Commit 246ff3bd authored by csabella's avatar csabella Committed by terryjreedy

bpo-6691: Pyclbr now reports nested classes and functions. (#2503)

 Original patch by Guilherme Polo.  Revisions by Cheryl Sabella.
parent 6969eaf4
...@@ -10,107 +10,144 @@ ...@@ -10,107 +10,144 @@
-------------- --------------
The :mod:`pyclbr` module can be used to determine some limited information The :mod:`pyclbr` module provides limited information about the
about the classes, methods and top-level functions defined in a module. The functions, classes, and methods defined in a python-coded module. The
information provided is sufficient to implement a traditional three-pane information is sufficient to implement a module browser. The
class browser. The information is extracted from the source code rather information is extracted from the python source code rather than by
than by importing the module, so this module is safe to use with untrusted importing the module, so this module is safe to use with untrusted code.
code. This restriction makes it impossible to use this module with modules This restriction makes it impossible to use this module with modules not
not implemented in Python, including all standard and optional extension implemented in Python, including all standard and optional extension
modules. modules.
.. function:: readmodule(module, path=None) .. function:: readmodule(module, path=None)
Read a module and return a dictionary mapping class names to class Return a dictionary mapping module-level class names to class
descriptor objects. The parameter *module* should be the name of a descriptors. If possible, descriptors for imported base classes are
module as a string; it may be the name of a module within a package. The included. Parameter *module* is a string with the name of the module
*path* parameter should be a sequence, and is used to augment the value to read; it may be the name of a module within a package. If given,
of ``sys.path``, which is used to locate module source code. *path* is a sequence of directory paths prepended to ``sys.path``,
which is used to locate the module source code.
.. function:: readmodule_ex(module, path=None) .. function:: readmodule_ex(module, path=None)
Like :func:`readmodule`, but the returned dictionary, in addition to Return a dictionary-based tree containing a function or class
mapping class names to class descriptor objects, also maps top-level descriptors for each function and class defined in the module with a
function names to function descriptor objects. Moreover, if the module ``def`` or ``class`` statement. The returned dictionary maps
being read is a package, the key ``'__path__'`` in the returned module-level function and class names to their descriptors. Nested
dictionary has as its value a list which contains the package search objects are entered into the children dictionary of their parent. As
path. with readmodule, *module* names the module to be read and *path* is
prepended to sys.path. If the module being read is a package, the
returned dictionary has a key ``'__path__'`` whose value is a list
containing the package search path.
.. versionadded:: 3.7
Descriptors for nested definitions. They are accessed through the
new children attibute. Each has a new parent attribute.
.. _pyclbr-class-objects: The descriptors returned by these functions are instances of
Function and Class classes. Users are not expected to create instances
of these classes.
Class Objects
-------------
The :class:`Class` objects used as values in the dictionary returned by .. _pyclbr-function-objects:
:func:`readmodule` and :func:`readmodule_ex` provide the following data
attributes:
Function Objects
----------------
Class :class:`Function` instances describe functions defined by def
statements. They have the following attributes:
.. attribute:: Class.module
The name of the module defining the class described by the class descriptor. .. attribute:: Function.file
Name of the file in which the function is defined.
.. attribute:: Class.name
The name of the class. .. attribute:: Function.module
The name of the module defining the function described.
.. attribute:: Class.super
A list of :class:`Class` objects which describe the immediate base .. attribute:: Function.name
classes of the class being described. Classes which are named as
superclasses but which are not discoverable by :func:`readmodule` are The name of the function.
listed as a string with the class name instead of as :class:`Class`
objects.
.. attribute:: Class.methods .. attribute:: Function.lineno
The line number in the file where the definition starts.
.. attribute:: Function.parent
For top-level functions, None. For nested functions, the parent.
.. versionadded:: 3.7
.. attribute:: Function.children
A dictionary mapping names to descriptors for nested functions and
classes.
A dictionary mapping method names to line numbers. .. versionadded:: 3.7
.. _pyclbr-class-objects:
Class Objects
-------------
Class :class:`Class` instances describe classes defined by class
statements. They have the same attributes as Functions and two more.
.. attribute:: Class.file .. attribute:: Class.file
Name of the file containing the ``class`` statement defining the class. Name of the file in which the class is defined.
.. attribute:: Class.lineno .. attribute:: Class.module
The line number of the ``class`` statement within the file named by The name of the module defining the class described.
:attr:`~Class.file`.
.. _pyclbr-function-objects: .. attribute:: Class.name
Function Objects The name of the class.
----------------
The :class:`Function` objects used as values in the dictionary returned by
:func:`readmodule_ex` provide the following attributes:
.. attribute:: Class.lineno
.. attribute:: Function.module The line number in the file where the definition starts.
The name of the module defining the function described by the function
descriptor.
.. attribute:: Class.parent
.. attribute:: Function.name For top-level classes, None. For nested classes, the parent.
The name of the function. .. versionadded:: 3.7
.. attribute:: Function.file .. attribute:: Class.children
Name of the file containing the ``def`` statement defining the function. A dictionary mapping names to descriptors for nested functions and
classes.
.. versionadded:: 3.7
.. attribute:: Function.lineno
The line number of the ``def`` statement within the file named by .. attribute:: Class.super
:attr:`~Function.file`.
A list of :class:`Class` objects which describe the immediate base
classes of the class being described. Classes which are named as
superclasses but which are not discoverable by :func:`readmodule_ex`
are listed as a string with the class name instead of as
:class:`Class` objects.
.. attribute:: Class.methods
A dictionary mapping method names to line numbers. This can be
derived from the newer children dictionary, but remains for
back-compatibility.
"""Parse a Python module and describe its classes and methods. """Parse a Python module and describe its classes and functions.
Parse enough of a Python file to recognize imports and class and Parse enough of a Python file to recognize imports and class and
method definitions, and to find out the superclasses of a class. function definitions, and to find out the superclasses of a class.
The interface consists of a single function: The interface consists of a single function:
readmodule_ex(module [, path]) readmodule_ex(module, path=None)
where module is the name of a Python module, and path is an optional where module is the name of a Python module, and path is an optional
list of directories where the module is to be searched. If present, list of directories where the module is to be searched. If present,
path is prepended to the system search path sys.path. The return path is prepended to the system search path sys.path. The return value
value is a dictionary. The keys of the dictionary are the names of is a dictionary. The keys of the dictionary are the names of the
the classes defined in the module (including classes that are defined classes and functions defined in the module (including classes that are
via the from XXX import YYY construct). The values are class defined via the from XXX import YYY construct). The values are
instances of the class Class defined here. One special key/value pair instances of classes Class and Function. One special key/value pair is
is present for packages: the key '__path__' has a list as its value present for packages: the key '__path__' has a list as its value which
which contains the package search path. contains the package search path.
A class is described by the class Class in this module. Instances Classes and Functions have a common superclass: _Object. Every instance
of this class have the following instance variables: has the following attributes:
module -- the module name module -- name of the module;
name -- the name of the class name -- name of the object;
super -- a list of super classes (Class instances) file -- file in which the object is defined;
methods -- a dictionary of methods lineno -- line in the file where the object's definition starts;
file -- the file in which the class was defined parent -- parent of this object, if any;
lineno -- the line in the file on which the class statement occurred children -- nested objects contained in this object.
The dictionary of methods uses the method names as keys and the line The 'children' attribute is a dictionary mapping names to objects.
numbers on which the method was defined as values.
Instances of Function describe functions with the attributes from _Object.
Instances of Class describe classes with the attributes from _Object,
plus the following:
super -- list of super classes (Class instances if possible);
methods -- mapping of method names to beginning line numbers.
If the name of a super class is not recognized, the corresponding If the name of a super class is not recognized, the corresponding
entry in the list of super classes is not a class instance but a entry in the list of super classes is not a class instance but a
string giving the name of the super class. Since import statements string giving the name of the super class. Since import statements
are recognized and imported modules are scanned as well, this are recognized and imported modules are scanned as well, this
shouldn't happen often. shouldn't happen often.
A function is described by the class Function in this module.
Instances of this class have the following instance variables:
module -- the module name
name -- the name of the class
file -- the file in which the class was defined
lineno -- the line in the file on which the class statement occurred
""" """
import io import io
...@@ -47,37 +46,59 @@ from token import NAME, DEDENT, OP ...@@ -47,37 +46,59 @@ from token import NAME, DEDENT, OP
__all__ = ["readmodule", "readmodule_ex", "Class", "Function"] __all__ = ["readmodule", "readmodule_ex", "Class", "Function"]
_modules = {} # cache of modules we've seen _modules = {} # Initialize cache of modules we've seen.
# each Python class is represented by an instance of this class
class Class: class _Object:
'''Class to represent a Python class.''' "Informaton about Python class or function."
def __init__(self, module, name, super, file, lineno): def __init__(self, module, name, file, lineno, parent):
self.module = module self.module = module
self.name = name self.name = name
if super is None:
super = []
self.super = super
self.methods = {}
self.file = file self.file = file
self.lineno = lineno self.lineno = lineno
self.parent = parent
self.children = {}
def _addchild(self, name, obj):
self.children[name] = obj
class Function(_Object):
"Information about a Python function, including methods."
def __init__(self, module, name, file, lineno, parent=None):
_Object.__init__(self, module, name, file, lineno, parent)
class Class(_Object):
"Information about a Python class."
def __init__(self, module, name, super, file, lineno, parent=None):
_Object.__init__(self, module, name, file, lineno, parent)
self.super = [] if super is None else super
self.methods = {}
def _addmethod(self, name, lineno): def _addmethod(self, name, lineno):
self.methods[name] = lineno self.methods[name] = lineno
class Function:
'''Class to represent a top-level Python function''' def _nest_function(ob, func_name, lineno):
def __init__(self, module, name, file, lineno): "Return a Function after nesting within ob."
self.module = module newfunc = Function(ob.module, func_name, ob.file, lineno, ob)
self.name = name ob._addchild(func_name, newfunc)
self.file = file if isinstance(ob, Class):
self.lineno = lineno ob._addmethod(func_name, lineno)
return newfunc
def _nest_class(ob, class_name, lineno, super=None):
"Return a Class after nesting within ob."
newclass = Class(ob.module, class_name, super, ob.file, lineno, ob)
ob._addchild(class_name, newclass)
return newclass
def readmodule(module, path=None): def readmodule(module, path=None):
'''Backwards compatible interface. """Return Class objects for the top-level classes in module.
Call readmodule_ex() and then only keep Class objects from the This is the original interface, before Functions were added.
resulting dictionary.''' """
res = {} res = {}
for key, value in _readmodule(module, path or []).items(): for key, value in _readmodule(module, path or []).items():
...@@ -86,41 +107,41 @@ def readmodule(module, path=None): ...@@ -86,41 +107,41 @@ def readmodule(module, path=None):
return res return res
def readmodule_ex(module, path=None): def readmodule_ex(module, path=None):
'''Read a module file and return a dictionary of classes. """Return a dictionary with all functions and classes in module.
Search for MODULE in PATH and sys.path, read and parse the Search for module in PATH + sys.path.
module and return a dictionary with one entry for each class If possible, include imported superclasses.
found in the module. Do this by reading source, without importing (and executing) it.
''' """
return _readmodule(module, path or []) return _readmodule(module, path or [])
def _readmodule(module, path, inpackage=None): def _readmodule(module, path, inpackage=None):
'''Do the hard work for readmodule[_ex]. """Do the hard work for readmodule[_ex].
If INPACKAGE is given, it must be the dotted name of the package in If inpackage is given, it must be the dotted name of the package in
which we are searching for a submodule, and then PATH must be the which we are searching for a submodule, and then PATH must be the
package search path; otherwise, we are searching for a top-level package search path; otherwise, we are searching for a top-level
module, and PATH is combined with sys.path. module, and path is combined with sys.path.
''' """
# Compute the full module name (prepending inpackage if set) # Compute the full module name (prepending inpackage if set).
if inpackage is not None: if inpackage is not None:
fullmodule = "%s.%s" % (inpackage, module) fullmodule = "%s.%s" % (inpackage, module)
else: else:
fullmodule = module fullmodule = module
# Check in the cache # Check in the cache.
if fullmodule in _modules: if fullmodule in _modules:
return _modules[fullmodule] return _modules[fullmodule]
# Initialize the dict for this module's contents # Initialize the dict for this module's contents.
dict = {} tree = {}
# Check if it is a built-in module; we don't do much for these # Check if it is a built-in module; we don't do much for these.
if module in sys.builtin_module_names and inpackage is None: if module in sys.builtin_module_names and inpackage is None:
_modules[module] = dict _modules[module] = tree
return dict return tree
# Check for a dotted module name # Check for a dotted module name.
i = module.rfind('.') i = module.rfind('.')
if i >= 0: if i >= 0:
package = module[:i] package = module[:i]
...@@ -132,88 +153,97 @@ def _readmodule(module, path, inpackage=None): ...@@ -132,88 +153,97 @@ def _readmodule(module, path, inpackage=None):
raise ImportError('No package named {}'.format(package)) raise ImportError('No package named {}'.format(package))
return _readmodule(submodule, parent['__path__'], package) return _readmodule(submodule, parent['__path__'], package)
# Search the path for the module # Search the path for the module.
f = None f = None
if inpackage is not None: if inpackage is not None:
search_path = path search_path = path
else: else:
search_path = path + sys.path search_path = path + sys.path
# XXX This will change once issue19944 lands.
spec = importlib.util._find_spec_from_path(fullmodule, search_path) spec = importlib.util._find_spec_from_path(fullmodule, search_path)
_modules[fullmodule] = dict _modules[fullmodule] = tree
# is module a package? # Is module a package?
if spec.submodule_search_locations is not None: if spec.submodule_search_locations is not None:
dict['__path__'] = spec.submodule_search_locations tree['__path__'] = spec.submodule_search_locations
try: try:
source = spec.loader.get_source(fullmodule) source = spec.loader.get_source(fullmodule)
if source is None: if source is None:
return dict return tree
except (AttributeError, ImportError): except (AttributeError, ImportError):
# not Python source, can't do anything with this module # If module is not Python source, we cannot do anything.
return dict return tree
fname = spec.loader.get_filename(fullmodule) fname = spec.loader.get_filename(fullmodule)
return _create_tree(fullmodule, path, fname, source, tree, inpackage)
def _create_tree(fullmodule, path, fname, source, tree, inpackage):
"""Return the tree for a particular module.
fullmodule (full module name), inpackage+module, becomes o.module.
path is passed to recursive calls of _readmodule.
fname becomes o.file.
source is tokenized. Imports cause recursive calls to _readmodule.
tree is {} or {'__path__': <submodule search locations>}.
inpackage, None or string, is passed to recursive calls of _readmodule.
The effect of recursive calls is mutation of global _modules.
"""
f = io.StringIO(source) f = io.StringIO(source)
stack = [] # stack of (class, indent) pairs stack = [] # Initialize stack of (class, indent) pairs.
g = tokenize.generate_tokens(f.readline) g = tokenize.generate_tokens(f.readline)
try: try:
for tokentype, token, start, _end, _line in g: for tokentype, token, start, _end, _line in g:
if tokentype == DEDENT: if tokentype == DEDENT:
lineno, thisindent = start lineno, thisindent = start
# close nested classes and defs # Close previous nested classes and defs.
while stack and stack[-1][1] >= thisindent: while stack and stack[-1][1] >= thisindent:
del stack[-1] del stack[-1]
elif token == 'def': elif token == 'def':
lineno, thisindent = start lineno, thisindent = start
# close previous nested classes and defs # Close previous nested classes and defs.
while stack and stack[-1][1] >= thisindent: while stack and stack[-1][1] >= thisindent:
del stack[-1] del stack[-1]
tokentype, meth_name, start = next(g)[0:3] tokentype, func_name, start = next(g)[0:3]
if tokentype != NAME: if tokentype != NAME:
continue # Syntax error continue # Skip def with syntax error.
cur_func = None
if stack: if stack:
cur_class = stack[-1][0] cur_obj = stack[-1][0]
if isinstance(cur_class, Class): cur_func = _nest_function(cur_obj, func_name, lineno)
# it's a method
cur_class._addmethod(meth_name, lineno)
# else it's a nested def
else: else:
# it's a function # It is just a function.
dict[meth_name] = Function(fullmodule, meth_name, cur_func = Function(fullmodule, func_name, fname, lineno)
fname, lineno) tree[func_name] = cur_func
stack.append((None, thisindent)) # Marker for nested fns stack.append((cur_func, thisindent))
elif token == 'class': elif token == 'class':
lineno, thisindent = start lineno, thisindent = start
# close previous nested classes and defs # Close previous nested classes and defs.
while stack and stack[-1][1] >= thisindent: while stack and stack[-1][1] >= thisindent:
del stack[-1] del stack[-1]
tokentype, class_name, start = next(g)[0:3] tokentype, class_name, start = next(g)[0:3]
if tokentype != NAME: if tokentype != NAME:
continue # Syntax error continue # Skip class with syntax error.
# parse what follows the class name # Parse what follows the class name.
tokentype, token, start = next(g)[0:3] tokentype, token, start = next(g)[0:3]
inherit = None inherit = None
if token == '(': if token == '(':
names = [] # List of superclasses names = [] # Initialize list of superclasses.
# there's a list of superclasses
level = 1 level = 1
super = [] # Tokens making up current superclass super = [] # Tokens making up current superclass.
while True: while True:
tokentype, token, start = next(g)[0:3] tokentype, token, start = next(g)[0:3]
if token in (')', ',') and level == 1: if token in (')', ',') and level == 1:
n = "".join(super) n = "".join(super)
if n in dict: if n in tree:
# we know this super class # We know this super class.
n = dict[n] n = tree[n]
else: else:
c = n.split('.') c = n.split('.')
if len(c) > 1: if len(c) > 1:
# super class is of the form # Super class form is module.class:
# module.class: look in module for # look in module for class.
# class
m = c[-2] m = c[-2]
c = c[-1] c = c[-1]
if m in _modules: if m in _modules:
...@@ -230,21 +260,25 @@ def _readmodule(module, path, inpackage=None): ...@@ -230,21 +260,25 @@ def _readmodule(module, path, inpackage=None):
break break
elif token == ',' and level == 1: elif token == ',' and level == 1:
pass pass
# only use NAME and OP (== dot) tokens for type name # Only use NAME and OP (== dot) tokens for type name.
elif tokentype in (NAME, OP) and level == 1: elif tokentype in (NAME, OP) and level == 1:
super.append(token) super.append(token)
# expressions in the base list are not supported # Expressions in the base list are not supported.
inherit = names inherit = names
cur_class = Class(fullmodule, class_name, inherit, if stack:
fname, lineno) cur_obj = stack[-1][0]
if not stack: cur_class = _nest_class(
dict[class_name] = cur_class cur_obj, class_name, lineno, inherit)
else:
cur_class = Class(fullmodule, class_name, inherit,
fname, lineno)
tree[class_name] = cur_class
stack.append((cur_class, thisindent)) stack.append((cur_class, thisindent))
elif token == 'import' and start[1] == 0: elif token == 'import' and start[1] == 0:
modules = _getnamelist(g) modules = _getnamelist(g)
for mod, _mod2 in modules: for mod, _mod2 in modules:
try: try:
# Recursively read the imported module # Recursively read the imported module.
if inpackage is None: if inpackage is None:
_readmodule(mod, path) _readmodule(mod, path)
else: else:
...@@ -262,32 +296,34 @@ def _readmodule(module, path, inpackage=None): ...@@ -262,32 +296,34 @@ def _readmodule(module, path, inpackage=None):
continue continue
names = _getnamelist(g) names = _getnamelist(g)
try: try:
# Recursively read the imported module # Recursively read the imported module.
d = _readmodule(mod, path, inpackage) d = _readmodule(mod, path, inpackage)
except: except:
# If we can't find or parse the imported module, # If we can't find or parse the imported module,
# too bad -- don't die here. # too bad -- don't die here.
continue continue
# add any classes that were defined in the imported module # Add any classes that were defined in the imported module
# to our name space if they were mentioned in the list # to our name space if they were mentioned in the list.
for n, n2 in names: for n, n2 in names:
if n in d: if n in d:
dict[n2 or n] = d[n] tree[n2 or n] = d[n]
elif n == '*': elif n == '*':
# don't add names that start with _ # Don't add names that start with _.
for n in d: for n in d:
if n[0] != '_': if n[0] != '_':
dict[n] = d[n] tree[n] = d[n]
except StopIteration: except StopIteration:
pass pass
f.close() f.close()
return dict return tree
def _getnamelist(g): def _getnamelist(g):
# Helper to get a comma-separated list of dotted names plus 'as' """Return list of (dotted-name, as-name or None) tuples for token source g.
# clauses. Return a list of pairs (name, name2) where name2 is
# the 'as' name, or None if there is no 'as' clause. An as-name is the name that follows 'as' in an as clause.
"""
names = [] names = []
while True: while True:
name, token = _getname(g) name, token = _getname(g)
...@@ -304,10 +340,9 @@ def _getnamelist(g): ...@@ -304,10 +340,9 @@ def _getnamelist(g):
break break
return names return names
def _getname(g): def _getname(g):
# Helper to get a dotted name, return a pair (name, token) where "Return (dotted-name or None, next-token) tuple for token source g."
# name is the dotted name, or None if there was no dotted name,
# and token is the next input token.
parts = [] parts = []
tokentype, token = next(g)[0:2] tokentype, token = next(g)[0:2]
if tokentype != NAME and token != '*': if tokentype != NAME and token != '*':
...@@ -323,11 +358,14 @@ def _getname(g): ...@@ -323,11 +358,14 @@ def _getname(g):
parts.append(token) parts.append(token)
return (".".join(parts), token) return (".".join(parts), token)
def _main(): def _main():
# Main program for testing. "Print module output (default this file) for quick visual check."
import os import os
from operator import itemgetter try:
mod = sys.argv[1] mod = sys.argv[1]
except:
mod = __file__
if os.path.exists(mod): if os.path.exists(mod):
path = [os.path.dirname(mod)] path = [os.path.dirname(mod)]
mod = os.path.basename(mod) mod = os.path.basename(mod)
...@@ -335,18 +373,29 @@ def _main(): ...@@ -335,18 +373,29 @@ def _main():
mod = mod[:-3] mod = mod[:-3]
else: else:
path = [] path = []
dict = readmodule_ex(mod, path) tree = readmodule_ex(mod, path)
objs = list(dict.values()) lineno_key = lambda a: getattr(a, 'lineno', 0)
objs.sort(key=lambda a: getattr(a, 'lineno', 0)) objs = sorted(tree.values(), key=lineno_key, reverse=True)
for obj in objs: indent_level = 2
while objs:
obj = objs.pop()
if isinstance(obj, list):
# Value is a __path__ key.
continue
if not hasattr(obj, 'indent'):
obj.indent = 0
if isinstance(obj, _Object):
new_objs = sorted(obj.children.values(),
key=lineno_key, reverse=True)
for ob in new_objs:
ob.indent = obj.indent + indent_level
objs.extend(new_objs)
if isinstance(obj, Class): if isinstance(obj, Class):
print("class", obj.name, obj.super, obj.lineno) print("{}class {} {} {}"
methods = sorted(obj.methods.items(), key=itemgetter(1)) .format(' ' * obj.indent, obj.name, obj.super, obj.lineno))
for name, lineno in methods:
if name != "__path__":
print(" def", name, lineno)
elif isinstance(obj, Function): elif isinstance(obj, Function):
print("def", obj.name, obj.lineno) print("{}def {} {}".format(' ' * obj.indent, obj.name, obj.lineno))
if __name__ == "__main__": if __name__ == "__main__":
_main() _main()
...@@ -2,10 +2,15 @@ ...@@ -2,10 +2,15 @@
Test cases for pyclbr.py Test cases for pyclbr.py
Nick Mathewson Nick Mathewson
''' '''
import os
import sys import sys
from textwrap import dedent
from types import FunctionType, MethodType, BuiltinFunctionType from types import FunctionType, MethodType, BuiltinFunctionType
import pyclbr import pyclbr
from unittest import TestCase, main as unittest_main from unittest import TestCase, main as unittest_main
from test import support
from functools import partial
StaticMethodType = type(staticmethod(lambda: None)) StaticMethodType = type(staticmethod(lambda: None))
ClassMethodType = type(classmethod(lambda c: None)) ClassMethodType = type(classmethod(lambda c: None))
...@@ -150,6 +155,67 @@ class PyclbrTest(TestCase): ...@@ -150,6 +155,67 @@ class PyclbrTest(TestCase):
# #
self.checkModule('test.pyclbr_input', ignore=['om']) self.checkModule('test.pyclbr_input', ignore=['om'])
def test_nested(self):
mb = pyclbr
# Set arguments for descriptor creation and _creat_tree call.
m, p, f, t, i = 'test', '', 'test.py', {}, None
source = dedent("""\
def f0:
def f1(a,b,c):
def f2(a=1, b=2, c=3): pass
return f1(a,b,d)
class c1: pass
class C0:
"Test class."
def F1():
"Method."
return 'return'
class C1():
class C2:
"Class nested within nested class."
def F3(): return 1+1
""")
actual = mb._create_tree(m, p, f, source, t, i)
# Create descriptors, linked together, and expected dict.
f0 = mb.Function(m, 'f0', f, 1)
f1 = mb._nest_function(f0, 'f1', 2)
f2 = mb._nest_function(f1, 'f2', 3)
c1 = mb._nest_class(f0, 'c1', 5)
C0 = mb.Class(m, 'C0', None, f, 6)
F1 = mb._nest_function(C0, 'F1', 8)
C1 = mb._nest_class(C0, 'C1', 11)
C2 = mb._nest_class(C1, 'C2', 12)
F3 = mb._nest_function(C2, 'F3', 14)
expected = {'f0':f0, 'C0':C0}
def compare(parent1, children1, parent2, children2):
"""Return equality of tree pairs.
Each parent,children pair define a tree. The parents are
assumed equal. Comparing the children dictionaries as such
does not work due to comparison by identity and double
linkage. We separate comparing string and number attributes
from comparing the children of input children.
"""
self.assertEqual(children1.keys(), children2.keys())
for ob in children1.values():
self.assertIs(ob.parent, parent1)
for ob in children2.values():
self.assertIs(ob.parent, parent2)
for key in children1.keys():
o1, o2 = children1[key], children2[key]
t1 = type(o1), o1.name, o1.file, o1.module, o1.lineno
t2 = type(o2), o2.name, o2.file, o2.module, o2.lineno
self.assertEqual(t1, t2)
if type(o1) is mb.Class:
self.assertEqual(o1.methods, o2.methods)
# Skip superclasses for now as not part of example
compare(o1, o1.children, o2, o2.children)
compare(None, actual, None, expected)
def test_others(self): def test_others(self):
cm = self.checkModule cm = self.checkModule
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment