Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
C
cpython
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
cpython
Commits
8ad22a42
Commit
8ad22a42
authored
Aug 25, 2019
by
Dong-hee Na
Committed by
Raymond Hettinger
Aug 24, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bpo-37798: Test both Python and C versions in test_statistics.py (GH-15453)
parent
edd21129
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
75 additions
and
33 deletions
+75
-33
Lib/test/test_statistics.py
Lib/test/test_statistics.py
+73
-33
Misc/NEWS.d/next/Library/2019-08-24-16-54-49.bpo-37798.7mRQCk.rst
...S.d/next/Library/2019-08-24-16-54-49.bpo-37798.7mRQCk.rst
+2
-0
No files found.
Lib/test/test_statistics.py
View file @
8ad22a42
...
@@ -18,6 +18,7 @@ from test import support
...
@@ -18,6 +18,7 @@ from test import support
from
decimal
import
Decimal
from
decimal
import
Decimal
from
fractions
import
Fraction
from
fractions
import
Fraction
from
test
import
support
# Module to be tested.
# Module to be tested.
...
@@ -178,6 +179,23 @@ class _DoNothing:
...
@@ -178,6 +179,23 @@ class _DoNothing:
# We prefer this for testing numeric values that may not be exactly equal,
# We prefer this for testing numeric values that may not be exactly equal,
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)
# and avoid using TestCase.assertAlmostEqual, because it sucks :-)
py_statistics
=
support
.
import_fresh_module
(
'statistics'
,
blocked
=
[
'_statistics'
])
c_statistics
=
support
.
import_fresh_module
(
'statistics'
,
fresh
=
[
'_statistics'
])
class
TestModules
(
unittest
.
TestCase
):
func_names
=
[
'_normal_dist_inv_cdf'
]
def
test_py_functions
(
self
):
for
fname
in
self
.
func_names
:
self
.
assertEqual
(
getattr
(
py_statistics
,
fname
).
__module__
,
'statistics'
)
@
unittest
.
skipUnless
(
c_statistics
,
'requires _statistics'
)
def
test_c_functions
(
self
):
for
fname
in
self
.
func_names
:
self
.
assertEqual
(
getattr
(
c_statistics
,
fname
).
__module__
,
'_statistics'
)
class
NumericTestCase
(
unittest
.
TestCase
):
class
NumericTestCase
(
unittest
.
TestCase
):
"""Unit test class for numeric work.
"""Unit test class for numeric work.
...
@@ -2314,7 +2332,7 @@ class TestQuantiles(unittest.TestCase):
...
@@ -2314,7 +2332,7 @@ class TestQuantiles(unittest.TestCase):
quantiles
([
10
,
None
,
30
],
n
=
4
)
# data is non-numeric
quantiles
([
10
,
None
,
30
],
n
=
4
)
# data is non-numeric
class
TestNormalDist
(
unittest
.
TestCase
)
:
class
TestNormalDist
:
# General note on precision: The pdf(), cdf(), and overlap() methods
# General note on precision: The pdf(), cdf(), and overlap() methods
# depend on functions in the math libraries that do not make
# depend on functions in the math libraries that do not make
...
@@ -2324,35 +2342,35 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2324,35 +2342,35 @@ class TestNormalDist(unittest.TestCase):
# implementing our own implementations from scratch.
# implementing our own implementations from scratch.
def
test_slots
(
self
):
def
test_slots
(
self
):
nd
=
s
tatistics
.
NormalDist
(
300
,
23
)
nd
=
s
elf
.
module
.
NormalDist
(
300
,
23
)
with
self
.
assertRaises
(
TypeError
):
with
self
.
assertRaises
(
TypeError
):
vars
(
nd
)
vars
(
nd
)
self
.
assertEqual
(
tuple
(
nd
.
__slots__
),
(
'_mu'
,
'_sigma'
))
self
.
assertEqual
(
tuple
(
nd
.
__slots__
),
(
'_mu'
,
'_sigma'
))
def
test_instantiation_and_attributes
(
self
):
def
test_instantiation_and_attributes
(
self
):
nd
=
s
tatistics
.
NormalDist
(
500
,
17
)
nd
=
s
elf
.
module
.
NormalDist
(
500
,
17
)
self
.
assertEqual
(
nd
.
mean
,
500
)
self
.
assertEqual
(
nd
.
mean
,
500
)
self
.
assertEqual
(
nd
.
stdev
,
17
)
self
.
assertEqual
(
nd
.
stdev
,
17
)
self
.
assertEqual
(
nd
.
variance
,
17
**
2
)
self
.
assertEqual
(
nd
.
variance
,
17
**
2
)
# default arguments
# default arguments
nd
=
s
tatistics
.
NormalDist
()
nd
=
s
elf
.
module
.
NormalDist
()
self
.
assertEqual
(
nd
.
mean
,
0
)
self
.
assertEqual
(
nd
.
mean
,
0
)
self
.
assertEqual
(
nd
.
stdev
,
1
)
self
.
assertEqual
(
nd
.
stdev
,
1
)
self
.
assertEqual
(
nd
.
variance
,
1
**
2
)
self
.
assertEqual
(
nd
.
variance
,
1
**
2
)
# error case: negative sigma
# error case: negative sigma
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
s
tatistics
.
NormalDist
(
500
,
-
10
)
s
elf
.
module
.
NormalDist
(
500
,
-
10
)
# verify that subclass type is honored
# verify that subclass type is honored
class
NewNormalDist
(
s
tatistics
.
NormalDist
):
class
NewNormalDist
(
s
elf
.
module
.
NormalDist
):
pass
pass
nnd
=
NewNormalDist
(
200
,
5
)
nnd
=
NewNormalDist
(
200
,
5
)
self
.
assertEqual
(
type
(
nnd
),
NewNormalDist
)
self
.
assertEqual
(
type
(
nnd
),
NewNormalDist
)
def
test_alternative_constructor
(
self
):
def
test_alternative_constructor
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
data
=
[
96
,
107
,
90
,
92
,
110
]
data
=
[
96
,
107
,
90
,
92
,
110
]
# list input
# list input
self
.
assertEqual
(
NormalDist
.
from_samples
(
data
),
NormalDist
(
99
,
9
))
self
.
assertEqual
(
NormalDist
.
from_samples
(
data
),
NormalDist
(
99
,
9
))
...
@@ -2361,9 +2379,9 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2361,9 +2379,9 @@ class TestNormalDist(unittest.TestCase):
# iterator input
# iterator input
self
.
assertEqual
(
NormalDist
.
from_samples
(
iter
(
data
)),
NormalDist
(
99
,
9
))
self
.
assertEqual
(
NormalDist
.
from_samples
(
iter
(
data
)),
NormalDist
(
99
,
9
))
# error cases
# error cases
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
NormalDist
.
from_samples
([])
# empty input
NormalDist
.
from_samples
([])
# empty input
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
NormalDist
.
from_samples
([
10
])
# only one input
NormalDist
.
from_samples
([
10
])
# only one input
# verify that subclass type is honored
# verify that subclass type is honored
...
@@ -2373,7 +2391,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2373,7 +2391,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertEqual
(
type
(
nnd
),
NewNormalDist
)
self
.
assertEqual
(
type
(
nnd
),
NewNormalDist
)
def
test_sample_generation
(
self
):
def
test_sample_generation
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
mu
,
sigma
=
10_000
,
3.0
mu
,
sigma
=
10_000
,
3.0
X
=
NormalDist
(
mu
,
sigma
)
X
=
NormalDist
(
mu
,
sigma
)
n
=
1_000
n
=
1_000
...
@@ -2381,7 +2399,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2381,7 +2399,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertEqual
(
len
(
data
),
n
)
self
.
assertEqual
(
len
(
data
),
n
)
self
.
assertEqual
(
set
(
map
(
type
,
data
)),
{
float
})
self
.
assertEqual
(
set
(
map
(
type
,
data
)),
{
float
})
# mean(data) expected to fall within 8 standard deviations
# mean(data) expected to fall within 8 standard deviations
xbar
=
s
tatistics
.
mean
(
data
)
xbar
=
s
elf
.
module
.
mean
(
data
)
self
.
assertTrue
(
mu
-
sigma
*
8
<=
xbar
<=
mu
+
sigma
*
8
)
self
.
assertTrue
(
mu
-
sigma
*
8
<=
xbar
<=
mu
+
sigma
*
8
)
# verify that seeding makes reproducible sequences
# verify that seeding makes reproducible sequences
...
@@ -2395,7 +2413,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2395,7 +2413,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertNotEqual
(
data1
,
data2
)
self
.
assertNotEqual
(
data1
,
data2
)
def
test_pdf
(
self
):
def
test_pdf
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
X
=
NormalDist
(
100
,
15
)
X
=
NormalDist
(
100
,
15
)
# Verify peak around center
# Verify peak around center
self
.
assertLess
(
X
.
pdf
(
99
),
X
.
pdf
(
100
))
self
.
assertLess
(
X
.
pdf
(
99
),
X
.
pdf
(
100
))
...
@@ -2426,7 +2444,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2426,7 +2444,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertAlmostEqual
(
Z
.
pdf
(
-
x
/
100.0
),
px
,
places
=
4
)
self
.
assertAlmostEqual
(
Z
.
pdf
(
-
x
/
100.0
),
px
,
places
=
4
)
# Error case: variance is zero
# Error case: variance is zero
Y
=
NormalDist
(
100
,
0
)
Y
=
NormalDist
(
100
,
0
)
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
Y
.
pdf
(
90
)
Y
.
pdf
(
90
)
# Special values
# Special values
self
.
assertEqual
(
X
.
pdf
(
float
(
'-Inf'
)),
0.0
)
self
.
assertEqual
(
X
.
pdf
(
float
(
'-Inf'
)),
0.0
)
...
@@ -2434,7 +2452,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2434,7 +2452,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertTrue
(
math
.
isnan
(
X
.
pdf
(
float
(
'NaN'
))))
self
.
assertTrue
(
math
.
isnan
(
X
.
pdf
(
float
(
'NaN'
))))
def
test_cdf
(
self
):
def
test_cdf
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
X
=
NormalDist
(
100
,
15
)
X
=
NormalDist
(
100
,
15
)
cdfs
=
[
X
.
cdf
(
x
)
for
x
in
range
(
1
,
200
)]
cdfs
=
[
X
.
cdf
(
x
)
for
x
in
range
(
1
,
200
)]
self
.
assertEqual
(
set
(
map
(
type
,
cdfs
)),
{
float
})
self
.
assertEqual
(
set
(
map
(
type
,
cdfs
)),
{
float
})
...
@@ -2456,7 +2474,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2456,7 +2474,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertAlmostEqual
(
Z
.
cdf
(
-
z
),
1.0
-
cum_prob
,
places
=
5
)
self
.
assertAlmostEqual
(
Z
.
cdf
(
-
z
),
1.0
-
cum_prob
,
places
=
5
)
# Error case: variance is zero
# Error case: variance is zero
Y
=
NormalDist
(
100
,
0
)
Y
=
NormalDist
(
100
,
0
)
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
Y
.
cdf
(
90
)
Y
.
cdf
(
90
)
# Special values
# Special values
self
.
assertEqual
(
X
.
cdf
(
float
(
'-Inf'
)),
0.0
)
self
.
assertEqual
(
X
.
cdf
(
float
(
'-Inf'
)),
0.0
)
...
@@ -2465,7 +2483,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2465,7 +2483,7 @@ class TestNormalDist(unittest.TestCase):
@
support
.
skip_if_pgo_task
@
support
.
skip_if_pgo_task
def
test_inv_cdf
(
self
):
def
test_inv_cdf
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
# Center case should be exact.
# Center case should be exact.
iq
=
NormalDist
(
100
,
15
)
iq
=
NormalDist
(
100
,
15
)
...
@@ -2513,15 +2531,15 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2513,15 +2531,15 @@ class TestNormalDist(unittest.TestCase):
self
.
assertAlmostEqual
(
iq
.
inv_cdf
(
iq
.
cdf
(
x
)),
x
,
places
=
5
)
self
.
assertAlmostEqual
(
iq
.
inv_cdf
(
iq
.
cdf
(
x
)),
x
,
places
=
5
)
# Error cases:
# Error cases:
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
iq
.
inv_cdf
(
0.0
)
# p is zero
iq
.
inv_cdf
(
0.0
)
# p is zero
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
iq
.
inv_cdf
(
-
0.1
)
# p under zero
iq
.
inv_cdf
(
-
0.1
)
# p under zero
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
iq
.
inv_cdf
(
1.0
)
# p is one
iq
.
inv_cdf
(
1.0
)
# p is one
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
iq
.
inv_cdf
(
1.1
)
# p over one
iq
.
inv_cdf
(
1.1
)
# p over one
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
iq
=
NormalDist
(
100
,
0
)
# sigma is zero
iq
=
NormalDist
(
100
,
0
)
# sigma is zero
iq
.
inv_cdf
(
0.5
)
iq
.
inv_cdf
(
0.5
)
...
@@ -2529,7 +2547,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2529,7 +2547,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertTrue
(
math
.
isnan
(
Z
.
inv_cdf
(
float
(
'NaN'
))))
self
.
assertTrue
(
math
.
isnan
(
Z
.
inv_cdf
(
float
(
'NaN'
))))
def
test_overlap
(
self
):
def
test_overlap
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
# Match examples from Imman and Bradley
# Match examples from Imman and Bradley
for
X1
,
X2
,
published_result
in
[
for
X1
,
X2
,
published_result
in
[
...
@@ -2586,26 +2604,26 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2586,26 +2604,26 @@ class TestNormalDist(unittest.TestCase):
X
.
overlap
(
X
,
X
)
# too may arguments
X
.
overlap
(
X
,
X
)
# too may arguments
with
self
.
assertRaises
(
TypeError
):
with
self
.
assertRaises
(
TypeError
):
X
.
overlap
(
None
)
# right operand not a NormalDist
X
.
overlap
(
None
)
# right operand not a NormalDist
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
X
.
overlap
(
NormalDist
(
1
,
0
))
# right operand sigma is zero
X
.
overlap
(
NormalDist
(
1
,
0
))
# right operand sigma is zero
with
self
.
assertRaises
(
s
tatistics
.
StatisticsError
):
with
self
.
assertRaises
(
s
elf
.
module
.
StatisticsError
):
NormalDist
(
1
,
0
).
overlap
(
X
)
# left operand sigma is zero
NormalDist
(
1
,
0
).
overlap
(
X
)
# left operand sigma is zero
def
test_properties
(
self
):
def
test_properties
(
self
):
X
=
s
tatistics
.
NormalDist
(
100
,
15
)
X
=
s
elf
.
module
.
NormalDist
(
100
,
15
)
self
.
assertEqual
(
X
.
mean
,
100
)
self
.
assertEqual
(
X
.
mean
,
100
)
self
.
assertEqual
(
X
.
stdev
,
15
)
self
.
assertEqual
(
X
.
stdev
,
15
)
self
.
assertEqual
(
X
.
variance
,
225
)
self
.
assertEqual
(
X
.
variance
,
225
)
def
test_same_type_addition_and_subtraction
(
self
):
def
test_same_type_addition_and_subtraction
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
X
=
NormalDist
(
100
,
12
)
X
=
NormalDist
(
100
,
12
)
Y
=
NormalDist
(
40
,
5
)
Y
=
NormalDist
(
40
,
5
)
self
.
assertEqual
(
X
+
Y
,
NormalDist
(
140
,
13
))
# __add__
self
.
assertEqual
(
X
+
Y
,
NormalDist
(
140
,
13
))
# __add__
self
.
assertEqual
(
X
-
Y
,
NormalDist
(
60
,
13
))
# __sub__
self
.
assertEqual
(
X
-
Y
,
NormalDist
(
60
,
13
))
# __sub__
def
test_translation_and_scaling
(
self
):
def
test_translation_and_scaling
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
X
=
NormalDist
(
100
,
15
)
X
=
NormalDist
(
100
,
15
)
y
=
10
y
=
10
self
.
assertEqual
(
+
X
,
NormalDist
(
100
,
15
))
# __pos__
self
.
assertEqual
(
+
X
,
NormalDist
(
100
,
15
))
# __pos__
...
@@ -2621,7 +2639,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2621,7 +2639,7 @@ class TestNormalDist(unittest.TestCase):
y
/
X
y
/
X
def
test_unary_operations
(
self
):
def
test_unary_operations
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
X
=
NormalDist
(
100
,
12
)
X
=
NormalDist
(
100
,
12
)
Y
=
+
X
Y
=
+
X
self
.
assertIsNot
(
X
,
Y
)
self
.
assertIsNot
(
X
,
Y
)
...
@@ -2633,7 +2651,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2633,7 +2651,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertEqual
(
X
.
stdev
,
Y
.
stdev
)
self
.
assertEqual
(
X
.
stdev
,
Y
.
stdev
)
def
test_equality
(
self
):
def
test_equality
(
self
):
NormalDist
=
s
tatistics
.
NormalDist
NormalDist
=
s
elf
.
module
.
NormalDist
nd1
=
NormalDist
()
nd1
=
NormalDist
()
nd2
=
NormalDist
(
2
,
4
)
nd2
=
NormalDist
(
2
,
4
)
nd3
=
NormalDist
()
nd3
=
NormalDist
()
...
@@ -2673,7 +2691,7 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2673,7 +2691,7 @@ class TestNormalDist(unittest.TestCase):
self
.
assertNotEqual
(
nd
,
lnd
)
self
.
assertNotEqual
(
nd
,
lnd
)
def
test_pickle_and_copy
(
self
):
def
test_pickle_and_copy
(
self
):
nd
=
s
tatistics
.
NormalDist
(
37.5
,
5.625
)
nd
=
s
elf
.
module
.
NormalDist
(
37.5
,
5.625
)
nd1
=
copy
.
copy
(
nd
)
nd1
=
copy
.
copy
(
nd
)
self
.
assertEqual
(
nd
,
nd1
)
self
.
assertEqual
(
nd
,
nd1
)
nd2
=
copy
.
deepcopy
(
nd
)
nd2
=
copy
.
deepcopy
(
nd
)
...
@@ -2682,14 +2700,36 @@ class TestNormalDist(unittest.TestCase):
...
@@ -2682,14 +2700,36 @@ class TestNormalDist(unittest.TestCase):
self
.
assertEqual
(
nd
,
nd3
)
self
.
assertEqual
(
nd
,
nd3
)
def
test_hashability
(
self
):
def
test_hashability
(
self
):
ND
=
s
tatistics
.
NormalDist
ND
=
s
elf
.
module
.
NormalDist
s
=
{
ND
(
100
,
15
),
ND
(
100.0
,
15.0
),
ND
(
100
,
10
),
ND
(
95
,
15
),
ND
(
100
,
15
)}
s
=
{
ND
(
100
,
15
),
ND
(
100.0
,
15.0
),
ND
(
100
,
10
),
ND
(
95
,
15
),
ND
(
100
,
15
)}
self
.
assertEqual
(
len
(
s
),
3
)
self
.
assertEqual
(
len
(
s
),
3
)
def
test_repr
(
self
):
def
test_repr
(
self
):
nd
=
s
tatistics
.
NormalDist
(
37.5
,
5.625
)
nd
=
s
elf
.
module
.
NormalDist
(
37.5
,
5.625
)
self
.
assertEqual
(
repr
(
nd
),
'NormalDist(mu=37.5, sigma=5.625)'
)
self
.
assertEqual
(
repr
(
nd
),
'NormalDist(mu=37.5, sigma=5.625)'
)
# Swapping the sys.modules['statistics'] is to solving the
# _pickle.PicklingError:
# Can't pickle <class 'statistics.NormalDist'>:
# it's not the same object as statistics.NormalDist
class
TestNormalDistPython
(
unittest
.
TestCase
,
TestNormalDist
):
module
=
py_statistics
def
setUp
(
self
):
sys
.
modules
[
'statistics'
]
=
self
.
module
def
tearDown
(
self
):
sys
.
modules
[
'statistics'
]
=
statistics
@
unittest
.
skipUnless
(
c_statistics
,
'requires _statistics'
)
class
TestNormalDistC
(
unittest
.
TestCase
,
TestNormalDist
):
module
=
c_statistics
def
setUp
(
self
):
sys
.
modules
[
'statistics'
]
=
self
.
module
def
tearDown
(
self
):
sys
.
modules
[
'statistics'
]
=
statistics
# === Run tests ===
# === Run tests ===
...
...
Misc/NEWS.d/next/Library/2019-08-24-16-54-49.bpo-37798.7mRQCk.rst
0 → 100644
View file @
8ad22a42
Update test_statistics.py to verify that the statistics module works well
for both C and Python implementations. Patch by Dong-hee Na
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment