Commit 1d180684 authored by Raymond Hettinger's avatar Raymond Hettinger

Clean-up floating point tutorial.

parent e9eb7b65
...@@ -50,7 +50,7 @@ decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base ...@@ -50,7 +50,7 @@ decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base
Stop at any finite number of bits, and you get an approximation. On most Stop at any finite number of bits, and you get an approximation. On most
machines today, floats are approximated using a binary fraction with machines today, floats are approximated using a binary fraction with
the numerator using the first 53 bits following the most significant bit and the numerator using the first 53 bits starting with the most significant bit and
with the denominator as a power of two. In the case of 1/10, the binary fraction with the denominator as a power of two. In the case of 1/10, the binary fraction
is ``3602879701896397 / 2 ** 55`` which is close to but not exactly is ``3602879701896397 / 2 ** 55`` which is close to but not exactly
equal to the true value of 1/10. equal to the true value of 1/10.
...@@ -230,12 +230,8 @@ as :: ...@@ -230,12 +230,8 @@ as ::
and recalling that *J* has exactly 53 bits (is ``>= 2**52`` but ``< 2**53``), and recalling that *J* has exactly 53 bits (is ``>= 2**52`` but ``< 2**53``),
the best value for *N* is 56:: the best value for *N* is 56::
>>> 2**52 >>> 2**52 <= 2**56 // 10 < 2**53
4503599627370496 True
>>> 2**53
9007199254740992
>>> 2**56/10
7205759403792794.0
That is, 56 is the only value for *N* that leaves *J* with exactly 53 bits. The That is, 56 is the only value for *N* that leaves *J* with exactly 53 bits. The
best possible value for *J* is then that quotient rounded:: best possible value for *J* is then that quotient rounded::
...@@ -250,14 +246,13 @@ by rounding up:: ...@@ -250,14 +246,13 @@ by rounding up::
>>> q+1 >>> q+1
7205759403792794 7205759403792794
Therefore the best possible approximation to 1/10 in 754 double precision is Therefore the best possible approximation to 1/10 in 754 double precision is::
that over 2\*\*56, or ::
7205759403792794 / 72057594037927936 7205759403792794 / 2 ** 56
Dividing both the numerator and denominator by two reduces the fraction to:: Dividing both the numerator and denominator by two reduces the fraction to::
3602879701896397 / 36028797018963968 3602879701896397 / 2 ** 55
Note that since we rounded up, this is actually a little bit larger than 1/10; Note that since we rounded up, this is actually a little bit larger than 1/10;
if we had not rounded up, the quotient would have been a little bit smaller than if we had not rounded up, the quotient would have been a little bit smaller than
...@@ -269,24 +264,34 @@ above, the best 754 double approximation it can get:: ...@@ -269,24 +264,34 @@ above, the best 754 double approximation it can get::
>>> 0.1 * 2 ** 55 >>> 0.1 * 2 ** 55
3602879701896397.0 3602879701896397.0
If we multiply that fraction by 10\*\*60, we can see the value of out to If we multiply that fraction by 10\*\*55, we can see the value out to
60 decimal digits:: 55 decimal digits::
>>> 3602879701896397 * 10 ** 60 // 2 ** 55 >>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625 1000000000000000055511151231257827021181583404541015625
meaning that the exact number stored in the computer is approximately equal to meaning that the exact number stored in the computer is equal to
the decimal value 0.100000000000000005551115123125. Rounding that to 17 the decimal value 0.1000000000000000055511151231257827021181583404541015625.
significant digits gives the 0.10000000000000001 that Python displays (well, Instead of displaying the full decimal value, many languages (including
will display on any 754-conforming platform that does best-possible input and older versions of Python), round the result to 17 significant digits::
output conversions in its C library --- yours may not!).
>>> format(0.1, '.17f')
'0.10000000000000001'
The :mod:`fractions` and :mod:`decimal` modules make these calculations The :mod:`fractions` and :mod:`decimal` modules make these calculations
easy:: easy::
>>> from decimal import Decimal >>> from decimal import Decimal
>>> from fractions import Fraction >>> from fractions import Fraction
>>> print(Fraction.from_float(0.1))
3602879701896397/36028797018963968 >>> Fraction.from_float(0.1)
>>> print(Decimal.from_float(0.1)) Fraction(3602879701896397, 36028797018963968)
0.1000000000000000055511151231257827021181583404541015625
>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)
>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')
>>> format(Decimal.from_float(0.1), '.17')
'0.10000000000000001'
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment