Commit 7ea143ae authored by INADA Naoki's avatar INADA Naoki Committed by GitHub

bpo-29469: Move constant folding to AST optimizer (GH-2858)

parent b5fd9ad0
......@@ -581,6 +581,9 @@ Optimizations
and :meth:`selectors.DevpollSelector.modify` may be around 10% faster under
heavy loads. (Contributed by Giampaolo Rodola' in :issue:`30014`)
* Constant folding is moved from peephole optimizer to new AST optimizer.
(Contributed by Eugene Toder and INADA Naoki in :issue:`29469`)
Build and C API Changes
=======================
......
......@@ -75,6 +75,8 @@ PyAPI_FUNC(PyObject*) _Py_Mangle(PyObject *p, PyObject *name);
#define PY_INVALID_STACK_EFFECT INT_MAX
PyAPI_FUNC(int) PyCompile_OpcodeStackEffect(int opcode, int oparg);
PyAPI_FUNC(int) _PyAST_Optimize(struct _mod *, PyArena *arena);
#ifdef __cplusplus
}
#endif
......
......@@ -319,6 +319,7 @@ PYTHON_OBJS= \
Python/Python-ast.o \
Python/asdl.o \
Python/ast.o \
Python/ast_opt.o \
Python/bltinmodule.o \
Python/ceval.o \
Python/compile.o \
......
Move constant folding from bytecode layer to AST layer.
Original patch by Eugene Toder.
......@@ -356,6 +356,7 @@
<ClCompile Include="..\Python\_warnings.c" />
<ClCompile Include="..\Python\asdl.c" />
<ClCompile Include="..\Python\ast.c" />
<ClCompile Include="..\Python\ast_opt.c" />
<ClCompile Include="..\Python\bltinmodule.c" />
<ClCompile Include="..\Python\bootstrap_hash.c" />
<ClCompile Include="..\Python\ceval.c" />
......
......@@ -824,6 +824,9 @@
<ClCompile Include="..\Python\ast.c">
<Filter>Python</Filter>
</ClCompile>
<ClCompile Include="..\Python\ast_opt.c">
<Filter>Python</Filter>
</ClCompile>
<ClCompile Include="..\Python\bltinmodule.c">
<Filter>Python</Filter>
</ClCompile>
......
/* AST Optimizer */
#include "Python.h"
#include "Python-ast.h"
/* TODO: is_const and get_const_value are copied from Python/compile.c.
It should be deduped in the future. Maybe, we can include this file
from compile.c?
*/
static int
is_const(expr_ty e)
{
switch (e->kind) {
case Constant_kind:
case Num_kind:
case Str_kind:
case Bytes_kind:
case Ellipsis_kind:
case NameConstant_kind:
return 1;
default:
return 0;
}
}
static PyObject *
get_const_value(expr_ty e)
{
switch (e->kind) {
case Constant_kind:
return e->v.Constant.value;
case Num_kind:
return e->v.Num.n;
case Str_kind:
return e->v.Str.s;
case Bytes_kind:
return e->v.Bytes.s;
case Ellipsis_kind:
return Py_Ellipsis;
case NameConstant_kind:
return e->v.NameConstant.value;
default:
Py_UNREACHABLE();
}
}
static int
make_const(expr_ty node, PyObject *val, PyArena *arena)
{
if (val == NULL) {
if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
return 0;
}
PyErr_Clear();
return 1;
}
if (PyArena_AddPyObject(arena, val) < 0) {
Py_DECREF(val);
return 0;
}
node->kind = Constant_kind;
node->v.Constant.value = val;
return 1;
}
#define COPY_NODE(TO, FROM) (memcpy((TO), (FROM), sizeof(struct _expr)))
static PyObject*
unary_not(PyObject *v)
{
int r = PyObject_IsTrue(v);
if (r < 0)
return NULL;
return PyBool_FromLong(!r);
}
static int
fold_unaryop(expr_ty node, PyArena *arena)
{
expr_ty arg = node->v.UnaryOp.operand;
if (!is_const(arg)) {
/* Fold not into comparison */
if (node->v.UnaryOp.op == Not && arg->kind == Compare_kind &&
asdl_seq_LEN(arg->v.Compare.ops) == 1) {
/* Eq and NotEq are often implemented in terms of one another, so
folding not (self == other) into self != other breaks implementation
of !=. Detecting such cases doesn't seem worthwhile.
Python uses </> for 'is subset'/'is superset' operations on sets.
They don't satisfy not folding laws. */
int op = asdl_seq_GET(arg->v.Compare.ops, 0);
switch (op) {
case Is:
op = IsNot;
break;
case IsNot:
op = Is;
break;
case In:
op = NotIn;
break;
case NotIn:
op = In;
break;
default:
op = 0;
}
if (op) {
asdl_seq_SET(arg->v.Compare.ops, 0, op);
COPY_NODE(node, arg);
return 1;
}
}
return 1;
}
typedef PyObject *(*unary_op)(PyObject*);
static const unary_op ops[] = {
[Invert] = PyNumber_Invert,
[Not] = unary_not,
[UAdd] = PyNumber_Positive,
[USub] = PyNumber_Negative,
};
PyObject *newval = ops[node->v.UnaryOp.op](get_const_value(arg));
return make_const(node, newval, arena);
}
static int
fold_binop(expr_ty node, PyArena *arena)
{
expr_ty lhs, rhs;
lhs = node->v.BinOp.left;
rhs = node->v.BinOp.right;
if (!is_const(lhs) || !is_const(rhs)) {
return 1;
}
PyObject *lv = get_const_value(lhs);
PyObject *rv = get_const_value(rhs);
PyObject *newval;
switch (node->v.BinOp.op) {
case Add:
newval = PyNumber_Add(lv, rv);
break;
case Sub:
newval = PyNumber_Subtract(lv, rv);
break;
case Mult:
newval = PyNumber_Multiply(lv, rv);
break;
case Div:
newval = PyNumber_TrueDivide(lv, rv);
break;
case FloorDiv:
newval = PyNumber_FloorDivide(lv, rv);
break;
case Mod:
newval = PyNumber_Remainder(lv, rv);
break;
case Pow:
newval = PyNumber_Power(lv, rv, Py_None);
break;
case LShift:
newval = PyNumber_Lshift(lv, rv);
break;
case RShift:
newval = PyNumber_Rshift(lv, rv);
break;
case BitOr:
newval = PyNumber_Or(lv, rv);
break;
case BitXor:
newval = PyNumber_Xor(lv, rv);
break;
case BitAnd:
newval = PyNumber_And(lv, rv);
break;
default: // Unknown operator
return 1;
}
if (newval == NULL) {
if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
return 0;
}
PyErr_Clear();
return 1;
}
/* Avoid creating large constants. */
Py_ssize_t size = PyObject_Size(newval);
if (size == -1) {
if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
Py_DECREF(newval);
return 0;
}
PyErr_Clear();
}
else if (size > 20) {
Py_DECREF(newval);
return 1;
}
return make_const(node, newval, arena);
}
static PyObject*
make_const_tuple(asdl_seq *elts, int make_set)
{
for (int i = 0; i < asdl_seq_LEN(elts); i++) {
expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
if (!is_const(e)) {
return NULL;
}
}
PyObject *newval = PyTuple_New(asdl_seq_LEN(elts));
if (newval == NULL) {
return NULL;
}
for (int i = 0; i < asdl_seq_LEN(elts); i++) {
expr_ty e = (expr_ty)asdl_seq_GET(elts, i);
PyObject *v = get_const_value(e);
Py_INCREF(v);
PyTuple_SET_ITEM(newval, i, v);
}
/* Need to create frozen_set instead. */
if (make_set) {
Py_SETREF(newval, PyFrozenSet_New(newval));
}
return newval;
}
static int
fold_tuple(expr_ty node, PyArena *arena)
{
PyObject *newval;
if (node->v.Tuple.ctx != Load)
return 1;
newval = make_const_tuple(node->v.Tuple.elts, 0);
return make_const(node, newval, arena);
}
static int
fold_subscr(expr_ty node, PyArena *arena)
{
PyObject *newval;
expr_ty arg, idx;
slice_ty slice;
arg = node->v.Subscript.value;
slice = node->v.Subscript.slice;
if (node->v.Subscript.ctx != Load ||
!is_const(arg) ||
/* TODO: handle other types of slices */
slice->kind != Index_kind ||
!is_const(slice->v.Index.value))
{
return 1;
}
idx = slice->v.Index.value;
newval = PyObject_GetItem(get_const_value(arg), get_const_value(idx));
return make_const(node, newval, arena);
}
static int
fold_compare(expr_ty node, PyArena *arena)
{
asdl_int_seq *ops;
asdl_seq *args;
PyObject *newval;
int i;
ops = node->v.Compare.ops;
args = node->v.Compare.comparators;
/* TODO: optimize cases with literal arguments. */
for (i = 0; i < asdl_seq_LEN(ops); i++) {
int op;
expr_ty arg;
asdl_seq *elts;
op = asdl_seq_GET(ops, i);
arg = (expr_ty)asdl_seq_GET(args, i);
/* Change literal list or set in 'in' or 'not in' into
tuple or frozenset respectively. */
/* TODO: do the same when list or set is used as iterable
in for loop and comprehensions? */
if (op != In && op != NotIn)
continue;
if (arg->kind == List_kind)
elts = arg->v.List.elts;
else if (arg->kind == Set_kind)
elts = arg->v.Set.elts;
else continue;
newval = make_const_tuple(elts, arg->kind == Set_kind);
make_const(arg, newval, arena);
}
return 1;
}
static int astfold_mod(mod_ty node_, PyArena* ctx_);
static int astfold_stmt(stmt_ty node_, PyArena* ctx_);
static int astfold_expr(expr_ty node_, PyArena* ctx_);
static int astfold_arguments(arguments_ty node_, PyArena* ctx_);
static int astfold_comprehension(comprehension_ty node_, PyArena* ctx_);
static int astfold_keyword(keyword_ty node_, PyArena* ctx_);
static int astfold_slice(slice_ty node_, PyArena* ctx_);
static int astfold_arg(arg_ty node_, PyArena* ctx_);
static int astfold_withitem(withitem_ty node_, PyArena* ctx_);
static int astfold_excepthandler(excepthandler_ty node_, PyArena* ctx_);
#define CALL(FUNC, TYPE, ARG) \
if (!FUNC((ARG), ctx_)) \
return 0;
#define CALL_OPT(FUNC, TYPE, ARG) \
if ((ARG) != NULL && !FUNC((ARG), ctx_)) \
return 0;
#define CALL_SEQ(FUNC, TYPE, ARG) { \
int i; \
asdl_seq *seq = (ARG); /* avoid variable capture */ \
for (i = 0; i < asdl_seq_LEN(seq); i++) { \
TYPE elt = (TYPE)asdl_seq_GET(seq, i); \
if (elt != NULL && !FUNC(elt, ctx_)) \
return 0; \
} \
}
#define CALL_INT_SEQ(FUNC, TYPE, ARG) { \
int i; \
asdl_int_seq *seq = (ARG); /* avoid variable capture */ \
for (i = 0; i < asdl_seq_LEN(seq); i++) { \
TYPE elt = (TYPE)asdl_seq_GET(seq, i); \
if (!FUNC(elt, ctx_)) \
return 0; \
} \
}
static int
astfold_mod(mod_ty node_, PyArena* ctx_)
{
switch (node_->kind) {
case Module_kind:
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Module.body);
break;
case Interactive_kind:
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Interactive.body);
break;
case Expression_kind:
CALL(astfold_expr, expr_ty, node_->v.Expression.body);
break;
case Suite_kind:
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Suite.body);
break;
default:
break;
}
return 1;
}
static int
astfold_expr(expr_ty node_, PyArena* ctx_)
{
switch (node_->kind) {
case BoolOp_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.BoolOp.values);
break;
case BinOp_kind:
CALL(astfold_expr, expr_ty, node_->v.BinOp.left);
CALL(astfold_expr, expr_ty, node_->v.BinOp.right);
CALL(fold_binop, expr_ty, node_);
break;
case UnaryOp_kind:
CALL(astfold_expr, expr_ty, node_->v.UnaryOp.operand);
CALL(fold_unaryop, expr_ty, node_);
break;
case Lambda_kind:
CALL(astfold_arguments, arguments_ty, node_->v.Lambda.args);
CALL(astfold_expr, expr_ty, node_->v.Lambda.body);
break;
case IfExp_kind:
CALL(astfold_expr, expr_ty, node_->v.IfExp.test);
CALL(astfold_expr, expr_ty, node_->v.IfExp.body);
CALL(astfold_expr, expr_ty, node_->v.IfExp.orelse);
break;
case Dict_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Dict.keys);
CALL_SEQ(astfold_expr, expr_ty, node_->v.Dict.values);
break;
case Set_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Set.elts);
break;
case ListComp_kind:
CALL(astfold_expr, expr_ty, node_->v.ListComp.elt);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.ListComp.generators);
break;
case SetComp_kind:
CALL(astfold_expr, expr_ty, node_->v.SetComp.elt);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.SetComp.generators);
break;
case DictComp_kind:
CALL(astfold_expr, expr_ty, node_->v.DictComp.key);
CALL(astfold_expr, expr_ty, node_->v.DictComp.value);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.DictComp.generators);
break;
case GeneratorExp_kind:
CALL(astfold_expr, expr_ty, node_->v.GeneratorExp.elt);
CALL_SEQ(astfold_comprehension, comprehension_ty, node_->v.GeneratorExp.generators);
break;
case Await_kind:
CALL(astfold_expr, expr_ty, node_->v.Await.value);
break;
case Yield_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Yield.value);
break;
case YieldFrom_kind:
CALL(astfold_expr, expr_ty, node_->v.YieldFrom.value);
break;
case Compare_kind:
CALL(astfold_expr, expr_ty, node_->v.Compare.left);
CALL_SEQ(astfold_expr, expr_ty, node_->v.Compare.comparators);
CALL(fold_compare, expr_ty, node_);
break;
case Call_kind:
CALL(astfold_expr, expr_ty, node_->v.Call.func);
CALL_SEQ(astfold_expr, expr_ty, node_->v.Call.args);
CALL_SEQ(astfold_keyword, keyword_ty, node_->v.Call.keywords);
break;
case FormattedValue_kind:
CALL(astfold_expr, expr_ty, node_->v.FormattedValue.value);
CALL_OPT(astfold_expr, expr_ty, node_->v.FormattedValue.format_spec);
break;
case JoinedStr_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.JoinedStr.values);
break;
case Attribute_kind:
CALL(astfold_expr, expr_ty, node_->v.Attribute.value);
break;
case Subscript_kind:
CALL(astfold_expr, expr_ty, node_->v.Subscript.value);
CALL(astfold_slice, slice_ty, node_->v.Subscript.slice);
CALL(fold_subscr, expr_ty, node_);
break;
case Starred_kind:
CALL(astfold_expr, expr_ty, node_->v.Starred.value);
break;
case List_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.List.elts);
break;
case Tuple_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Tuple.elts);
CALL(fold_tuple, expr_ty, node_);
break;
default:
break;
}
return 1;
}
static int
astfold_slice(slice_ty node_, PyArena* ctx_)
{
switch (node_->kind) {
case Slice_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.lower);
CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.upper);
CALL_OPT(astfold_expr, expr_ty, node_->v.Slice.step);
break;
case ExtSlice_kind:
CALL_SEQ(astfold_slice, slice_ty, node_->v.ExtSlice.dims);
break;
case Index_kind:
CALL(astfold_expr, expr_ty, node_->v.Index.value);
break;
default:
break;
}
return 1;
}
static int
astfold_keyword(keyword_ty node_, PyArena* ctx_)
{
CALL(astfold_expr, expr_ty, node_->value);
return 1;
}
static int
astfold_comprehension(comprehension_ty node_, PyArena* ctx_)
{
CALL(astfold_expr, expr_ty, node_->target);
CALL(astfold_expr, expr_ty, node_->iter);
CALL_SEQ(astfold_expr, expr_ty, node_->ifs);
return 1;
}
static int
astfold_arguments(arguments_ty node_, PyArena* ctx_)
{
CALL_SEQ(astfold_arg, arg_ty, node_->args);
CALL_OPT(astfold_arg, arg_ty, node_->vararg);
CALL_SEQ(astfold_arg, arg_ty, node_->kwonlyargs);
CALL_SEQ(astfold_expr, expr_ty, node_->kw_defaults);
CALL_OPT(astfold_arg, arg_ty, node_->kwarg);
CALL_SEQ(astfold_expr, expr_ty, node_->defaults);
return 1;
}
static int
astfold_arg(arg_ty node_, PyArena* ctx_)
{
CALL_OPT(astfold_expr, expr_ty, node_->annotation);
return 1;
}
static int
astfold_stmt(stmt_ty node_, PyArena* ctx_)
{
switch (node_->kind) {
case FunctionDef_kind:
CALL(astfold_arguments, arguments_ty, node_->v.FunctionDef.args);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.FunctionDef.body);
CALL_SEQ(astfold_expr, expr_ty, node_->v.FunctionDef.decorator_list);
CALL_OPT(astfold_expr, expr_ty, node_->v.FunctionDef.returns);
break;
case AsyncFunctionDef_kind:
CALL(astfold_arguments, arguments_ty, node_->v.AsyncFunctionDef.args);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.AsyncFunctionDef.body);
CALL_SEQ(astfold_expr, expr_ty, node_->v.AsyncFunctionDef.decorator_list);
CALL_OPT(astfold_expr, expr_ty, node_->v.AsyncFunctionDef.returns);
break;
case ClassDef_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.ClassDef.bases);
CALL_SEQ(astfold_keyword, keyword_ty, node_->v.ClassDef.keywords);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.ClassDef.body);
CALL_SEQ(astfold_expr, expr_ty, node_->v.ClassDef.decorator_list);
break;
case Return_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Return.value);
break;
case Delete_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Delete.targets);
break;
case Assign_kind:
CALL_SEQ(astfold_expr, expr_ty, node_->v.Assign.targets);
CALL(astfold_expr, expr_ty, node_->v.Assign.value);
break;
case AugAssign_kind:
CALL(astfold_expr, expr_ty, node_->v.AugAssign.target);
CALL(astfold_expr, expr_ty, node_->v.AugAssign.value);
break;
case AnnAssign_kind:
CALL(astfold_expr, expr_ty, node_->v.AnnAssign.target);
CALL(astfold_expr, expr_ty, node_->v.AnnAssign.annotation);
CALL_OPT(astfold_expr, expr_ty, node_->v.AnnAssign.value);
break;
case For_kind:
CALL(astfold_expr, expr_ty, node_->v.For.target);
CALL(astfold_expr, expr_ty, node_->v.For.iter);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.For.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.For.orelse);
break;
case AsyncFor_kind:
CALL(astfold_expr, expr_ty, node_->v.AsyncFor.target);
CALL(astfold_expr, expr_ty, node_->v.AsyncFor.iter);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.AsyncFor.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.AsyncFor.orelse);
break;
case While_kind:
CALL(astfold_expr, expr_ty, node_->v.While.test);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.While.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.While.orelse);
break;
case If_kind:
CALL(astfold_expr, expr_ty, node_->v.If.test);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.If.body);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.If.orelse);
break;
case With_kind:
CALL_SEQ(astfold_withitem, withitem_ty, node_->v.With.items);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.With.body);
break;
case AsyncWith_kind:
CALL_SEQ(astfold_withitem, withitem_ty, node_->v.AsyncWith.items);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.AsyncWith.body);
break;
case Raise_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.exc);
CALL_OPT(astfold_expr, expr_ty, node_->v.Raise.cause);
break;
case Try_kind:
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Try.body);
CALL_SEQ(astfold_excepthandler, excepthandler_ty, node_->v.Try.handlers);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Try.orelse);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.Try.finalbody);
break;
case Assert_kind:
CALL(astfold_expr, expr_ty, node_->v.Assert.test);
CALL_OPT(astfold_expr, expr_ty, node_->v.Assert.msg);
break;
case Expr_kind:
CALL(astfold_expr, expr_ty, node_->v.Expr.value);
break;
default:
break;
}
return 1;
}
static int
astfold_excepthandler(excepthandler_ty node_, PyArena* ctx_)
{
switch (node_->kind) {
case ExceptHandler_kind:
CALL_OPT(astfold_expr, expr_ty, node_->v.ExceptHandler.type);
CALL_SEQ(astfold_stmt, stmt_ty, node_->v.ExceptHandler.body);
break;
default:
break;
}
return 1;
}
static int
astfold_withitem(withitem_ty node_, PyArena* ctx_)
{
CALL(astfold_expr, expr_ty, node_->context_expr);
CALL_OPT(astfold_expr, expr_ty, node_->optional_vars);
return 1;
}
#undef CALL
#undef CALL_OPT
#undef CALL_SEQ
#undef CALL_INT_SEQ
int
_PyAST_Optimize(mod_ty mod, PyArena *arena)
{
int ret = astfold_mod(mod, arena);
assert(ret || PyErr_Occurred());
return ret;
}
......@@ -331,6 +331,10 @@ PyAST_CompileObject(mod_ty mod, PyObject *filename, PyCompilerFlags *flags,
c.c_optimize = (optimize == -1) ? Py_OptimizeFlag : optimize;
c.c_nestlevel = 0;
if (!_PyAST_Optimize(mod, arena)) {
goto finally;
}
c.c_st = PySymtable_BuildObject(mod, filename, c.c_future);
if (c.c_st == NULL) {
if (!PyErr_Occurred())
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -218,153 +218,6 @@ fold_tuple_on_constants(_Py_CODEUNIT *codestr, Py_ssize_t c_start,
return copy_op_arg(codestr, c_start, LOAD_CONST, len_consts, opcode_end);
}
/* Replace LOAD_CONST c1, LOAD_CONST c2, BINOP
with LOAD_CONST binop(c1,c2)
The consts table must still be in list form so that the
new constant can be appended.
Called with codestr pointing to the BINOP.
Abandons the transformation if the folding fails (i.e. 1+'a').
If the new constant is a sequence, only folds when the size
is below a threshold value. That keeps pyc files from
becoming large in the presence of code like: (None,)*1000.
*/
static Py_ssize_t
fold_binops_on_constants(_Py_CODEUNIT *codestr, Py_ssize_t c_start,
Py_ssize_t opcode_end, unsigned char opcode,
PyObject *consts, PyObject **objs)
{
PyObject *newconst, *v, *w;
Py_ssize_t len_consts, size;
/* Pre-conditions */
assert(PyList_CheckExact(consts));
len_consts = PyList_GET_SIZE(consts);
/* Create new constant */
v = objs[0];
w = objs[1];
switch (opcode) {
case BINARY_POWER:
newconst = PyNumber_Power(v, w, Py_None);
break;
case BINARY_MULTIPLY:
newconst = PyNumber_Multiply(v, w);
break;
case BINARY_TRUE_DIVIDE:
newconst = PyNumber_TrueDivide(v, w);
break;
case BINARY_FLOOR_DIVIDE:
newconst = PyNumber_FloorDivide(v, w);
break;
case BINARY_MODULO:
newconst = PyNumber_Remainder(v, w);
break;
case BINARY_ADD:
newconst = PyNumber_Add(v, w);
break;
case BINARY_SUBTRACT:
newconst = PyNumber_Subtract(v, w);
break;
case BINARY_SUBSCR:
newconst = PyObject_GetItem(v, w);
break;
case BINARY_LSHIFT:
newconst = PyNumber_Lshift(v, w);
break;
case BINARY_RSHIFT:
newconst = PyNumber_Rshift(v, w);
break;
case BINARY_AND:
newconst = PyNumber_And(v, w);
break;
case BINARY_XOR:
newconst = PyNumber_Xor(v, w);
break;
case BINARY_OR:
newconst = PyNumber_Or(v, w);
break;
default:
/* Called with an unknown opcode */
PyErr_Format(PyExc_SystemError,
"unexpected binary operation %d on a constant",
opcode);
return -1;
}
if (newconst == NULL) {
if(!PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
PyErr_Clear();
}
return -1;
}
size = PyObject_Size(newconst);
if (size == -1) {
if (PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
return -1;
}
PyErr_Clear();
} else if (size > 20) {
Py_DECREF(newconst);
return -1;
}
/* Append folded constant into consts table */
if (PyList_Append(consts, newconst)) {
Py_DECREF(newconst);
return -1;
}
Py_DECREF(newconst);
return copy_op_arg(codestr, c_start, LOAD_CONST, len_consts, opcode_end);
}
static Py_ssize_t
fold_unaryops_on_constants(_Py_CODEUNIT *codestr, Py_ssize_t c_start,
Py_ssize_t opcode_end, unsigned char opcode,
PyObject *consts, PyObject *v)
{
PyObject *newconst;
Py_ssize_t len_consts;
/* Pre-conditions */
assert(PyList_CheckExact(consts));
len_consts = PyList_GET_SIZE(consts);
/* Create new constant */
switch (opcode) {
case UNARY_NEGATIVE:
newconst = PyNumber_Negative(v);
break;
case UNARY_INVERT:
newconst = PyNumber_Invert(v);
break;
case UNARY_POSITIVE:
newconst = PyNumber_Positive(v);
break;
default:
/* Called with an unknown opcode */
PyErr_Format(PyExc_SystemError,
"unexpected unary operation %d on a constant",
opcode);
return -1;
}
if (newconst == NULL) {
if(!PyErr_ExceptionMatches(PyExc_KeyboardInterrupt)) {
PyErr_Clear();
}
return -1;
}
/* Append folded constant into consts table */
if (PyList_Append(consts, newconst)) {
Py_DECREF(newconst);
PyErr_Clear();
return -1;
}
Py_DECREF(newconst);
return copy_op_arg(codestr, c_start, LOAD_CONST, len_consts, opcode_end);
}
static unsigned int *
markblocks(_Py_CODEUNIT *code, Py_ssize_t len)
{
......@@ -566,52 +419,6 @@ PyCode_Optimize(PyObject *code, PyObject* consts, PyObject *names,
}
break;
/* Fold binary ops on constants.
LOAD_CONST c1 LOAD_CONST c2 BINOP --> LOAD_CONST binop(c1,c2) */
case BINARY_POWER:
case BINARY_MULTIPLY:
case BINARY_TRUE_DIVIDE:
case BINARY_FLOOR_DIVIDE:
case BINARY_MODULO:
case BINARY_ADD:
case BINARY_SUBTRACT:
case BINARY_SUBSCR:
case BINARY_LSHIFT:
case BINARY_RSHIFT:
case BINARY_AND:
case BINARY_XOR:
case BINARY_OR:
if (CONST_STACK_LEN() < 2)
break;
h = lastn_const_start(codestr, op_start, 2);
if (ISBASICBLOCK(blocks, h, op_start)) {
h = fold_binops_on_constants(codestr, h, i + 1, opcode,
consts, CONST_STACK_LASTN(2));
if (h >= 0) {
CONST_STACK_POP(2);
CONST_STACK_PUSH_OP(h);
}
}
break;
/* Fold unary ops on constants.
LOAD_CONST c1 UNARY_OP --> LOAD_CONST unary_op(c) */
case UNARY_NEGATIVE:
case UNARY_INVERT:
case UNARY_POSITIVE:
if (CONST_STACK_LEN() < 1)
break;
h = lastn_const_start(codestr, op_start, 1);
if (ISBASICBLOCK(blocks, h, op_start)) {
h = fold_unaryops_on_constants(codestr, h, i + 1, opcode,
consts, *CONST_STACK_LASTN(1));
if (h >= 0) {
CONST_STACK_POP(1);
CONST_STACK_PUSH_OP(h);
}
}
break;
/* Simplify conditional jump to conditional jump where the
result of the first test implies the success of a similar
test or the failure of the opposite test.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment