Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
31c692c3
Commit
31c692c3
authored
Apr 24, 2003
by
Skip Montanaro
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
csv is a module again
parent
58aae651
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
0 additions
and
425 deletions
+0
-425
Lib/csv/__init__.py
Lib/csv/__init__.py
+0
-1
Lib/csv/csv.py
Lib/csv/csv.py
+0
-138
Lib/csv/util/sniffer.py
Lib/csv/util/sniffer.py
+0
-286
No files found.
Lib/csv/__init__.py
deleted
100644 → 0
View file @
58aae651
from
csv
import
*
Lib/csv/csv.py
deleted
100644 → 0
View file @
58aae651
from
_csv
import
Error
,
__version__
,
writer
,
reader
,
register_dialect
,
\
unregister_dialect
,
get_dialect
,
list_dialects
,
\
QUOTE_MINIMAL
,
QUOTE_ALL
,
QUOTE_NONNUMERIC
,
QUOTE_NONE
,
\
__doc__
__all__
=
[
"QUOTE_MINIMAL"
,
"QUOTE_ALL"
,
"QUOTE_NONNUMERIC"
,
"QUOTE_NONE"
,
"Error"
,
"Dialect"
,
"excel"
,
"excel_tab"
,
"reader"
,
"writer"
,
"register_dialect"
,
"get_dialect"
,
"list_dialects"
,
"unregister_dialect"
,
"__version__"
,
"DictReader"
,
"DictWriter"
]
class
Dialect
:
_name
=
""
_valid
=
False
# placeholders
delimiter
=
None
quotechar
=
None
escapechar
=
None
doublequote
=
None
skipinitialspace
=
None
lineterminator
=
None
quoting
=
None
def
__init__
(
self
):
if
self
.
__class__
!=
Dialect
:
self
.
_valid
=
True
errors
=
self
.
_validate
()
if
errors
!=
[]:
raise
Error
,
"Dialect did not validate: %s"
%
", "
.
join
(
errors
)
def
_validate
(
self
):
errors
=
[]
if
not
self
.
_valid
:
errors
.
append
(
"can't directly instantiate Dialect class"
)
if
self
.
delimiter
is
None
:
errors
.
append
(
"delimiter character not set"
)
elif
(
not
isinstance
(
self
.
delimiter
,
str
)
or
len
(
self
.
delimiter
)
>
1
):
errors
.
append
(
"delimiter must be one-character string"
)
if
self
.
quotechar
is
None
:
if
self
.
quoting
!=
QUOTE_NONE
:
errors
.
append
(
"quotechar not set"
)
elif
(
not
isinstance
(
self
.
quotechar
,
str
)
or
len
(
self
.
quotechar
)
>
1
):
errors
.
append
(
"quotechar must be one-character string"
)
if
self
.
lineterminator
is
None
:
errors
.
append
(
"lineterminator not set"
)
elif
not
isinstance
(
self
.
lineterminator
,
str
):
errors
.
append
(
"lineterminator must be a string"
)
if
self
.
doublequote
not
in
(
True
,
False
):
errors
.
append
(
"doublequote parameter must be True or False"
)
if
self
.
skipinitialspace
not
in
(
True
,
False
):
errors
.
append
(
"skipinitialspace parameter must be True or False"
)
if
self
.
quoting
is
None
:
errors
.
append
(
"quoting parameter not set"
)
if
self
.
quoting
is
QUOTE_NONE
:
if
(
not
isinstance
(
self
.
escapechar
,
(
unicode
,
str
))
or
len
(
self
.
escapechar
)
>
1
):
errors
.
append
(
"escapechar must be a one-character string or unicode object"
)
return
errors
class
excel
(
Dialect
):
delimiter
=
','
quotechar
=
'"'
doublequote
=
True
skipinitialspace
=
False
lineterminator
=
'
\
r
\
n
'
quoting
=
QUOTE_MINIMAL
register_dialect
(
"excel"
,
excel
)
class
excel_tab
(
excel
):
delimiter
=
'
\
t
'
register_dialect
(
"excel-tab"
,
excel_tab
)
class
DictReader
:
def
__init__
(
self
,
f
,
fieldnames
,
restkey
=
None
,
restval
=
None
,
dialect
=
"excel"
,
*
args
):
self
.
fieldnames
=
fieldnames
# list of keys for the dict
self
.
restkey
=
restkey
# key to catch long rows
self
.
restval
=
restval
# default value for short rows
self
.
reader
=
reader
(
f
,
dialect
,
*
args
)
def
__iter__
(
self
):
return
self
def
next
(
self
):
row
=
self
.
reader
.
next
()
# unlike the basic reader, we prefer not to return blanks,
# because we will typically wind up with a dict full of None
# values
while
row
==
[]:
row
=
self
.
reader
.
next
()
d
=
dict
(
zip
(
self
.
fieldnames
,
row
))
lf
=
len
(
self
.
fieldnames
)
lr
=
len
(
row
)
if
lf
<
lr
:
d
[
self
.
restkey
]
=
row
[
lf
:]
elif
lf
>
lr
:
for
key
in
self
.
fieldnames
[
lr
:]:
d
[
key
]
=
self
.
restval
return
d
class
DictWriter
:
def
__init__
(
self
,
f
,
fieldnames
,
restval
=
""
,
extrasaction
=
"raise"
,
dialect
=
"excel"
,
*
args
):
self
.
fieldnames
=
fieldnames
# list of keys for the dict
self
.
restval
=
restval
# for writing short dicts
if
extrasaction
.
lower
()
not
in
(
"raise"
,
"ignore"
):
raise
ValueError
,
\
(
"extrasaction (%s) must be 'raise' or 'ignore'"
%
extrasaction
)
self
.
extrasaction
=
extrasaction
self
.
writer
=
writer
(
f
,
dialect
,
*
args
)
def
_dict_to_list
(
self
,
rowdict
):
if
self
.
extrasaction
==
"raise"
:
for
k
in
rowdict
.
keys
():
if
k
not
in
self
.
fieldnames
:
raise
ValueError
,
"dict contains fields not in fieldnames"
return
[
rowdict
.
get
(
key
,
self
.
restval
)
for
key
in
self
.
fieldnames
]
def
writerow
(
self
,
rowdict
):
return
self
.
writer
.
writerow
(
self
.
_dict_to_list
(
rowdict
))
def
writerows
(
self
,
rowdicts
):
rows
=
[]
for
rowdict
in
rowdicts
:
rows
.
append
(
self
.
_dict_to_list
(
rowdict
))
return
self
.
writer
.
writerows
(
rows
)
Lib/csv/util/sniffer.py
deleted
100644 → 0
View file @
58aae651
"""
dialect = Sniffer().sniff(file('csv/easy.csv'))
print "delimiter", dialect.delimiter
print "quotechar", dialect.quotechar
print "skipinitialspace", dialect.skipinitialspace
"""
from
csv
import
csv
import
re
# ------------------------------------------------------------------------------
class
Sniffer
:
"""
"Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
Returns a csv.Dialect object.
"""
def
__init__
(
self
,
sample
=
16
*
1024
):
# in case there is more than one possible delimiter
self
.
preferred
=
[
','
,
'
\
t
'
,
';'
,
' '
,
':'
]
# amount of data (in bytes) to sample
self
.
sample
=
sample
def
sniff
(
self
,
fileobj
):
"""
Takes a file-like object and returns a dialect (or None)
"""
self
.
fileobj
=
fileobj
data
=
fileobj
.
read
(
self
.
sample
)
quotechar
,
delimiter
,
skipinitialspace
=
self
.
_guessQuoteAndDelimiter
(
data
)
if
delimiter
is
None
:
delimiter
,
skipinitialspace
=
self
.
_guessDelimiter
(
data
)
class
Dialect
(
csv
.
Dialect
):
_name
=
"sniffed"
lineterminator
=
'
\
r
\
n
'
quoting
=
csv
.
QUOTE_MINIMAL
# escapechar = ''
doublequote
=
False
Dialect
.
delimiter
=
delimiter
Dialect
.
quotechar
=
quotechar
Dialect
.
skipinitialspace
=
skipinitialspace
self
.
dialect
=
Dialect
return
self
.
dialect
def
hasHeaders
(
self
):
return
self
.
_hasHeaders
(
self
.
fileobj
,
self
.
dialect
)
def
register_dialect
(
self
,
name
=
'sniffed'
):
csv
.
register_dialect
(
name
,
self
.
dialect
)
def
_guessQuoteAndDelimiter
(
self
,
data
):
"""
Looks for text enclosed between two identical quotes
(the probable quotechar) which are preceded and followed
by the same character (the probable delimiter).
For example:
,'some text',
The quote with the most wins, same with the delimiter.
If there is no quotechar the delimiter can't be determined
this way.
"""
matches
=
[]
for
restr
in
(
'(?P<delim>[^
\
w
\
n"
\
'
])(?P<space> ?)(?P<quote>["
\
'
]).*?(?P=quote)(?P=delim)'
,
# ,".*?",
'(?:^|
\
n
)(?P<quote>["
\
'
]).*?(?P=quote)(?P<delim>[^
\
w
\
n"
\
'
])(?P<space> ?)'
,
# ".*?",
'(?P<delim>>[^
\
w
\
n"
\
'
])(?P<space> ?)(?P<quote>["
\
'
]).*?(?P=quote)(?:$|
\
n
)'
,
# ,".*?"
'(?:^|
\
n
)(?P<quote>["
\
'
]).*?(?P=quote)(?:$|
\
n
)'
):
# ".*?" (no delim, no space)
regexp
=
re
.
compile
(
restr
,
re
.
S
|
re
.
M
)
matches
=
regexp
.
findall
(
data
)
if
matches
:
break
if
not
matches
:
return
(
''
,
None
,
0
)
# (quotechar, delimiter, skipinitialspace)
quotes
=
{}
delims
=
{}
spaces
=
0
for
m
in
matches
:
n
=
regexp
.
groupindex
[
'quote'
]
-
1
key
=
m
[
n
]
if
key
:
quotes
[
key
]
=
quotes
.
get
(
key
,
0
)
+
1
try
:
n
=
regexp
.
groupindex
[
'delim'
]
-
1
key
=
m
[
n
]
except
KeyError
:
continue
if
key
:
delims
[
key
]
=
delims
.
get
(
key
,
0
)
+
1
try
:
n
=
regexp
.
groupindex
[
'space'
]
-
1
except
KeyError
:
continue
if
m
[
n
]:
spaces
+=
1
quotechar
=
reduce
(
lambda
a
,
b
,
quotes
=
quotes
:
(
quotes
[
a
]
>
quotes
[
b
])
and
a
or
b
,
quotes
.
keys
())
if
delims
:
delim
=
reduce
(
lambda
a
,
b
,
delims
=
delims
:
(
delims
[
a
]
>
delims
[
b
])
and
a
or
b
,
delims
.
keys
())
skipinitialspace
=
delims
[
delim
]
==
spaces
if
delim
==
'
\
n
'
:
# most likely a file with a single column
delim
=
''
else
:
# there is *no* delimiter, it's a single column of quoted data
delim
=
''
skipinitialspace
=
0
return
(
quotechar
,
delim
,
skipinitialspace
)
def
_guessDelimiter
(
self
,
data
):
"""
The delimiter /should/ occur the same number of times on
each row. However, due to malformed data, it may not. We don't want
an all or nothing approach, so we allow for small variations in this
number.
1) build a table of the frequency of each character on every line.
2) build a table of freqencies of this frequency (meta-frequency?),
e.g. "x occurred 5 times in 10 rows, 6 times in 1000 rows,
7 times in 2 rows"
3) use the mode of the meta-frequency to determine the /expected/
frequency for that character
4) find out how often the character actually meets that goal
5) the character that best meets its goal is the delimiter
For performance reasons, the data is evaluated in chunks, so it can
try and evaluate the smallest portion of the data possible, evaluating
additional chunks as necessary.
"""
data
=
filter
(
None
,
data
.
split
(
'
\
n
'
))
ascii
=
[
chr
(
c
)
for
c
in
range
(
127
)]
# 7-bit ASCII
# build frequency tables
chunkLength
=
min
(
10
,
len
(
data
))
iteration
=
0
charFrequency
=
{}
modes
=
{}
delims
=
{}
start
,
end
=
0
,
min
(
chunkLength
,
len
(
data
))
while
start
<
len
(
data
):
iteration
+=
1
for
line
in
data
[
start
:
end
]:
for
char
in
ascii
:
metafrequency
=
charFrequency
.
get
(
char
,
{})
freq
=
line
.
strip
().
count
(
char
)
# must count even if frequency is 0
metafrequency
[
freq
]
=
metafrequency
.
get
(
freq
,
0
)
+
1
# value is the mode
charFrequency
[
char
]
=
metafrequency
for
char
in
charFrequency
.
keys
():
items
=
charFrequency
[
char
].
items
()
if
len
(
items
)
==
1
and
items
[
0
][
0
]
==
0
:
continue
# get the mode of the frequencies
if
len
(
items
)
>
1
:
modes
[
char
]
=
reduce
(
lambda
a
,
b
:
a
[
1
]
>
b
[
1
]
and
a
or
b
,
items
)
# adjust the mode - subtract the sum of all other frequencies
items
.
remove
(
modes
[
char
])
modes
[
char
]
=
(
modes
[
char
][
0
],
modes
[
char
][
1
]
-
reduce
(
lambda
a
,
b
:
(
0
,
a
[
1
]
+
b
[
1
]),
items
)[
1
])
else
:
modes
[
char
]
=
items
[
0
]
# build a list of possible delimiters
modeList
=
modes
.
items
()
total
=
float
(
chunkLength
*
iteration
)
consistency
=
1.0
# (rows of consistent data) / (number of rows) = 100%
threshold
=
0.9
# minimum consistency threshold
while
len
(
delims
)
==
0
and
consistency
>=
threshold
:
for
k
,
v
in
modeList
:
if
v
[
0
]
>
0
and
v
[
1
]
>
0
:
if
(
v
[
1
]
/
total
)
>=
consistency
:
delims
[
k
]
=
v
consistency
-=
0.01
if
len
(
delims
)
==
1
:
delim
=
delims
.
keys
()[
0
]
skipinitialspace
=
data
[
0
].
count
(
delim
)
==
data
[
0
].
count
(
"%c "
%
delim
)
return
(
delim
,
skipinitialspace
)
# analyze another chunkLength lines
start
=
end
end
+=
chunkLength
if
not
delims
:
return
(
''
,
0
)
# if there's more than one, fall back to a 'preferred' list
if
len
(
delims
)
>
1
:
for
d
in
self
.
preferred
:
if
d
in
delims
.
keys
():
skipinitialspace
=
data
[
0
].
count
(
d
)
==
data
[
0
].
count
(
"%c "
%
d
)
return
(
d
,
skipinitialspace
)
# finally, just return the first damn character in the list
delim
=
delims
.
keys
()[
0
]
skipinitialspace
=
data
[
0
].
count
(
delim
)
==
data
[
0
].
count
(
"%c "
%
delim
)
return
(
delim
,
skipinitialspace
)
def
_hasHeaders
(
self
,
fileobj
,
dialect
):
# Creates a dictionary of types of data in each column. If any column
# is of a single type (say, integers), *except* for the first row, then the first
# row is presumed to be labels. If the type can't be determined, it is assumed to
# be a string in which case the length of the string is the determining factor: if
# all of the rows except for the first are the same length, it's a header.
# Finally, a 'vote' is taken at the end for each column, adding or subtracting from
# the likelihood of the first row being a header.
def
seval
(
item
):
"""
Strips parens from item prior to calling eval in an attempt to make it safer
"""
return
eval
(
item
.
replace
(
'('
,
''
).
replace
(
')'
,
''
))
fileobj
.
seek
(
0
)
# rewind the fileobj - this might not work for some file-like objects...
reader
=
csv
.
reader
(
fileobj
,
delimiter
=
dialect
.
delimiter
,
quotechar
=
dialect
.
quotechar
,
skipinitialspace
=
dialect
.
skipinitialspace
)
header
=
reader
.
next
()
# assume first row is header
columns
=
len
(
header
)
columnTypes
=
{}
for
i
in
range
(
columns
):
columnTypes
[
i
]
=
None
checked
=
0
for
row
in
reader
:
if
checked
>
20
:
# arbitrary number of rows to check, to keep it sane
break
checked
+=
1
if
len
(
row
)
!=
columns
:
continue
# skip rows that have irregular number of columns
for
col
in
columnTypes
.
keys
():
try
:
try
:
# is it a built-in type (besides string)?
thisType
=
type
(
seval
(
row
[
col
]))
except
OverflowError
:
# a long int?
thisType
=
type
(
seval
(
row
[
col
]
+
'L'
))
thisType
=
type
(
0
)
# treat long ints as int
except
:
# fallback to length of string
thisType
=
len
(
row
[
col
])
if
thisType
!=
columnTypes
[
col
]:
if
columnTypes
[
col
]
is
None
:
# add new column type
columnTypes
[
col
]
=
thisType
else
:
# type is inconsistent, remove column from consideration
del
columnTypes
[
col
]
# finally, compare results against first row and "vote" on whether it's a header
hasHeader
=
0
for
col
,
colType
in
columnTypes
.
items
():
if
type
(
colType
)
==
type
(
0
):
# it's a length
if
len
(
header
[
col
])
!=
colType
:
hasHeader
+=
1
else
:
hasHeader
-=
1
else
:
# attempt typecast
try
:
eval
(
"%s(%s)"
%
(
colType
.
__name__
,
header
[
col
]))
except
:
hasHeader
+=
1
else
:
hasHeader
-=
1
return
hasHeader
>
0
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment