_update(self._sha, getbuf(s))
def copy(self):
new = sha224.__new__(sha224)
new._sha = self._sha.copy()
return new
if __name__ == "__main__":
a_str = "just a test string"
assert 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855' == sha256().hexdigest()
assert 'd7b553c6f09ac85d142415f857c5310f3bbbe7cdd787cce4b985acedd585266f' == sha256(a_str).hexdigest()
assert '8113ebf33c97daa9998762aacafe750c7cefc2b2f173c90c59663a57fe626f21' == sha256(a_str*7).hexdigest()
s = sha256(a_str)
s.update(a_str)
assert '03d9963e05a094593190b6fc794cb1a3e1ac7d7883f0b5855268afeccc70d461' == s.hexdigest()
"""
This code was Ported from CPython's sha512module.c
"""
import struct
SHA_BLOCKSIZE = 128
SHA_DIGESTSIZE = 64
def new_shaobject():
return {
'digest': [0]*8,
'count_lo': 0,
'count_hi': 0,
'data': [0]* SHA_BLOCKSIZE,
'local': 0,
'digestsize': 0
}
ROR64 = lambda x, y: (((x & 0xffffffffffffffff) >> (y & 63)) | (x << (64 - (y & 63)))) & 0xffffffffffffffff
Ch = lambda x, y, z: (z ^ (x & (y ^ z)))
Maj = lambda x, y, z: (((x | y) & z) | (x & y))
S = lambda x, n: ROR64(x, n)
R = lambda x, n: (x & 0xffffffffffffffff) >> n
Sigma0 = lambda x: (S(x, 28) ^ S(x, 34) ^ S(x, 39))
Sigma1 = lambda x: (S(x, 14) ^ S(x, 18) ^ S(x, 41))
Gamma0 = lambda x: (S(x, 1) ^ S(x, 8) ^ R(x, 7))
Gamma1 = lambda x: (S(x, 19) ^ S(x, 61) ^ R(x, 6))
def sha_transform(sha_info):
W = []
d = sha_info['data']
for i in xrange(0,16):
W.append( (d[8*i]<<56) + (d[8*i+1]<<48) + (d[8*i+2]<<40) + (d[8*i+3]<<32) + (d[8*i+4]<<24) + (d[8*i+5]<<16) + (d[8*i+6]<<8) + d[8*i+7])
for i in xrange(16,80):
W.append( (Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16]) & 0xffffffffffffffff )
ss = sha_info['digest'][:]
def RND(a,b,c,d,e,f,g,h,i,ki):
t0 = (h + Sigma1(e) + Ch(e, f, g) + ki + W[i]) & 0xffffffffffffffff
t1 = (Sigma0(a) + Maj(a, b, c)) & 0xffffffffffffffff
d = (d + t0) & 0xffffffffffffffff
h = (t0 + t1) & 0xffffffffffffffff
return d & 0xffffffffffffffff, h & 0xffffffffffffffff
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],0,0x428a2f98d728ae22)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],1,0x7137449123ef65cd)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],2,0xb5c0fbcfec4d3b2f)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],3,0xe9b5dba58189dbbc)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],4,0x3956c25bf348b538)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],5,0x59f111f1b605d019)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],6,0x923f82a4af194f9b)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],7,0xab1c5ed5da6d8118)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],8,0xd807aa98a3030242)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],9,0x12835b0145706fbe)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],10,0x243185be4ee4b28c)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],11,0x550c7dc3d5ffb4e2)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],12,0x72be5d74f27b896f)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],13,0x80deb1fe3b1696b1)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],14,0x9bdc06a725c71235)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],15,0xc19bf174cf692694)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],16,0xe49b69c19ef14ad2)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],17,0xefbe4786384f25e3)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],18,0x0fc19dc68b8cd5b5)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],19,0x240ca1cc77ac9c65)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],20,0x2de92c6f592b0275)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],21,0x4a7484aa6ea6e483)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],22,0x5cb0a9dcbd41fbd4)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],23,0x76f988da831153b5)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],24,0x983e5152ee66dfab)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],25,0xa831c66d2db43210)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],26,0xb00327c898fb213f)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],27,0xbf597fc7beef0ee4)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],28,0xc6e00bf33da88fc2)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],29,0xd5a79147930aa725)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],30,0x06ca6351e003826f)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],31,0x142929670a0e6e70)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],32,0x27b70a8546d22ffc)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],33,0x2e1b21385c26c926)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],34,0x4d2c6dfc5ac42aed)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],35,0x53380d139d95b3df)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],36,0x650a73548baf63de)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],37,0x766a0abb3c77b2a8)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],38,0x81c2c92e47edaee6)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],39,0x92722c851482353b)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],40,0xa2bfe8a14cf10364)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],41,0xa81a664bbc423001)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],42,0xc24b8b70d0f89791)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],43,0xc76c51a30654be30)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],44,0xd192e819d6ef5218)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],45,0xd69906245565a910)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],46,0xf40e35855771202a)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],47,0x106aa07032bbd1b8)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],48,0x19a4c116b8d2d0c8)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],49,0x1e376c085141ab53)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],50,0x2748774cdf8eeb99)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],51,0x34b0bcb5e19b48a8)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],52,0x391c0cb3c5c95a63)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],53,0x4ed8aa4ae3418acb)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],54,0x5b9cca4f7763e373)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],55,0x682e6ff3d6b2b8a3)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],56,0x748f82ee5defb2fc)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],57,0x78a5636f43172f60)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],58,0x84c87814a1f0ab72)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],59,0x8cc702081a6439ec)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],60,0x90befffa23631e28)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],61,0xa4506cebde82bde9)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],62,0xbef9a3f7b2c67915)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],63,0xc67178f2e372532b)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],64,0xca273eceea26619c)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],65,0xd186b8c721c0c207)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],66,0xeada7dd6cde0eb1e)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],67,0xf57d4f7fee6ed178)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],68,0x06f067aa72176fba)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],69,0x0a637dc5a2c898a6)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],70,0x113f9804bef90dae)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],71,0x1b710b35131c471b)
ss[3], ss[7] = RND(ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],72,0x28db77f523047d84)
ss[2], ss[6] = RND(ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],73,0x32caab7b40c72493)
ss[1], ss[5] = RND(ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],ss[5],74,0x3c9ebe0a15c9bebc)
ss[0], ss[4] = RND(ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],ss[4],75,0x431d67c49c100d4c)
ss[7], ss[3] = RND(ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],ss[3],76,0x4cc5d4becb3e42b6)
ss[6], ss[2] = RND(ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],ss[2],77,0x597f299cfc657e2a)
ss[5], ss[1] = RND(ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],ss[1],78,0x5fcb6fab3ad6faec)
ss[4], ss[0] = RND(ss[1],ss[2],ss[3],ss[4],ss[5],ss[6],ss[7],ss[0],79,0x6c44198c4a475817)
dig = []
for i, x in enumerate(sha_info['digest']):
dig.append( (x + ss[i]) & 0xffffffffffffffff )
sha_info['digest'] = dig
def sha_init():
sha_info = new_shaobject()
sha_info['digest'] = [ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179]
sha_info['count_lo'] = 0
sha_info['count_hi'] = 0
sha_info['local'] = 0
sha_info['digestsize'] = 64
return sha_info
def sha384_init():
sha_info = new_shaobject()
sha_info['digest'] = [ 0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17, 0x152fecd8f70e5939, 0x67332667ffc00b31, 0x8eb44a8768581511, 0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4]
sha_info['count_lo'] = 0
sha_info['count_hi'] = 0
sha_info['local'] = 0
sha_info['digestsize'] = 48
return sha_info
def getbuf(s):
if isinstance(s, str):
return s
elif isinstance(s, unicode):
return str(s)
else:
return buffer(s)
def sha_update(sha_info, buffer):
count = len(buffer)
buffer_idx = 0
clo = (sha_info['count_lo'] + (count << 3)) & 0xffffffff
if clo < sha_info['count_lo']:
sha_info['count_hi'] += 1
sha_info['count_lo'] = clo
sha_info['count_hi'] += (count >> 29)
if sha_info['local']:
i = SHA_BLOCKSIZE - sha_info['local']
if i > count:
i = count
# copy buffer
for x in enumerate(buffer[buffer_idx:buffer_idx+i]):
sha_info['data'][sha_info['local']+x[0]] = struct.unpack('B', x[1])[0]
count -= i
buffer_idx += i
sha_info['local'] += i
if sha_info['local'] == SHA_BLOCKSIZE:
sha_transform(sha_info)
sha_info['local'] = 0
else:
return
while count >= SHA_BLOCKSIZE:
# copy buffer
sha_info['data'] = [struct.unpack('B',c)[0] for c in buffer[buffer_idx:buffer_idx + SHA_BLOCKSIZE]]
count -= SHA_BLOCKSIZE
buffer_idx += SHA_BLOCKSIZE
sha_transform(sha_info)
# copy buffer
pos = sha_info['local']
sha_info['data'][pos:pos+count] = [struct.unpack('B',c)[0] for c in buffer[buffer_idx:buffer_idx + count]]
sha_info['local'] = count
def sha_final(sha_info):
lo_bit_count = sha_info['count_lo']
hi_bit_count = sha_info['count_hi']
count = (lo_bit_count >> 3) & 0x7f
sha_info['data'][count] = 0x80;
count += 1
if count > SHA_BLOCKSIZE - 16:
# zero the bytes in data after the count
sha_info['data'] = sha_info['data'][:count] + ([0] * (SHA_BLOCKSIZE - count))
sha_transform(sha_info)
# zero bytes in data
sha_info['data'] = [0] * SHA_BLOCKSIZE
else:
sha_info['data'] = sha_info['data'][:count] + ([0] * (SHA_BLOCKSIZE - count))
sha_info['data'][112] = 0;
sha_info['data'][113] = 0;
sha_info['data'][114] = 0;
sha_info['data'][115] = 0;
sha_info['data'][116] = 0;
sha_info['data'][117] = 0;
sha_info['data'][118] = 0;
sha_info['data'][119] = 0;
sha_info['data'][120] = (hi_bit_count >> 24) & 0xff
sha_info['data'][121] = (hi_bit_count >> 16) & 0xff
sha_info['data'][122] = (hi_bit_count >> 8) & 0xff
sha_info['data'][123] = (hi_bit_count >> 0) & 0xff
sha_info['data'][124] = (lo_bit_count >> 24) & 0xff
sha_info['data'][125] = (lo_bit_count >> 16) & 0xff
sha_info['data'][126] = (lo_bit_count >> 8) & 0xff
sha_info['data'][127] = (lo_bit_count >> 0) & 0xff
sha_transform(sha_info)
dig = []
for i in sha_info['digest']:
dig.extend([ ((i>>56) & 0xff), ((i>>48) & 0xff), ((i>>40) & 0xff), ((i>>32) & 0xff), ((i>>24) & 0xff), ((i>>16) & 0xff), ((i>>8) & 0xff), (i & 0xff) ])
return ''.join([chr(i) for i in dig])
class sha512(object):
digest_size = digestsize = SHA_DIGESTSIZE
block_size = SHA_BLOCKSIZE
def __init__(self, s=None):
self._sha = sha_init()
if s:
sha_update(self._sha, getbuf(s))
def update(self, s):
sha_update(self._sha, getbuf(s))
def digest(self):
return sha_final(self._sha.copy())[:self._sha['digestsize']]
def hexdigest(self):
return ''.join(['%.2x' % ord(i) for i in self.digest()])
def copy(self):
new = sha512.__new__(sha512)
new._sha = self._sha.copy()
return new
class sha384(sha512):
digest_size = digestsize = 48
def __init__(self, s=None):
self._sha = sha384_init()
if s:
sha_update(self._sha, getbuf(s))
def copy(self):
new = sha384.__new__(sha384)
new._sha = self._sha.copy()
return new
if __name__ == "__main__":
a_str = "just a test string"
assert sha512().hexdigest() == "cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e"
assert sha512(a_str).hexdigest() == "68be4c6664af867dd1d01c8d77e963d87d77b702400c8fabae355a41b8927a5a5533a7f1c28509bbd65c5f3ac716f33be271fbda0ca018b71a84708c9fae8a53"
assert sha512(a_str*7).hexdigest() == "3233acdbfcfff9bff9fc72401d31dbffa62bd24e9ec846f0578d647da73258d9f0879f7fde01fe2cc6516af3f343807fdef79e23d696c923d79931db46bf1819"
s = sha512(a_str)
s.update(a_str)
assert s.hexdigest() == "341aeb668730bbb48127d5531115f3c39d12cb9586a6ca770898398aff2411087cfe0b570689adf328cddeb1f00803acce6737a19f310b53bbdb0320828f75bb"
......@@ -5,6 +5,8 @@ import re
import shutil
import socket
import base64
import hashlib
from functools import wraps
from pkg_resources import (
CHECKOUT_DIST, Distribution, BINARY_DIST, normalize_path, SOURCE_DIST,
......@@ -21,8 +23,6 @@ from setuptools.compat import (urllib2, httplib, StringIO, HTTPError,
ConfigParser)
from setuptools.compat import filterfalse
from fnmatch import translate
from setuptools.py24compat import hashlib
from setuptools.py24compat import wraps
from setuptools.py26compat import strip_fragment
from setuptools.py27compat import get_all_headers
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment