Commit b08a53a9 authored by Mark Dickinson's avatar Mark Dickinson

Issue #1580: use short float repr where possible.

 - incorporate and adapt David Gay's dtoa and strtod
   into the Python core
 - on platforms where we can use Gay's code (almost
   all!), repr(float) is based on the shortest
   sequence of decimal digits that rounds correctly.
 - add sys.float_repr_style attribute to indicate
   whether we're using Gay's code or not
 - add autoconf magic to detect and enable SSE2
   instructions on x86/gcc
 - slight change to repr and str:  repr switches
   to exponential notation at 1e16 instead of
   1e17, str switches at 1e11 instead of 1e12
parent 579b65c2
......@@ -266,6 +266,19 @@ always available.
The information in the table is simplified.
.. data:: float_repr_style
A string indicating how the :func:`repr` function behaves for
floats. If the string has value ``'short'`` then for a finite
float ``x``, ``repr(x)`` aims to produce a short string with the
property that ``float(repr(x)) == x``. This is the usual behaviour
in Python 3.1 and later. Otherwise, ``float_repr_style`` has value
``'legacy'`` and ``repr(x)`` behaves in the same way as it did in
versions of Python prior to 3.1.
.. versionadded:: 3.1
.. function:: getcheckinterval()
Return the interpreter's "check interval"; see :func:`setcheckinterval`.
......
......@@ -657,3 +657,35 @@ The :mod:`select` and contains the following notice for the kqueue interface::
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
strtod and dtoa
---------------
The file :file:`Python/dtoa.c`, which supplies C functions dtoa and
strtod for conversion of C doubles to and from strings, is derived
from the file of the same name by David M. Gay, currently available
from http://www.netlib.org/fp/. The original file, as retrieved on
March 16, 2009, contains the following copyright and licensing
notice::
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
......@@ -118,6 +118,7 @@
#include "pystrtod.h"
#include "pystrcmp.h"
#include "dtoa.h"
/* _Py_Mangle is defined in compile.c */
PyAPI_FUNC(PyObject*) _Py_Mangle(PyObject *p, PyObject *name);
......
#ifndef PY_NO_SHORT_FLOAT_REPR
#ifdef __cplusplus
extern "C" {
#endif
PyAPI_FUNC(double) _Py_dg_strtod(const char *str, char **ptr);
PyAPI_FUNC(char *) _Py_dg_dtoa(double d, int mode, int ndigits,
int *decpt, int *sign, char **rve);
PyAPI_FUNC(void) _Py_dg_freedtoa(char *s);
#ifdef __cplusplus
}
#endif
#endif
......@@ -17,6 +17,9 @@
# undef SIZEOF_VOID_P
# undef SIZEOF__BOOL
# undef WORDS_BIGENDIAN
# undef DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754
# undef DOUBLE_IS_BIG_ENDIAN_IEEE754
# undef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
# undef VA_LIST_IS_ARRAY
# if defined(__LP64__) && defined(__x86_64__)
......@@ -65,6 +68,9 @@
#ifdef __BIG_ENDIAN__
#define WORDS_BIGENDIAN 1
#define DOUBLE_IS_BIG_ENDIAN_IEEE754
#else
#define DOUBLE_IS_LITTLE_ENDIAN_IEEE754
#endif /* __BIG_ENDIAN */
......
......@@ -92,6 +92,11 @@ PyAPI_FUNC(double) _Py_force_double(double);
# endif
#endif
#ifdef HAVE_GCC_ASM_FOR_X87
PyAPI_FUNC(unsigned short) _Py_get_387controlword(void);
PyAPI_FUNC(void) _Py_set_387controlword(unsigned short);
#endif
/* Py_IS_NAN(X)
* Return 1 if float or double arg is a NaN, else 0.
* Caution:
......
......@@ -465,6 +465,53 @@ extern "C" {
errno = 0; \
} while(0)
/* The functions _Py_dg_strtod and _Py_dg_dtoa in Python/dtoa.c require that
the FPU is using 53-bit precision. Here are macros that force this. See
Python/pystrtod.c for an example of their use. */
#ifdef USING_X87_FPU
#define _Py_SET_53BIT_PRECISION_HEADER \
unsigned short old_387controlword, new_387controlword
#define _Py_SET_53BIT_PRECISION_START \
do { \
old_387controlword = _Py_get_387controlword(); \
new_387controlword = (old_387controlword & ~0x0f00) | 0x0200; \
if (new_387controlword != old_387controlword) \
_Py_set_387controlword(new_387controlword); \
} while (0)
#define _Py_SET_53BIT_PRECISION_END \
if (new_387controlword != old_387controlword) \
_Py_set_387controlword(old_387controlword)
#else
#define _Py_SET_53BIT_PRECISION_HEADER
#define _Py_SET_53BIT_PRECISION_START
#define _Py_SET_53BIT_PRECISION_END
#endif
/* If we can't guarantee 53-bit precision, don't use the code
in Python/dtoa.c, but fall back to standard code. This
means that repr of a float will be long (17 sig digits).
Realistically, there are two things that could go wrong:
(1) doubles aren't IEEE 754 doubles, or
(2) we're on x86 with the rounding precision set to 64-bits
(extended precision), and we don't know how to change
the rounding precision.
*/
#if !defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) && \
!defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) && \
!defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
#define PY_NO_SHORT_FLOAT_REPR
#endif
/* double rounding is symptomatic of use of extended precision on x86 */
#ifdef X87_DOUBLE_ROUNDING
#define PY_NO_SHORT_FLOAT_REPR
#endif
/* Py_DEPRECATED(version)
* Declare a variable, type, or function deprecated.
* Usage:
......
-- 'f' code formatting, with explicit precision (>= 0). Output always
-- has the given number of places after the point; zeros are added if
-- necessary to make this true.
-- zeros
%.0f 0 -> 0
%.1f 0 -> 0.0
%.2f 0 -> 0.00
%.3f 0 -> 0.000
%.50f 0 -> 0.00000000000000000000000000000000000000000000000000
-- precision 0; result should never include a .
%.0f 1.5 -> 2
%.0f 2.5 -> 2
%.0f 3.5 -> 4
%.0f 0.0 -> 0
%.0f 0.1 -> 0
%.0f 0.001 -> 0
%.0f 10.0 -> 10
%.0f 10.1 -> 10
%.0f 10.01 -> 10
%.0f 123.456 -> 123
%.0f 1234.56 -> 1235
%.0f 1e49 -> 9999999999999999464902769475481793196872414789632
-- %.0f 1e50 -> 100000000000000007629769841091887003294964970946560
%.0f 9.9999999999999987e+49 -> 99999999999999986860582406952576489172979654066176
-- precision 1
%.1f 0.0001 -> 0.0
%.1f 0.001 -> 0.0
%.1f 0.01 -> 0.0
%.1f 0.04 -> 0.0
%.1f 0.06 -> 0.1
%.1f 0.25 -> 0.2
%.1f 0.75 -> 0.8
%.1f 1.4 -> 1.4
%.1f 1.5 -> 1.5
%.1f 10.0 -> 10.0
%.1f 1000.03 -> 1000.0
%.1f 1234.5678 -> 1234.6
%.1f 1234.7499 -> 1234.7
%.1f 1234.75 -> 1234.8
-- precision 2
%.2f 0.0001 -> 0.00
%.2f 0.001 -> 0.00
%.2f 0.004999 -> 0.00
%.2f 0.005001 -> 0.01
%.2f 0.01 -> 0.01
%.2f 0.125 -> 0.12
%.2f 0.375 -> 0.38
%.2f 1234500 -> 1234500.00
%.2f 1234560 -> 1234560.00
%.2f 1234567 -> 1234567.00
%.2f 1234567.8 -> 1234567.80
%.2f 1234567.89 -> 1234567.89
%.2f 1234567.891 -> 1234567.89
%.2f 1234567.8912 -> 1234567.89
-- alternate form always includes a decimal point. This only
-- makes a difference when the precision is 0.
%#.0f 0 -> 0.
%#.1f 0 -> 0.0
%#.0f 1.5 -> 2.
%#.0f 2.5 -> 2.
%#.0f 10.1 -> 10.
%#.0f 1234.56 -> 1235.
%#.1f 1.4 -> 1.4
%#.2f 0.375 -> 0.38
-- if precision is omitted it defaults to 6
%f 0 -> 0.000000
%f 1230000 -> 1230000.000000
%f 1234567 -> 1234567.000000
%f 123.4567 -> 123.456700
%f 1.23456789 -> 1.234568
%f 0.00012 -> 0.000120
%f 0.000123 -> 0.000123
%f 0.00012345 -> 0.000123
%f 0.000001 -> 0.000001
%f 0.0000005001 -> 0.000001
%f 0.0000004999 -> 0.000000
-- 'e' code formatting with explicit precision (>= 0). Output should
-- always have exactly the number of places after the point that were
-- requested.
-- zeros
%.0e 0 -> 0e+00
%.1e 0 -> 0.0e+00
%.2e 0 -> 0.00e+00
%.10e 0 -> 0.0000000000e+00
%.50e 0 -> 0.00000000000000000000000000000000000000000000000000e+00
-- precision 0. no decimal point in the output
%.0e 0.01 -> 1e-02
%.0e 0.1 -> 1e-01
%.0e 1 -> 1e+00
%.0e 10 -> 1e+01
%.0e 100 -> 1e+02
%.0e 0.012 -> 1e-02
%.0e 0.12 -> 1e-01
%.0e 1.2 -> 1e+00
%.0e 12 -> 1e+01
%.0e 120 -> 1e+02
%.0e 123.456 -> 1e+02
%.0e 0.000123456 -> 1e-04
%.0e 123456000 -> 1e+08
%.0e 0.5 -> 5e-01
%.0e 1.4 -> 1e+00
%.0e 1.5 -> 2e+00
%.0e 1.6 -> 2e+00
%.0e 2.4999999 -> 2e+00
%.0e 2.5 -> 2e+00
%.0e 2.5000001 -> 3e+00
%.0e 3.499999999999 -> 3e+00
%.0e 3.5 -> 4e+00
%.0e 4.5 -> 4e+00
%.0e 5.5 -> 6e+00
%.0e 6.5 -> 6e+00
%.0e 7.5 -> 8e+00
%.0e 8.5 -> 8e+00
%.0e 9.4999 -> 9e+00
%.0e 9.5 -> 1e+01
%.0e 10.5 -> 1e+01
%.0e 14.999 -> 1e+01
%.0e 15 -> 2e+01
-- precision 1
%.1e 0.0001 -> 1.0e-04
%.1e 0.001 -> 1.0e-03
%.1e 0.01 -> 1.0e-02
%.1e 0.1 -> 1.0e-01
%.1e 1 -> 1.0e+00
%.1e 10 -> 1.0e+01
%.1e 100 -> 1.0e+02
%.1e 120 -> 1.2e+02
%.1e 123 -> 1.2e+02
%.1e 123.4 -> 1.2e+02
-- precision 2
%.2e 0.00013 -> 1.30e-04
%.2e 0.000135 -> 1.35e-04
%.2e 0.0001357 -> 1.36e-04
%.2e 0.0001 -> 1.00e-04
%.2e 0.001 -> 1.00e-03
%.2e 0.01 -> 1.00e-02
%.2e 0.1 -> 1.00e-01
%.2e 1 -> 1.00e+00
%.2e 10 -> 1.00e+01
%.2e 100 -> 1.00e+02
%.2e 1000 -> 1.00e+03
%.2e 1500 -> 1.50e+03
%.2e 1590 -> 1.59e+03
%.2e 1598 -> 1.60e+03
%.2e 1598.7 -> 1.60e+03
%.2e 1598.76 -> 1.60e+03
%.2e 9999 -> 1.00e+04
-- omitted precision defaults to 6
%e 0 -> 0.000000e+00
%e 165 -> 1.650000e+02
%e 1234567 -> 1.234567e+06
%e 12345678 -> 1.234568e+07
%e 1.1 -> 1.100000e+00
-- alternate form always contains a decimal point. This only makes
-- a difference when precision is 0.
%#.0e 0.01 -> 1.e-02
%#.0e 0.1 -> 1.e-01
%#.0e 1 -> 1.e+00
%#.0e 10 -> 1.e+01
%#.0e 100 -> 1.e+02
%#.0e 0.012 -> 1.e-02
%#.0e 0.12 -> 1.e-01
%#.0e 1.2 -> 1.e+00
%#.0e 12 -> 1.e+01
%#.0e 120 -> 1.e+02
%#.0e 123.456 -> 1.e+02
%#.0e 0.000123456 -> 1.e-04
%#.0e 123456000 -> 1.e+08
%#.0e 0.5 -> 5.e-01
%#.0e 1.4 -> 1.e+00
%#.0e 1.5 -> 2.e+00
%#.0e 1.6 -> 2.e+00
%#.0e 2.4999999 -> 2.e+00
%#.0e 2.5 -> 2.e+00
%#.0e 2.5000001 -> 3.e+00
%#.0e 3.499999999999 -> 3.e+00
%#.0e 3.5 -> 4.e+00
%#.0e 4.5 -> 4.e+00
%#.0e 5.5 -> 6.e+00
%#.0e 6.5 -> 6.e+00
%#.0e 7.5 -> 8.e+00
%#.0e 8.5 -> 8.e+00
%#.0e 9.4999 -> 9.e+00
%#.0e 9.5 -> 1.e+01
%#.0e 10.5 -> 1.e+01
%#.0e 14.999 -> 1.e+01
%#.0e 15 -> 2.e+01
%#.1e 123.4 -> 1.2e+02
%#.2e 0.0001357 -> 1.36e-04
-- 'g' code formatting.
-- zeros
%.0g 0 -> 0
%.1g 0 -> 0
%.2g 0 -> 0
%.3g 0 -> 0
%.4g 0 -> 0
%.10g 0 -> 0
%.50g 0 -> 0
%.100g 0 -> 0
-- precision 0 doesn't make a lot of sense for the 'g' code (what does
-- it mean to have no significant digits?); in practice, it's interpreted
-- as identical to precision 1
%.0g 1000 -> 1e+03
%.0g 100 -> 1e+02
%.0g 10 -> 1e+01
%.0g 1 -> 1
%.0g 0.1 -> 0.1
%.0g 0.01 -> 0.01
%.0g 1e-3 -> 0.001
%.0g 1e-4 -> 0.0001
%.0g 1e-5 -> 1e-05
%.0g 1e-6 -> 1e-06
%.0g 12 -> 1e+01
%.0g 120 -> 1e+02
%.0g 1.2 -> 1
%.0g 0.12 -> 0.1
%.0g 0.012 -> 0.01
%.0g 0.0012 -> 0.001
%.0g 0.00012 -> 0.0001
%.0g 0.000012 -> 1e-05
%.0g 0.0000012 -> 1e-06
-- precision 1 identical to precision 0
%.1g 1000 -> 1e+03
%.1g 100 -> 1e+02
%.1g 10 -> 1e+01
%.1g 1 -> 1
%.1g 0.1 -> 0.1
%.1g 0.01 -> 0.01
%.1g 1e-3 -> 0.001
%.1g 1e-4 -> 0.0001
%.1g 1e-5 -> 1e-05
%.1g 1e-6 -> 1e-06
%.1g 12 -> 1e+01
%.1g 120 -> 1e+02
%.1g 1.2 -> 1
%.1g 0.12 -> 0.1
%.1g 0.012 -> 0.01
%.1g 0.0012 -> 0.001
%.1g 0.00012 -> 0.0001
%.1g 0.000012 -> 1e-05
%.1g 0.0000012 -> 1e-06
-- precision 2
%.2g 1000 -> 1e+03
%.2g 100 -> 1e+02
%.2g 10 -> 10
%.2g 1 -> 1
%.2g 0.1 -> 0.1
%.2g 0.01 -> 0.01
%.2g 0.001 -> 0.001
%.2g 1e-4 -> 0.0001
%.2g 1e-5 -> 1e-05
%.2g 1e-6 -> 1e-06
%.2g 1234 -> 1.2e+03
%.2g 123 -> 1.2e+02
%.2g 12.3 -> 12
%.2g 1.23 -> 1.2
%.2g 0.123 -> 0.12
%.2g 0.0123 -> 0.012
%.2g 0.00123 -> 0.0012
%.2g 0.000123 -> 0.00012
%.2g 0.0000123 -> 1.2e-05
-- alternate g formatting: always include decimal point and
-- exactly <precision> significant digits.
%#.0g 0 -> 0.
%#.1g 0 -> 0.
%#.2g 0 -> 0.0
%#.3g 0 -> 0.00
%#.4g 0 -> 0.000
%#.0g 0.2 -> 0.2
%#.1g 0.2 -> 0.2
%#.2g 0.2 -> 0.20
%#.3g 0.2 -> 0.200
%#.4g 0.2 -> 0.2000
%#.10g 0.2 -> 0.2000000000
%#.0g 2 -> 2.
%#.1g 2 -> 2.
%#.2g 2 -> 2.0
%#.3g 2 -> 2.00
%#.4g 2 -> 2.000
%#.0g 20 -> 2.e+01
%#.1g 20 -> 2.e+01
%#.2g 20 -> 20.
%#.3g 20 -> 20.0
%#.4g 20 -> 20.00
%#.0g 234.56 -> 2.e+02
%#.1g 234.56 -> 2.e+02
%#.2g 234.56 -> 2.3e+02
%#.3g 234.56 -> 235.
%#.4g 234.56 -> 234.6
%#.5g 234.56 -> 234.56
%#.6g 234.56 -> 234.560
-- for repr formatting see the separate test_short_repr test in
-- test_float.py. Not all platforms use short repr for floats.
-- str formatting. Result always includes decimal point and at
-- least one digit after the point, or an exponent.
%s 0 -> 0.0
%s 1 -> 1.0
%s 0.01 -> 0.01
%s 0.02 -> 0.02
%s 0.03 -> 0.03
%s 0.04 -> 0.04
%s 0.05 -> 0.05
-- str truncates to 12 significant digits
%s 1.234123412341 -> 1.23412341234
%s 1.23412341234 -> 1.23412341234
%s 1.2341234123 -> 1.2341234123
-- values >= 1e11 get an exponent
%s 10 -> 10.0
%s 100 -> 100.0
%s 1e10 -> 10000000000.0
%s 9.999e10 -> 99990000000.0
%s 99999999999 -> 99999999999.0
%s 1e11 -> 1e+11
%s 1e12 -> 1e+12
-- as do values < 1e-4
%s 1e-3 -> 0.001
%s 1.001e-4 -> 0.0001001
%s 1.000000000001e-4 -> 0.0001
%s 1.00000000001e-4 -> 0.000100000000001
%s 1.0000000001e-4 -> 0.00010000000001
%s 1e-4 -> 0.0001
%s 0.999999999999e-4 -> 9.99999999999e-05
%s 0.999e-4 -> 9.99e-05
%s 1e-5 -> 1e-05
......@@ -305,6 +305,7 @@ PYTHON_OBJS= \
Python/getopt.o \
Python/pystrcmp.o \
Python/pystrtod.o \
Python/dtoa.o \
Python/formatter_unicode.o \
Python/$(DYNLOADFILE) \
$(LIBOBJS) \
......@@ -621,6 +622,7 @@ PYTHON_HEADERS= \
Include/complexobject.h \
Include/descrobject.h \
Include/dictobject.h \
Include/dtoa.h \
Include/enumobject.h \
Include/errcode.h \
Include/eval.h \
......
......@@ -160,6 +160,7 @@ Scott David Daniels
Ben Darnell
Jonathan Dasteel
John DeGood
Ned Deily
Vincent Delft
Arnaud Delobelle
Erik Demaine
......
......@@ -12,6 +12,45 @@ What's New in Python 3.1 beta 1?
Core and Builtins
-----------------
- The repr function switches to exponential notation at 1e16, not 1e17
as it did before. This change applies to both 'short' and legacy
float repr styles. For the new repr style, it avoids misleading
output in some cases: an example is repr(2e16+8), which gives
'2.000000000000001e+16'; without this change it would have produced
'20000000000000010.0' instead.
- Similarly, the str function switches to exponential notation at
1e11, not 1e12. This avoids printing 13 significant digits in
situations where only 12 of them are correct. Example problem
value: str(1e11 + 0.5). (This minor issue has existed in 2.x for a
long time.)
- On x86, SSE2 instructions for floating-point are automatically
detected and, where possible, enabled on platforms using the gcc
compiler. As a consequence, some arithmetic operations may have
different (more accurate!) results on some platforms, and
cross-platform consistency of Python arithmetic should be improved.
This applies particularly to Linux/x86.
- Issue #1580: On most platforms, use a 'short' float repr: for a
finite float x, repr(x) now outputs a string based on the shortest
sequence of decimal digits that rounds to x. Previous behaviour was
to output 17 significant digits and then strip trailing zeros.
There's a new sys attribute sys.float_repr_style, which takes
the value 'short' to indicate that we're using short float repr,
and 'legacy' if the short float repr isn't available for one
reason or another.
The float repr change involves incorporating David Gay's 'perfect
rounding' code into the Python core (it's in Python/dtoa.c). As a
secondary consequence, all string-to-float and float-to-string
conversions (including all float formatting operations) will be
correctly rounded on these platforms.
See issue 1580 discussions for details of platforms for which
this change does not apply.
- Issue #5759: float() didn't call __float__ on str subclasses.
- The string.maketrans() function is deprecated; there is a new static method
......
......@@ -752,4 +752,8 @@ Py_NO_ENABLE_SHARED to find out. Also support MS_NO_COREDLL for b/w compat */
socket handles greater than FD_SETSIZE */
#define Py_SOCKET_FD_CAN_BE_GE_FD_SETSIZE
/* Define if C doubles are 64-bit IEEE 754 binary format, stored with the
least significant byte first */
#define DOUBLE_IS_LITTLE_ENDIAN_IEEE754 1
#endif /* !Py_CONFIG_H */
......@@ -894,6 +894,10 @@
RelativePath="..\Include\pystrtod.h"
>
</File>
<File
RelativePath="..\Include\dtoa.h"
>
</File>
<File
RelativePath="..\Include\Python-ast.h"
>
......@@ -1746,6 +1750,10 @@
RelativePath="..\Python\pystrtod.c"
>
</File>
<File
RelativePath="..\Python\dtoa.c"
>
</File>
<File
RelativePath="..\Python\Python-ast.c"
>
......
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
/****************************************************************
* This is dtoa.c by David M. Gay, downloaded from
* http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
* inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
* The major modifications are as follows:
*
* 0. The original code has been specialized to Python's needs by removing
* many of the #ifdef'd sections. In particular, code to support VAX and
* IBM floating-point formats, hex NaNs, hex floats, locale-aware
* treatment of the decimal point, and setting of the inexact flag have
* been removed.
*
* 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
*
* 2. The public functions strtod, dtoa and freedtoa all now have
* a _Py_dg_ prefix.
*
* 3. Instead of assuming that PyMem_Malloc always succeeds, we thread
* PyMem_Malloc failures through the code. The functions
*
* Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
*
* of return type *Bigint all return NULL to indicate a malloc failure.
* Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
* failure. bigcomp now has return type int (it used to be void) and
* returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL
* on failure. _Py_dg_strtod indicates failure due to malloc failure
* by returning -1.0, setting errno=ENOMEM and *se to s00.
*
* 4. The static variable dtoa_result has been removed. Callers of
* _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
* the memory allocated by _Py_dg_dtoa.
*
* 5. The code has been reformatted to better fit with Python's
* C style guide (PEP 7).
*
***************************************************************/
/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
* at acm dot org, with " at " changed at "@" and " dot " changed to ".").
* Please report bugs for this modified version using the Python issue tracker
* (http://bugs.python.org). */
/* On a machine with IEEE extended-precision registers, it is
* necessary to specify double-precision (53-bit) rounding precision
* before invoking strtod or dtoa. If the machine uses (the equivalent
* of) Intel 80x87 arithmetic, the call
* _control87(PC_53, MCW_PC);
* does this with many compilers. Whether this or another call is
* appropriate depends on the compiler; for this to work, it may be
* necessary to #include "float.h" or another system-dependent header
* file.
*/
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
*
* This strtod returns a nearest machine number to the input decimal
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are
* broken by the IEEE round-even rule. Otherwise ties are broken by
* biased rounding (add half and chop).
*
* Inspired loosely by William D. Clinger's paper "How to Read Floating
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
*
* Modifications:
*
* 1. We only require IEEE, IBM, or VAX double-precision
* arithmetic (not IEEE double-extended).
* 2. We get by with floating-point arithmetic in a case that
* Clinger missed -- when we're computing d * 10^n
* for a small integer d and the integer n is not too
* much larger than 22 (the maximum integer k for which
* we can represent 10^k exactly), we may be able to
* compute (d*10^k) * 10^(e-k) with just one roundoff.
* 3. Rather than a bit-at-a-time adjustment of the binary
* result in the hard case, we use floating-point
* arithmetic to determine the adjustment to within
* one bit; only in really hard cases do we need to
* compute a second residual.
* 4. Because of 3., we don't need a large table of powers of 10
* for ten-to-e (just some small tables, e.g. of 10^k
* for 0 <= k <= 22).
*/
/* Linking of Python's #defines to Gay's #defines starts here. */
#include "Python.h"
/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
the following code */
#ifndef PY_NO_SHORT_FLOAT_REPR
#include "float.h"
#define MALLOC PyMem_Malloc
#define FREE PyMem_Free
/* This code should also work for ARM mixed-endian format on little-endian
machines, where doubles have byte order 45670123 (in increasing address
order, 0 being the least significant byte). */
#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
# define IEEE_8087
#endif
#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \
defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
# define IEEE_MC68k
#endif
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
#endif
/* The code below assumes that the endianness of integers matches the
endianness of the two 32-bit words of a double. Check this. */
#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
#error "doubles and ints have incompatible endianness"
#endif
#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
#error "doubles and ints have incompatible endianness"
#endif
#if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T)
typedef PY_UINT32_T ULong;
typedef PY_INT32_T Long;
#else
#error "Failed to find an exact-width 32-bit integer type"
#endif
#if defined(HAVE_UINT64_T)
#define ULLong PY_UINT64_T
#else
#undef ULLong
#endif
#undef DEBUG
#ifdef Py_DEBUG
#define DEBUG
#endif
/* End Python #define linking */
#ifdef DEBUG
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
#endif
#ifndef PRIVATE_MEM
#define PRIVATE_MEM 2304
#endif
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
#ifdef __cplusplus
extern "C" {
#endif
typedef union { double d; ULong L[2]; } U;
#ifdef IEEE_8087
#define word0(x) (x)->L[1]
#define word1(x) (x)->L[0]
#else
#define word0(x) (x)->L[0]
#define word1(x) (x)->L[1]
#endif
#define dval(x) (x)->d
#ifndef STRTOD_DIGLIM
#define STRTOD_DIGLIM 40
#endif
#ifdef DIGLIM_DEBUG
extern int strtod_diglim;
#else
#define strtod_diglim STRTOD_DIGLIM
#endif
/* The following definition of Storeinc is appropriate for MIPS processors.
* An alternative that might be better on some machines is
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
*/
#if defined(IEEE_8087)
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
((unsigned short *)a)[0] = (unsigned short)c, a++)
#else
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
((unsigned short *)a)[1] = (unsigned short)c, a++)
#endif
/* #define P DBL_MANT_DIG */
/* Ten_pmax = floor(P*log(2)/log(5)) */
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
#define Exp_shift 20
#define Exp_shift1 20
#define Exp_msk1 0x100000
#define Exp_msk11 0x100000
#define Exp_mask 0x7ff00000
#define P 53
#define Nbits 53
#define Bias 1023
#define Emax 1023
#define Emin (-1022)
#define Exp_1 0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask 0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask 0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
#ifndef Flt_Rounds
#ifdef FLT_ROUNDS
#define Flt_Rounds FLT_ROUNDS
#else
#define Flt_Rounds 1
#endif
#endif /*Flt_Rounds*/
#define Rounding Flt_Rounds
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff
#ifndef NAN_WORD0
#define NAN_WORD0 0x7ff80000
#endif
#ifndef NAN_WORD1
#define NAN_WORD1 0
#endif
/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
typedef struct BCinfo BCinfo;
struct
BCinfo {
int dp0, dp1, dplen, dsign, e0, inexact;
int nd, nd0, rounding, scale, uflchk;
};
#define FFFFFFFF 0xffffffffUL
#define Kmax 7
/* struct Bigint is used to represent arbitrary-precision integers. These
integers are stored in sign-magnitude format, with the magnitude stored as
an array of base 2**32 digits. Bigints are always normalized: if x is a
Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
The Bigint fields are as follows:
- next is a header used by Balloc and Bfree to keep track of lists
of freed Bigints; it's also used for the linked list of
powers of 5 of the form 5**2**i used by pow5mult.
- k indicates which pool this Bigint was allocated from
- maxwds is the maximum number of words space was allocated for
(usually maxwds == 2**k)
- sign is 1 for negative Bigints, 0 for positive. The sign is unused
(ignored on inputs, set to 0 on outputs) in almost all operations
involving Bigints: a notable exception is the diff function, which
ignores signs on inputs but sets the sign of the output correctly.
- wds is the actual number of significant words
- x contains the vector of words (digits) for this Bigint, from least
significant (x[0]) to most significant (x[wds-1]).
*/
struct
Bigint {
struct Bigint *next;
int k, maxwds, sign, wds;
ULong x[1];
};
typedef struct Bigint Bigint;
/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
1 << k. These pools are maintained as linked lists, with freelist[k]
pointing to the head of the list for pool k.
On allocation, if there's no free slot in the appropriate pool, MALLOC is
called to get more memory. This memory is not returned to the system until
Python quits. There's also a private memory pool that's allocated from
in preference to using MALLOC.
For Bigints with more than (1 << Kmax) digits (which implies at least 1233
decimal digits), memory is directly allocated using MALLOC, and freed using
FREE.
XXX: it would be easy to bypass this memory-management system and
translate each call to Balloc into a call to PyMem_Malloc, and each
Bfree to PyMem_Free. Investigate whether this has any significant
performance on impact. */
static Bigint *freelist[Kmax+1];
/* Allocate space for a Bigint with up to 1<<k digits */
static Bigint *
Balloc(int k)
{
int x;
Bigint *rv;
unsigned int len;
if (k <= Kmax && (rv = freelist[k]))
freelist[k] = rv->next;
else {
x = 1 << k;
len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
/sizeof(double);
if (pmem_next - private_mem + len <= PRIVATE_mem) {
rv = (Bigint*)pmem_next;
pmem_next += len;
}
else {
rv = (Bigint*)MALLOC(len*sizeof(double));
if (rv == NULL)
return NULL;
}
rv->k = k;
rv->maxwds = x;
}
rv->sign = rv->wds = 0;
return rv;
}
/* Free a Bigint allocated with Balloc */
static void
Bfree(Bigint *v)
{
if (v) {
if (v->k > Kmax)
FREE((void*)v);
else {
v->next = freelist[v->k];
freelist[v->k] = v;
}
}
}
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
y->wds*sizeof(Long) + 2*sizeof(int))
/* Multiply a Bigint b by m and add a. Either modifies b in place and returns
a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
On failure, return NULL. In this case, b will have been already freed. */
static Bigint *
multadd(Bigint *b, int m, int a) /* multiply by m and add a */
{
int i, wds;
#ifdef ULLong
ULong *x;
ULLong carry, y;
#else
ULong carry, *x, y;
ULong xi, z;
#endif
Bigint *b1;
wds = b->wds;
x = b->x;
i = 0;
carry = a;
do {
#ifdef ULLong
y = *x * (ULLong)m + carry;
carry = y >> 32;
*x++ = y & FFFFFFFF;
#else
xi = *x;
y = (xi & 0xffff) * m + carry;
z = (xi >> 16) * m + (y >> 16);
carry = z >> 16;
*x++ = (z << 16) + (y & 0xffff);
#endif
}
while(++i < wds);
if (carry) {
if (wds >= b->maxwds) {
b1 = Balloc(b->k+1);
if (b1 == NULL){
Bfree(b);
return NULL;
}
Bcopy(b1, b);
Bfree(b);
b = b1;
}
b->x[wds++] = (ULong)carry;
b->wds = wds;
}
return b;
}
/* convert a string s containing nd decimal digits (possibly containing a
decimal separator at position nd0, which is ignored) to a Bigint. This
function carries on where the parsing code in _Py_dg_strtod leaves off: on
entry, y9 contains the result of converting the first 9 digits. Returns
NULL on failure. */
static Bigint *
s2b(const char *s, int nd0, int nd, ULong y9, int dplen)
{
Bigint *b;
int i, k;
Long x, y;
x = (nd + 8) / 9;
for(k = 0, y = 1; x > y; y <<= 1, k++) ;
b = Balloc(k);
if (b == NULL)
return NULL;
b->x[0] = y9;
b->wds = 1;
i = 9;
if (9 < nd0) {
s += 9;
do {
b = multadd(b, 10, *s++ - '0');
if (b == NULL)
return NULL;
} while(++i < nd0);
s += dplen;
}
else
s += dplen + 9;
for(; i < nd; i++) {
b = multadd(b, 10, *s++ - '0');
if (b == NULL)
return NULL;
}
return b;
}
/* count leading 0 bits in the 32-bit integer x. */
static int
hi0bits(ULong x)
{
int k = 0;
if (!(x & 0xffff0000)) {
k = 16;
x <<= 16;
}
if (!(x & 0xff000000)) {
k += 8;
x <<= 8;
}
if (!(x & 0xf0000000)) {
k += 4;
x <<= 4;
}
if (!(x & 0xc0000000)) {
k += 2;
x <<= 2;
}
if (!(x & 0x80000000)) {
k++;
if (!(x & 0x40000000))
return 32;
}
return k;
}
/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
number of bits. */
static int
lo0bits(ULong *y)
{
int k;
ULong x = *y;
if (x & 7) {
if (x & 1)
return 0;
if (x & 2) {
*y = x >> 1;
return 1;
}
*y = x >> 2;
return 2;
}
k = 0;
if (!(x & 0xffff)) {
k = 16;
x >>= 16;
}
if (!(x & 0xff)) {
k += 8;
x >>= 8;
}
if (!(x & 0xf)) {
k += 4;
x >>= 4;
}
if (!(x & 0x3)) {
k += 2;
x >>= 2;
}
if (!(x & 1)) {
k++;
x >>= 1;
if (!x)
return 32;
}
*y = x;
return k;
}
/* convert a small nonnegative integer to a Bigint */
static Bigint *
i2b(int i)
{
Bigint *b;
b = Balloc(1);
if (b == NULL)
return NULL;
b->x[0] = i;
b->wds = 1;
return b;
}
/* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores
the signs of a and b. */
static Bigint *
mult(Bigint *a, Bigint *b)
{
Bigint *c;
int k, wa, wb, wc;
ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
ULong y;
#ifdef ULLong
ULLong carry, z;
#else
ULong carry, z;
ULong z2;
#endif
if (a->wds < b->wds) {
c = a;
a = b;
b = c;
}
k = a->k;
wa = a->wds;
wb = b->wds;
wc = wa + wb;
if (wc > a->maxwds)
k++;
c = Balloc(k);
if (c == NULL)
return NULL;
for(x = c->x, xa = x + wc; x < xa; x++)
*x = 0;
xa = a->x;
xae = xa + wa;
xb = b->x;
xbe = xb + wb;
xc0 = c->x;
#ifdef ULLong
for(; xb < xbe; xc0++) {
if ((y = *xb++)) {
x = xa;
xc = xc0;
carry = 0;
do {
z = *x++ * (ULLong)y + *xc + carry;
carry = z >> 32;
*xc++ = z & FFFFFFFF;
}
while(x < xae);
*xc = (ULong)carry;
}
}
#else
for(; xb < xbe; xb++, xc0++) {
if (y = *xb & 0xffff) {
x = xa;
xc = xc0;
carry = 0;
do {
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
carry = z >> 16;
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
carry = z2 >> 16;
Storeinc(xc, z2, z);
}
while(x < xae);
*xc = carry;
}
if (y = *xb >> 16) {
x = xa;
xc = xc0;
carry = 0;
z2 = *xc;
do {
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
carry = z >> 16;
Storeinc(xc, z, z2);
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
carry = z2 >> 16;
}
while(x < xae);
*xc = z2;
}
}
#endif
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
c->wds = wc;
return c;
}
/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
static Bigint *p5s;
/* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on
failure; if the returned pointer is distinct from b then the original
Bigint b will have been Bfree'd. Ignores the sign of b. */
static Bigint *
pow5mult(Bigint *b, int k)
{
Bigint *b1, *p5, *p51;
int i;
static int p05[3] = { 5, 25, 125 };
if ((i = k & 3)) {
b = multadd(b, p05[i-1], 0);
if (b == NULL)
return NULL;
}
if (!(k >>= 2))
return b;
p5 = p5s;
if (!p5) {
/* first time */
p5 = i2b(625);
if (p5 == NULL) {
Bfree(b);
return NULL;
}
p5s = p5;
p5->next = 0;
}
for(;;) {
if (k & 1) {
b1 = mult(b, p5);
Bfree(b);
b = b1;
if (b == NULL)
return NULL;
}
if (!(k >>= 1))
break;
p51 = p5->next;
if (!p51) {
p51 = mult(p5,p5);
if (p51 == NULL) {
Bfree(b);
return NULL;
}
p51->next = 0;
p5->next = p51;
}
p5 = p51;
}
return b;
}
/* shift a Bigint b left by k bits. Return a pointer to the shifted result,
or NULL on failure. If the returned pointer is distinct from b then the
original b will have been Bfree'd. Ignores the sign of b. */
static Bigint *
lshift(Bigint *b, int k)
{
int i, k1, n, n1;
Bigint *b1;
ULong *x, *x1, *xe, z;
n = k >> 5;
k1 = b->k;
n1 = n + b->wds + 1;
for(i = b->maxwds; n1 > i; i <<= 1)
k1++;
b1 = Balloc(k1);
if (b1 == NULL) {
Bfree(b);
return NULL;
}
x1 = b1->x;
for(i = 0; i < n; i++)
*x1++ = 0;
x = b->x;
xe = x + b->wds;
if (k &= 0x1f) {
k1 = 32 - k;
z = 0;
do {
*x1++ = *x << k | z;
z = *x++ >> k1;
}
while(x < xe);
if ((*x1 = z))
++n1;
}
else do
*x1++ = *x++;
while(x < xe);
b1->wds = n1 - 1;
Bfree(b);
return b1;
}
/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
1 if a > b. Ignores signs of a and b. */
static int
cmp(Bigint *a, Bigint *b)
{
ULong *xa, *xa0, *xb, *xb0;
int i, j;
i = a->wds;
j = b->wds;
#ifdef DEBUG
if (i > 1 && !a->x[i-1])
Bug("cmp called with a->x[a->wds-1] == 0");
if (j > 1 && !b->x[j-1])
Bug("cmp called with b->x[b->wds-1] == 0");
#endif
if (i -= j)
return i;
xa0 = a->x;
xa = xa0 + j;
xb0 = b->x;
xb = xb0 + j;
for(;;) {
if (*--xa != *--xb)
return *xa < *xb ? -1 : 1;
if (xa <= xa0)
break;
}
return 0;
}
/* Take the difference of Bigints a and b, returning a new Bigint. Returns
NULL on failure. The signs of a and b are ignored, but the sign of the
result is set appropriately. */
static Bigint *
diff(Bigint *a, Bigint *b)
{
Bigint *c;
int i, wa, wb;
ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef ULLong
ULLong borrow, y;
#else
ULong borrow, y;
ULong z;
#endif
i = cmp(a,b);
if (!i) {
c = Balloc(0);
if (c == NULL)
return NULL;
c->wds = 1;
c->x[0] = 0;
return c;
}
if (i < 0) {
c = a;
a = b;
b = c;
i = 1;
}
else
i = 0;
c = Balloc(a->k);
if (c == NULL)
return NULL;
c->sign = i;
wa = a->wds;
xa = a->x;
xae = xa + wa;
wb = b->wds;
xb = b->x;
xbe = xb + wb;
xc = c->x;
borrow = 0;
#ifdef ULLong
do {
y = (ULLong)*xa++ - *xb++ - borrow;
borrow = y >> 32 & (ULong)1;
*xc++ = y & FFFFFFFF;
}
while(xb < xbe);
while(xa < xae) {
y = *xa++ - borrow;
borrow = y >> 32 & (ULong)1;
*xc++ = y & FFFFFFFF;
}
#else
do {
y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(xc, z, y);
}
while(xb < xbe);
while(xa < xae) {
y = (*xa & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*xa++ >> 16) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(xc, z, y);
}
#endif
while(!*--xc)
wa--;
c->wds = wa;
return c;
}
/* Given a positive normal double x, return the difference between x and the next
double up. Doesn't give correct results for subnormals. */
static double
ulp(U *x)
{
Long L;
U u;
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
word0(&u) = L;
word1(&u) = 0;
return dval(&u);
}
/* Convert a Bigint to a double plus an exponent */
static double
b2d(Bigint *a, int *e)
{
ULong *xa, *xa0, w, y, z;
int k;
U d;
xa0 = a->x;
xa = xa0 + a->wds;
y = *--xa;
#ifdef DEBUG
if (!y) Bug("zero y in b2d");
#endif
k = hi0bits(y);
*e = 32 - k;
if (k < Ebits) {
word0(&d) = Exp_1 | y >> (Ebits - k);
w = xa > xa0 ? *--xa : 0;
word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
if (k -= Ebits) {
word0(&d) = Exp_1 | y << k | z >> (32 - k);
y = xa > xa0 ? *--xa : 0;
word1(&d) = z << k | y >> (32 - k);
}
else {
word0(&d) = Exp_1 | y;
word1(&d) = z;
}
ret_d:
return dval(&d);
}
/* Convert a double to a Bigint plus an exponent. Return NULL on failure.
Given a finite nonzero double d, return an odd Bigint b and exponent *e
such that fabs(d) = b * 2**e. On return, *bbits gives the number of
significant bits of e; that is, 2**(*bbits-1) <= b < 2**(*bbits).
If d is zero, then b == 0, *e == -1010, *bbits = 0.
*/
static Bigint *
d2b(U *d, int *e, int *bits)
{
Bigint *b;
int de, k;
ULong *x, y, z;
int i;
b = Balloc(1);
if (b == NULL)
return NULL;
x = b->x;
z = word0(d) & Frac_mask;
word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */
if ((de = (int)(word0(d) >> Exp_shift)))
z |= Exp_msk1;
if ((y = word1(d))) {
if ((k = lo0bits(&y))) {
x[0] = y | z << (32 - k);
z >>= k;
}
else
x[0] = y;
i =
b->wds = (x[1] = z) ? 2 : 1;
}
else {
k = lo0bits(&z);
x[0] = z;
i =
b->wds = 1;
k += 32;
}
if (de) {
*e = de - Bias - (P-1) + k;
*bits = P - k;
}
else {
*e = de - Bias - (P-1) + 1 + k;
*bits = 32*i - hi0bits(x[i-1]);
}
return b;
}
/* Compute the ratio of two Bigints, as a double. The result may have an
error of up to 2.5 ulps. */
static double
ratio(Bigint *a, Bigint *b)
{
U da, db;
int k, ka, kb;
dval(&da) = b2d(a, &ka);
dval(&db) = b2d(b, &kb);
k = ka - kb + 32*(a->wds - b->wds);
if (k > 0)
word0(&da) += k*Exp_msk1;
else {
k = -k;
word0(&db) += k*Exp_msk1;
}
return dval(&da) / dval(&db);
}
static const double
tens[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22
};
static const double
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
9007199254740992.*9007199254740992.e-256
/* = 2^106 * 1e-256 */
};
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
#define Scale_Bit 0x10
#define n_bigtens 5
/* case insensitive string match, for recognising 'inf[inity]' and
'nan' strings. */
static int
match(const char **sp, char *t)
{
int c, d;
const char *s = *sp;
while((d = *t++)) {
if ((c = *++s) >= 'A' && c <= 'Z')
c += 'a' - 'A';
if (c != d)
return 0;
}
*sp = s + 1;
return 1;
}
#define ULbits 32
#define kshift 5
#define kmask 31
static int
dshift(Bigint *b, int p2)
{
int rv = hi0bits(b->x[b->wds-1]) - 4;
if (p2 > 0)
rv -= p2;
return rv & kmask;
}
/* special case of Bigint division. The quotient is always in the range 0 <=
quotient < 10, and on entry the divisor S is normalized so that its top 4
bits (28--31) are zero and bit 27 is set. */
static int
quorem(Bigint *b, Bigint *S)
{
int n;
ULong *bx, *bxe, q, *sx, *sxe;
#ifdef ULLong
ULLong borrow, carry, y, ys;
#else
ULong borrow, carry, y, ys;
ULong si, z, zs;
#endif
n = S->wds;
#ifdef DEBUG
/*debug*/ if (b->wds > n)
/*debug*/ Bug("oversize b in quorem");
#endif
if (b->wds < n)
return 0;
sx = S->x;
sxe = sx + --n;
bx = b->x;
bxe = bx + n;
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
#ifdef DEBUG
/*debug*/ if (q > 9)
/*debug*/ Bug("oversized quotient in quorem");
#endif
if (q) {
borrow = 0;
carry = 0;
do {
#ifdef ULLong
ys = *sx++ * (ULLong)q + carry;
carry = ys >> 32;
y = *bx - (ys & FFFFFFFF) - borrow;
borrow = y >> 32 & (ULong)1;
*bx++ = y & FFFFFFFF;
#else
si = *sx++;
ys = (si & 0xffff) * q + carry;
zs = (si >> 16) * q + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*bx >> 16) - (zs & 0xffff) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(bx, z, y);
#endif
}
while(sx <= sxe);
if (!*bxe) {
bx = b->x;
while(--bxe > bx && !*bxe)
--n;
b->wds = n;
}
}
if (cmp(b, S) >= 0) {
q++;
borrow = 0;
carry = 0;
bx = b->x;
sx = S->x;
do {
#ifdef ULLong
ys = *sx++ + carry;
carry = ys >> 32;
y = *bx - (ys & FFFFFFFF) - borrow;
borrow = y >> 32 & (ULong)1;
*bx++ = y & FFFFFFFF;
#else
si = *sx++;
ys = (si & 0xffff) + carry;
zs = (si >> 16) + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*bx >> 16) - (zs & 0xffff) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(bx, z, y);
#endif
}
while(sx <= sxe);
bx = b->x;
bxe = bx + n;
if (!*bxe) {
while(--bxe > bx && !*bxe)
--n;
b->wds = n;
}
}
return q;
}
/* return 0 on success, -1 on failure */
static int
bigcomp(U *rv, const char *s0, BCinfo *bc)
{
Bigint *b, *d;
int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
dsign = bc->dsign;
nd = bc->nd;
nd0 = bc->nd0;
p5 = nd + bc->e0 - 1;
speccase = 0;
if (rv->d == 0.) { /* special case: value near underflow-to-zero */
/* threshold was rounded to zero */
b = i2b(1);
if (b == NULL)
return -1;
p2 = Emin - P + 1;
bbits = 1;
word0(rv) = (P+2) << Exp_shift;
i = 0;
{
speccase = 1;
--p2;
dsign = 0;
goto have_i;
}
}
else
{
b = d2b(rv, &p2, &bbits);
if (b == NULL)
return -1;
}
p2 -= bc->scale;
/* floor(log2(rv)) == bbits - 1 + p2 */
/* Check for denormal case. */
i = P - bbits;
if (i > (j = P - Emin - 1 + p2)) {
i = j;
}
{
b = lshift(b, ++i);
if (b == NULL)
return -1;
b->x[0] |= 1;
}
have_i:
p2 -= p5 + i;
d = i2b(1);
if (d == NULL) {
Bfree(b);
return -1;
}
/* Arrange for convenient computation of quotients:
* shift left if necessary so divisor has 4 leading 0 bits.
*/
if (p5 > 0) {
d = pow5mult(d, p5);
if (d == NULL) {
Bfree(b);
return -1;
}
}
else if (p5 < 0) {
b = pow5mult(b, -p5);
if (b == NULL) {
Bfree(d);
return -1;
}
}
if (p2 > 0) {
b2 = p2;
d2 = 0;
}
else {
b2 = 0;
d2 = -p2;
}
i = dshift(d, d2);
if ((b2 += i) > 0) {
b = lshift(b, b2);
if (b == NULL) {
Bfree(d);
return -1;
}
}
if ((d2 += i) > 0) {
d = lshift(d, d2);
if (d == NULL) {
Bfree(b);
return -1;
}
}
/* Now b/d = exactly half-way between the two floating-point values */
/* on either side of the input string. Compute first digit of b/d. */
if (!(dig = quorem(b,d))) {
b = multadd(b, 10, 0); /* very unlikely */
if (b == NULL) {
Bfree(d);
return -1;
}
dig = quorem(b,d);
}
/* Compare b/d with s0 */
assert(nd > 0);
dd = 9999; /* silence gcc compiler warning */
for(i = 0; i < nd0; ) {
if ((dd = s0[i++] - '0' - dig))
goto ret;
if (!b->x[0] && b->wds == 1) {
if (i < nd)
dd = 1;
goto ret;
}
b = multadd(b, 10, 0);
if (b == NULL) {
Bfree(d);
return -1;
}
dig = quorem(b,d);
}
for(j = bc->dp1; i++ < nd;) {
if ((dd = s0[j++] - '0' - dig))
goto ret;
if (!b->x[0] && b->wds == 1) {
if (i < nd)
dd = 1;
goto ret;
}
b = multadd(b, 10, 0);
if (b == NULL) {
Bfree(d);
return -1;
}
dig = quorem(b,d);
}
if (b->x[0] || b->wds > 1)
dd = -1;
ret:
Bfree(b);
Bfree(d);
if (speccase) {
if (dd <= 0)
rv->d = 0.;
}
else if (dd < 0) {
if (!dsign) /* does not happen for round-near */
retlow1:
dval(rv) -= ulp(rv);
}
else if (dd > 0) {
if (dsign) {
rethi1:
dval(rv) += ulp(rv);
}
}
else {
/* Exact half-way case: apply round-even rule. */
if (word1(rv) & 1) {
if (dsign)
goto rethi1;
goto retlow1;
}
}
return 0;
}
double
_Py_dg_strtod(const char *s00, char **se)
{
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1, error;
int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
const char *s, *s0, *s1;
double aadj, aadj1;
Long L;
U aadj2, adj, rv, rv0;
ULong y, z;
BCinfo bc;
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
sign = nz0 = nz = bc.dplen = bc.uflchk = 0;
dval(&rv) = 0.;
for(s = s00;;s++) switch(*s) {
case '-':
sign = 1;
/* no break */
case '+':
if (*++s)
goto break2;
/* no break */
case 0:
goto ret0;
case '\t':
case '\n':
case '\v':
case '\f':
case '\r':
case ' ':
continue;
default:
goto break2;
}
break2:
if (*s == '0') {
nz0 = 1;
while(*++s == '0') ;
if (!*s)
goto ret;
}
s0 = s;
y = z = 0;
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
if (nd < 9)
y = 10*y + c - '0';
else if (nd < 16)
z = 10*z + c - '0';
nd0 = nd;
bc.dp0 = bc.dp1 = s - s0;
if (c == '.') {
c = *++s;
bc.dp1 = s - s0;
bc.dplen = bc.dp1 - bc.dp0;
if (!nd) {
for(; c == '0'; c = *++s)
nz++;
if (c > '0' && c <= '9') {
s0 = s;
nf += nz;
nz = 0;
goto have_dig;
}
goto dig_done;
}
for(; c >= '0' && c <= '9'; c = *++s) {
have_dig:
nz++;
if (c -= '0') {
nf += nz;
for(i = 1; i < nz; i++)
if (nd++ < 9)
y *= 10;
else if (nd <= DBL_DIG + 1)
z *= 10;
if (nd++ < 9)
y = 10*y + c;
else if (nd <= DBL_DIG + 1)
z = 10*z + c;
nz = 0;
}
}
}
dig_done:
e = 0;
if (c == 'e' || c == 'E') {
if (!nd && !nz && !nz0) {
goto ret0;
}
s00 = s;
esign = 0;
switch(c = *++s) {
case '-':
esign = 1;
case '+':
c = *++s;
}
if (c >= '0' && c <= '9') {
while(c == '0')
c = *++s;
if (c > '0' && c <= '9') {
L = c - '0';
s1 = s;
while((c = *++s) >= '0' && c <= '9')
L = 10*L + c - '0';
if (s - s1 > 8 || L > 19999)
/* Avoid confusion from exponents
* so large that e might overflow.
*/
e = 19999; /* safe for 16 bit ints */
else
e = (int)L;
if (esign)
e = -e;
}
else
e = 0;
}
else
s = s00;
}
if (!nd) {
if (!nz && !nz0) {
/* Check for Nan and Infinity */
if (!bc.dplen)
switch(c) {
case 'i':
case 'I':
if (match(&s,"nf")) {
--s;
if (!match(&s,"inity"))
++s;
word0(&rv) = 0x7ff00000;
word1(&rv) = 0;
goto ret;
}
break;
case 'n':
case 'N':
if (match(&s, "an")) {
word0(&rv) = NAN_WORD0;
word1(&rv) = NAN_WORD1;
goto ret;
}
}
ret0:
s = s00;
sign = 0;
}
goto ret;
}
bc.e0 = e1 = e -= nf;
/* Now we have nd0 digits, starting at s0, followed by a
* decimal point, followed by nd-nd0 digits. The number we're
* after is the integer represented by those digits times
* 10**e */
if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
dval(&rv) = y;
if (k > 9) {
dval(&rv) = tens[k - 9] * dval(&rv) + z;
}
bd0 = 0;
if (nd <= DBL_DIG
&& Flt_Rounds == 1
) {
if (!e)
goto ret;
if (e > 0) {
if (e <= Ten_pmax) {
dval(&rv) *= tens[e];
goto ret;
}
i = DBL_DIG - nd;
if (e <= Ten_pmax + i) {
/* A fancier test would sometimes let us do
* this for larger i values.
*/
e -= i;
dval(&rv) *= tens[i];
dval(&rv) *= tens[e];
goto ret;
}
}
else if (e >= -Ten_pmax) {
dval(&rv) /= tens[-e];
goto ret;
}
}
e1 += nd - k;
bc.scale = 0;
/* Get starting approximation = rv * 10**e1 */
if (e1 > 0) {
if ((i = e1 & 15))
dval(&rv) *= tens[i];
if (e1 &= ~15) {
if (e1 > DBL_MAX_10_EXP) {
ovfl:
errno = ERANGE;
/* Can't trust HUGE_VAL */
word0(&rv) = Exp_mask;
word1(&rv) = 0;
goto ret;
}
e1 >>= 4;
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
dval(&rv) *= bigtens[j];
/* The last multiplication could overflow. */
word0(&rv) -= P*Exp_msk1;
dval(&rv) *= bigtens[j];
if ((z = word0(&rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-P))
goto ovfl;
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
/* set to largest number */
/* (Can't trust DBL_MAX) */
word0(&rv) = Big0;
word1(&rv) = Big1;
}
else
word0(&rv) += P*Exp_msk1;
}
}
else if (e1 < 0) {
e1 = -e1;
if ((i = e1 & 15))
dval(&rv) /= tens[i];
if (e1 >>= 4) {
if (e1 >= 1 << n_bigtens)
goto undfl;
if (e1 & Scale_Bit)
bc.scale = 2*P;
for(j = 0; e1 > 0; j++, e1 >>= 1)
if (e1 & 1)
dval(&rv) *= tinytens[j];
if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
>> Exp_shift)) > 0) {
/* scaled rv is denormal; clear j low bits */
if (j >= 32) {
word1(&rv) = 0;
if (j >= 53)
word0(&rv) = (P+2)*Exp_msk1;
else
word0(&rv) &= 0xffffffff << (j-32);
}
else
word1(&rv) &= 0xffffffff << j;
}
if (!dval(&rv)) {
undfl:
dval(&rv) = 0.;
errno = ERANGE;
goto ret;
}
}
}
/* Now the hard part -- adjusting rv to the correct value.*/
/* Put digits into bd: true value = bd * 10^e */
bc.nd = nd;
bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
/* to silence an erroneous warning about bc.nd0 */
/* possibly not being initialized. */
if (nd > strtod_diglim) {
/* ASSERT(strtod_diglim >= 18); 18 == one more than the */
/* minimum number of decimal digits to distinguish double values */
/* in IEEE arithmetic. */
i = j = 18;
if (i > nd0)
j += bc.dplen;
for(;;) {
if (--j <= bc.dp1 && j >= bc.dp0)
j = bc.dp0 - 1;
if (s0[j] != '0')
break;
--i;
}
e += nd - i;
nd = i;
if (nd0 > nd)
nd0 = nd;
if (nd < 9) { /* must recompute y */
y = 0;
for(i = 0; i < nd0; ++i)
y = 10*y + s0[i] - '0';
for(j = bc.dp1; i < nd; ++i)
y = 10*y + s0[j++] - '0';
}
}
bd0 = s2b(s0, nd0, nd, y, bc.dplen);
if (bd0 == NULL)
goto failed_malloc;
for(;;) {
bd = Balloc(bd0->k);
if (bd == NULL) {
Bfree(bd0);
goto failed_malloc;
}
Bcopy(bd, bd0);
bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
if (bb == NULL) {
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
bs = i2b(1);
if (bs == NULL) {
Bfree(bb);
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
if (e >= 0) {
bb2 = bb5 = 0;
bd2 = bd5 = e;
}
else {
bb2 = bb5 = -e;
bd2 = bd5 = 0;
}
if (bbe >= 0)
bb2 += bbe;
else
bd2 -= bbe;
bs2 = bb2;
j = bbe - bc.scale;
i = j + bbbits - 1; /* logb(rv) */
if (i < Emin) /* denormal */
j += P - Emin;
else
j = P + 1 - bbbits;
bb2 += j;
bd2 += j;
bd2 += bc.scale;
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
if (i > 0) {
bb2 -= i;
bd2 -= i;
bs2 -= i;
}
if (bb5 > 0) {
bs = pow5mult(bs, bb5);
if (bs == NULL) {
Bfree(bb);
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
bb1 = mult(bs, bb);
Bfree(bb);
bb = bb1;
if (bb == NULL) {
Bfree(bs);
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
}
if (bb2 > 0) {
bb = lshift(bb, bb2);
if (bb == NULL) {
Bfree(bs);
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
}
if (bd5 > 0) {
bd = pow5mult(bd, bd5);
if (bd == NULL) {
Bfree(bb);
Bfree(bs);
Bfree(bd0);
goto failed_malloc;
}
}
if (bd2 > 0) {
bd = lshift(bd, bd2);
if (bd == NULL) {
Bfree(bb);
Bfree(bs);
Bfree(bd0);
goto failed_malloc;
}
}
if (bs2 > 0) {
bs = lshift(bs, bs2);
if (bs == NULL) {
Bfree(bb);
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
}
delta = diff(bb, bd);
if (delta == NULL) {
Bfree(bb);
Bfree(bs);
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
bc.dsign = delta->sign;
delta->sign = 0;
i = cmp(delta, bs);
if (bc.nd > nd && i <= 0) {
if (bc.dsign)
break; /* Must use bigcomp(). */
{
bc.nd = nd;
i = -1; /* Discarded digits make delta smaller. */
}
}
if (i < 0) {
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
|| (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
) {
break;
}
if (!delta->x[0] && delta->wds <= 1) {
/* exact result */
break;
}
delta = lshift(delta,Log2P);
if (delta == NULL) {
Bfree(bb);
Bfree(bs);
Bfree(bd);
Bfree(bd0);
goto failed_malloc;
}
if (cmp(delta, bs) > 0)
goto drop_down;
break;
}
if (i == 0) {
/* exactly half-way between */
if (bc.dsign) {
if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
&& word1(&rv) == (
(bc.scale &&
(y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
(0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
0xffffffff)) {
/*boundary case -- increment exponent*/
word0(&rv) = (word0(&rv) & Exp_mask)
+ Exp_msk1
;
word1(&rv) = 0;
bc.dsign = 0;
break;
}
}
else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
drop_down:
/* boundary case -- decrement exponent */
if (bc.scale) {
L = word0(&rv) & Exp_mask;
if (L <= (2*P+1)*Exp_msk1) {
if (L > (P+2)*Exp_msk1)
/* round even ==> */
/* accept rv */
break;
/* rv = smallest denormal */
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
}
L = (word0(&rv) & Exp_mask) - Exp_msk1;
word0(&rv) = L | Bndry_mask1;
word1(&rv) = 0xffffffff;
break;
}
if (!(word1(&rv) & LSB))
break;
if (bc.dsign)
dval(&rv) += ulp(&rv);
else {
dval(&rv) -= ulp(&rv);
if (!dval(&rv)) {
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
}
bc.dsign = 1 - bc.dsign;
break;
}
if ((aadj = ratio(delta, bs)) <= 2.) {
if (bc.dsign)
aadj = aadj1 = 1.;
else if (word1(&rv) || word0(&rv) & Bndry_mask) {
if (word1(&rv) == Tiny1 && !word0(&rv)) {
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
aadj = 1.;
aadj1 = -1.;
}
else {
/* special case -- power of FLT_RADIX to be */
/* rounded down... */
if (aadj < 2./FLT_RADIX)
aadj = 1./FLT_RADIX;
else
aadj *= 0.5;
aadj1 = -aadj;
}
}
else {
aadj *= 0.5;
aadj1 = bc.dsign ? aadj : -aadj;
if (Flt_Rounds == 0)
aadj1 += 0.5;
}
y = word0(&rv) & Exp_mask;
/* Check for overflow */
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
dval(&rv0) = dval(&rv);
word0(&rv) -= P*Exp_msk1;
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
if ((word0(&rv) & Exp_mask) >=
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
goto ovfl;
word0(&rv) = Big0;
word1(&rv) = Big1;
goto cont;
}
else
word0(&rv) += P*Exp_msk1;
}
else {
if (bc.scale && y <= 2*P*Exp_msk1) {
if (aadj <= 0x7fffffff) {
if ((z = (ULong)aadj) <= 0)
z = 1;
aadj = z;
aadj1 = bc.dsign ? aadj : -aadj;
}
dval(&aadj2) = aadj1;
word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
aadj1 = dval(&aadj2);
}
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
}
z = word0(&rv) & Exp_mask;
if (bc.nd == nd) {
if (!bc.scale)
if (y == z) {
/* Can we stop now? */
L = (Long)aadj;
aadj -= L;
/* The tolerances below are conservative. */
if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
if (aadj < .4999999 || aadj > .5000001)
break;
}
else if (aadj < .4999999/FLT_RADIX)
break;
}
}
cont:
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(delta);
}
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
if (bc.nd > nd) {
error = bigcomp(&rv, s0, &bc);
if (error)
goto failed_malloc;
}
if (bc.scale) {
word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
word1(&rv0) = 0;
dval(&rv) *= dval(&rv0);
/* try to avoid the bug of testing an 8087 register value */
if (!(word0(&rv) & Exp_mask))
errno = ERANGE;
}
ret:
if (se)
*se = (char *)s;
return sign ? -dval(&rv) : dval(&rv);
failed_malloc:
if (se)
*se = (char *)s00;
errno = ENOMEM;
return -1.0;
}
static char *
rv_alloc(int i)
{
int j, k, *r;
j = sizeof(ULong);
for(k = 0;
sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
j <<= 1)
k++;
r = (int*)Balloc(k);
if (r == NULL)
return NULL;
*r = k;
return (char *)(r+1);
}
static char *
nrv_alloc(char *s, char **rve, int n)
{
char *rv, *t;
rv = rv_alloc(n);
if (rv == NULL)
return NULL;
t = rv;
while((*t = *s++)) t++;
if (rve)
*rve = t;
return rv;
}
/* freedtoa(s) must be used to free values s returned by dtoa
* when MULTIPLE_THREADS is #defined. It should be used in all cases,
* but for consistency with earlier versions of dtoa, it is optional
* when MULTIPLE_THREADS is not defined.
*/
void
_Py_dg_freedtoa(char *s)
{
Bigint *b = (Bigint *)((int *)s - 1);
b->maxwds = 1 << (b->k = *(int*)b);
Bfree(b);
}
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
*
* Inspired by "How to Print Floating-Point Numbers Accurately" by
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
*
* Modifications:
* 1. Rather than iterating, we use a simple numeric overestimate
* to determine k = floor(log10(d)). We scale relevant
* quantities using O(log2(k)) rather than O(k) multiplications.
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
* try to generate digits strictly left to right. Instead, we
* compute with fewer bits and propagate the carry if necessary
* when rounding the final digit up. This is often faster.
* 3. Under the assumption that input will be rounded nearest,
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
* That is, we allow equality in stopping tests when the
* round-nearest rule will give the same floating-point value
* as would satisfaction of the stopping test with strict
* inequality.
* 4. We remove common factors of powers of 2 from relevant
* quantities.
* 5. When converting floating-point integers less than 1e16,
* we use floating-point arithmetic rather than resorting
* to multiple-precision integers.
* 6. When asked to produce fewer than 15 digits, we first try
* to get by with floating-point arithmetic; we resort to
* multiple-precision integer arithmetic only if we cannot
* guarantee that the floating-point calculation has given
* the correctly rounded result. For k requested digits and
* "uniformly" distributed input, the probability is
* something like 10^(k-15) that we must resort to the Long
* calculation.
*/
/* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory
leakage, a successful call to _Py_dg_dtoa should always be matched by a
call to _Py_dg_freedtoa. */
char *
_Py_dg_dtoa(double dd, int mode, int ndigits,
int *decpt, int *sign, char **rve)
{
/* Arguments ndigits, decpt, sign are similar to those
of ecvt and fcvt; trailing zeros are suppressed from
the returned string. If not null, *rve is set to point
to the end of the return value. If d is +-Infinity or NaN,
then *decpt is set to 9999.
mode:
0 ==> shortest string that yields d when read in
and rounded to nearest.
1 ==> like 0, but with Steele & White stopping rule;
e.g. with IEEE P754 arithmetic , mode 0 gives
1e23 whereas mode 1 gives 9.999999999999999e22.
2 ==> max(1,ndigits) significant digits. This gives a
return value similar to that of ecvt, except
that trailing zeros are suppressed.
3 ==> through ndigits past the decimal point. This
gives a return value similar to that from fcvt,
except that trailing zeros are suppressed, and
ndigits can be negative.
4,5 ==> similar to 2 and 3, respectively, but (in
round-nearest mode) with the tests of mode 0 to
possibly return a shorter string that rounds to d.
With IEEE arithmetic and compilation with
-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
as modes 2 and 3 when FLT_ROUNDS != 1.
6-9 ==> Debugging modes similar to mode - 4: don't try
fast floating-point estimate (if applicable).
Values of mode other than 0-9 are treated as mode 0.
Sufficient space is allocated to the return value
to hold the suppressed trailing zeros.
*/
int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
spec_case, try_quick;
Long L;
int denorm;
ULong x;
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
U d2, eps, u;
double ds;
char *s, *s0;
/* set pointers to NULL, to silence gcc compiler warnings and make
cleanup easier on error */
mlo = mhi = b = S = 0;
s0 = 0;
u.d = dd;
if (word0(&u) & Sign_bit) {
/* set sign for everything, including 0's and NaNs */
*sign = 1;
word0(&u) &= ~Sign_bit; /* clear sign bit */
}
else
*sign = 0;
/* quick return for Infinities, NaNs and zeros */
if ((word0(&u) & Exp_mask) == Exp_mask)
{
/* Infinity or NaN */
*decpt = 9999;
if (!word1(&u) && !(word0(&u) & 0xfffff))
return nrv_alloc("Infinity", rve, 8);
return nrv_alloc("NaN", rve, 3);
}
if (!dval(&u)) {
*decpt = 1;
return nrv_alloc("0", rve, 1);
}
/* compute k = floor(log10(d)). The computation may leave k
one too large, but should never leave k too small. */
b = d2b(&u, &be, &bbits);
if (b == NULL)
goto failed_malloc;
if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
dval(&d2) = dval(&u);
word0(&d2) &= Frac_mask1;
word0(&d2) |= Exp_11;
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
* log10(x) = log(x) / log(10)
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
*
* This suggests computing an approximation k to log10(d) by
*
* k = (i - Bias)*0.301029995663981
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
*
* We want k to be too large rather than too small.
* The error in the first-order Taylor series approximation
* is in our favor, so we just round up the constant enough
* to compensate for any error in the multiplication of
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
* adding 1e-13 to the constant term more than suffices.
* Hence we adjust the constant term to 0.1760912590558.
* (We could get a more accurate k by invoking log10,
* but this is probably not worthwhile.)
*/
i -= Bias;
denorm = 0;
}
else {
/* d is denormalized */
i = bbits + be + (Bias + (P-1) - 1);
x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
: word1(&u) << (32 - i);
dval(&d2) = x;
word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
i -= (Bias + (P-1) - 1) + 1;
denorm = 1;
}
ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
i*0.301029995663981;
k = (int)ds;
if (ds < 0. && ds != k)
k--; /* want k = floor(ds) */
k_check = 1;
if (k >= 0 && k <= Ten_pmax) {
if (dval(&u) < tens[k])
k--;
k_check = 0;
}
j = bbits - i - 1;
if (j >= 0) {
b2 = 0;
s2 = j;
}
else {
b2 = -j;
s2 = 0;
}
if (k >= 0) {
b5 = 0;
s5 = k;
s2 += k;
}
else {
b2 -= k;
b5 = -k;
s5 = 0;
}
if (mode < 0 || mode > 9)
mode = 0;
try_quick = 1;
if (mode > 5) {
mode -= 4;
try_quick = 0;
}
leftright = 1;
ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
/* silence erroneous "gcc -Wall" warning. */
switch(mode) {
case 0:
case 1:
i = 18;
ndigits = 0;
break;
case 2:
leftright = 0;
/* no break */
case 4:
if (ndigits <= 0)
ndigits = 1;
ilim = ilim1 = i = ndigits;
break;
case 3:
leftright = 0;
/* no break */
case 5:
i = ndigits + k + 1;
ilim = i;
ilim1 = i - 1;
if (i <= 0)
i = 1;
}
s0 = rv_alloc(i);
if (s0 == NULL)
goto failed_malloc;
s = s0;
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
/* Try to get by with floating-point arithmetic. */
i = 0;
dval(&d2) = dval(&u);
k0 = k;
ilim0 = ilim;
ieps = 2; /* conservative */
if (k > 0) {
ds = tens[k&0xf];
j = k >> 4;
if (j & Bletch) {
/* prevent overflows */
j &= Bletch - 1;
dval(&u) /= bigtens[n_bigtens-1];
ieps++;
}
for(; j; j >>= 1, i++)
if (j & 1) {
ieps++;
ds *= bigtens[i];
}
dval(&u) /= ds;
}
else if ((j1 = -k)) {
dval(&u) *= tens[j1 & 0xf];
for(j = j1 >> 4; j; j >>= 1, i++)
if (j & 1) {
ieps++;
dval(&u) *= bigtens[i];
}
}
if (k_check && dval(&u) < 1. && ilim > 0) {
if (ilim1 <= 0)
goto fast_failed;
ilim = ilim1;
k--;
dval(&u) *= 10.;
ieps++;
}
dval(&eps) = ieps*dval(&u) + 7.;
word0(&eps) -= (P-1)*Exp_msk1;
if (ilim == 0) {
S = mhi = 0;
dval(&u) -= 5.;
if (dval(&u) > dval(&eps))
goto one_digit;
if (dval(&u) < -dval(&eps))
goto no_digits;
goto fast_failed;
}
if (leftright) {
/* Use Steele & White method of only
* generating digits needed.
*/
dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
for(i = 0;;) {
L = (Long)dval(&u);
dval(&u) -= L;
*s++ = '0' + (int)L;
if (dval(&u) < dval(&eps))
goto ret1;
if (1. - dval(&u) < dval(&eps))
goto bump_up;
if (++i >= ilim)
break;
dval(&eps) *= 10.;
dval(&u) *= 10.;
}
}
else {
/* Generate ilim digits, then fix them up. */
dval(&eps) *= tens[ilim-1];
for(i = 1;; i++, dval(&u) *= 10.) {
L = (Long)(dval(&u));
if (!(dval(&u) -= L))
ilim = i;
*s++ = '0' + (int)L;
if (i == ilim) {
if (dval(&u) > 0.5 + dval(&eps))
goto bump_up;
else if (dval(&u) < 0.5 - dval(&eps)) {
while(*--s == '0');
s++;
goto ret1;
}
break;
}
}
}
fast_failed:
s = s0;
dval(&u) = dval(&d2);
k = k0;
ilim = ilim0;
}
/* Do we have a "small" integer? */
if (be >= 0 && k <= Int_max) {
/* Yes. */
ds = tens[k];
if (ndigits < 0 && ilim <= 0) {
S = mhi = 0;
if (ilim < 0 || dval(&u) <= 5*ds)
goto no_digits;
goto one_digit;
}
for(i = 1;; i++, dval(&u) *= 10.) {
L = (Long)(dval(&u) / ds);
dval(&u) -= L*ds;
*s++ = '0' + (int)L;
if (!dval(&u)) {
break;
}
if (i == ilim) {
dval(&u) += dval(&u);
if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
bump_up:
while(*--s == '9')
if (s == s0) {
k++;
*s = '0';
break;
}
++*s++;
}
break;
}
}
goto ret1;
}
m2 = b2;
m5 = b5;
if (leftright) {
i =
denorm ? be + (Bias + (P-1) - 1 + 1) :
1 + P - bbits;
b2 += i;
s2 += i;
mhi = i2b(1);
if (mhi == NULL)
goto failed_malloc;
}
if (m2 > 0 && s2 > 0) {
i = m2 < s2 ? m2 : s2;
b2 -= i;
m2 -= i;
s2 -= i;
}
if (b5 > 0) {
if (leftright) {
if (m5 > 0) {
mhi = pow5mult(mhi, m5);
if (mhi == NULL)
goto failed_malloc;
b1 = mult(mhi, b);
Bfree(b);
b = b1;
if (b == NULL)
goto failed_malloc;
}
if ((j = b5 - m5)) {
b = pow5mult(b, j);
if (b == NULL)
goto failed_malloc;
}
}
else {
b = pow5mult(b, b5);
if (b == NULL)
goto failed_malloc;
}
}
S = i2b(1);
if (S == NULL)
goto failed_malloc;
if (s5 > 0) {
S = pow5mult(S, s5);
if (S == NULL)
goto failed_malloc;
}
/* Check for special case that d is a normalized power of 2. */
spec_case = 0;
if ((mode < 2 || leftright)
) {
if (!word1(&u) && !(word0(&u) & Bndry_mask)
&& word0(&u) & (Exp_mask & ~Exp_msk1)
) {
/* The special case */
b2 += Log2P;
s2 += Log2P;
spec_case = 1;
}
}
/* Arrange for convenient computation of quotients:
* shift left if necessary so divisor has 4 leading 0 bits.
*
* Perhaps we should just compute leading 28 bits of S once
* and for all and pass them and a shift to quorem, so it
* can do shifts and ors to compute the numerator for q.
*/
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
i = 32 - i;
#define iInc 28
i = dshift(S, s2);
b2 += i;
m2 += i;
s2 += i;
if (b2 > 0) {
b = lshift(b, b2);
if (b == NULL)
goto failed_malloc;
}
if (s2 > 0) {
S = lshift(S, s2);
if (S == NULL)
goto failed_malloc;
}
if (k_check) {
if (cmp(b,S) < 0) {
k--;
b = multadd(b, 10, 0); /* we botched the k estimate */
if (b == NULL)
goto failed_malloc;
if (leftright) {
mhi = multadd(mhi, 10, 0);
if (mhi == NULL)
goto failed_malloc;
}
ilim = ilim1;
}
}
if (ilim <= 0 && (mode == 3 || mode == 5)) {
if (ilim < 0) {
/* no digits, fcvt style */
no_digits:
k = -1 - ndigits;
goto ret;
}
else {
S = multadd(S, 5, 0);
if (S == NULL)
goto failed_malloc;
if (cmp(b, S) <= 0)
goto no_digits;
}
one_digit:
*s++ = '1';
k++;
goto ret;
}
if (leftright) {
if (m2 > 0) {
mhi = lshift(mhi, m2);
if (mhi == NULL)
goto failed_malloc;
}
/* Compute mlo -- check for special case
* that d is a normalized power of 2.
*/
mlo = mhi;
if (spec_case) {
mhi = Balloc(mhi->k);
if (mhi == NULL)
goto failed_malloc;
Bcopy(mhi, mlo);
mhi = lshift(mhi, Log2P);
if (mhi == NULL)
goto failed_malloc;
}
for(i = 1;;i++) {
dig = quorem(b,S) + '0';
/* Do we yet have the shortest decimal string
* that will round to d?
*/
j = cmp(b, mlo);
delta = diff(S, mhi);
if (delta == NULL)
goto failed_malloc;
j1 = delta->sign ? 1 : cmp(b, delta);
Bfree(delta);
if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
) {
if (dig == '9')
goto round_9_up;
if (j > 0)
dig++;
*s++ = dig;
goto ret;
}
if (j < 0 || (j == 0 && mode != 1
&& !(word1(&u) & 1)
)) {
if (!b->x[0] && b->wds <= 1) {
goto accept_dig;
}
if (j1 > 0) {
b = lshift(b, 1);
if (b == NULL)
goto failed_malloc;
j1 = cmp(b, S);
if ((j1 > 0 || (j1 == 0 && dig & 1))
&& dig++ == '9')
goto round_9_up;
}
accept_dig:
*s++ = dig;
goto ret;
}
if (j1 > 0) {
if (dig == '9') { /* possible if i == 1 */
round_9_up:
*s++ = '9';
goto roundoff;
}
*s++ = dig + 1;
goto ret;
}
*s++ = dig;
if (i == ilim)
break;
b = multadd(b, 10, 0);
if (b == NULL)
goto failed_malloc;
if (mlo == mhi) {
mlo = mhi = multadd(mhi, 10, 0);
if (mlo == NULL)
goto failed_malloc;
}
else {
mlo = multadd(mlo, 10, 0);
if (mlo == NULL)
goto failed_malloc;
mhi = multadd(mhi, 10, 0);
if (mhi == NULL)
goto failed_malloc;
}
}
}
else
for(i = 1;; i++) {
*s++ = dig = quorem(b,S) + '0';
if (!b->x[0] && b->wds <= 1) {
goto ret;
}
if (i >= ilim)
break;
b = multadd(b, 10, 0);
if (b == NULL)
goto failed_malloc;
}
/* Round off last digit */
b = lshift(b, 1);
if (b == NULL)
goto failed_malloc;
j = cmp(b, S);
if (j > 0 || (j == 0 && dig & 1)) {
roundoff:
while(*--s == '9')
if (s == s0) {
k++;
*s++ = '1';
goto ret;
}
++*s++;
}
else {
while(*--s == '0');
s++;
}
ret:
Bfree(S);
if (mhi) {
if (mlo && mlo != mhi)
Bfree(mlo);
Bfree(mhi);
}
ret1:
Bfree(b);
*s = 0;
*decpt = k + 1;
if (rve)
*rve = s;
return s0;
failed_malloc:
if (S)
Bfree(S);
if (mlo && mlo != mhi)
Bfree(mlo);
if (mhi)
Bfree(mhi);
if (b)
Bfree(b);
if (s0)
_Py_dg_freedtoa(s0);
return NULL;
}
#ifdef __cplusplus
}
#endif
#endif /* PY_NO_SHORT_FLOAT_REPR */
......@@ -13,6 +13,28 @@ double _Py_force_double(double x)
}
#endif
#ifdef USING_X87_FPU
# ifdef HAVE_GCC_ASM_FOR_X87
/* inline assembly for getting and setting the 387 FPU control word on
gcc/x86 */
unsigned short _Py_get_387controlword(void) {
unsigned short cw;
__asm__ __volatile__ ("fnstcw %0" : "=m" (cw));
return cw;
}
void _Py_set_387controlword(unsigned short cw) {
__asm__ __volatile__ ("fldcw %0" : : "m" (cw));
}
# else
# error "Unable to get and set x87 control word"
# endif
#endif
#ifndef HAVE_HYPOT
double hypot(double x, double y)
{
......
......@@ -1025,6 +1025,7 @@ platform -- platform identifier\n\
executable -- pathname of this Python interpreter\n\
prefix -- prefix used to find the Python library\n\
exec_prefix -- prefix used to find the machine-specific Python library\n\
float_repr_style -- string indicating the style of repr() output for floats\n\
"
)
#ifdef MS_WINDOWS
......@@ -1428,6 +1429,15 @@ _PySys_Init(void)
FlagsType.tp_init = NULL;
FlagsType.tp_new = NULL;
/* float repr style: 0.03 (short) vs 0.029999999999999999 (legacy) */
#ifndef PY_NO_SHORT_FLOAT_REPR
SET_SYS_FROM_STRING("float_repr_style",
PyUnicode_FromString("short"));
#else
SET_SYS_FROM_STRING("float_repr_style",
PyUnicode_FromString("legacy"));
#endif
#undef SET_SYS_FROM_STRING
if (PyErr_Occurred())
return NULL;
......
#! /bin/sh
# From configure.in Revision: 71261 .
# From configure.in Revision: 71274 .
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.61 for python 3.1.
#
......@@ -21603,12 +21603,455 @@ echo "${ECHO_T}default LIBC=\"$LIBC\"" >&6; }
fi
# ************************************
# * Check for mathematical functions *
# ************************************
# **************************************************
# * Check for various properties of floating point *
# **************************************************
LIBS_SAVE=$LIBS
LIBS="$LIBS $LIBM"
{ echo "$as_me:$LINENO: checking whether C doubles are little-endian IEEE 754 binary64" >&5
echo $ECHO_N "checking whether C doubles are little-endian IEEE 754 binary64... $ECHO_C" >&6; }
if test "${ac_cv_little_endian_double+set}" = set; then
echo $ECHO_N "(cached) $ECHO_C" >&6
else
if test "$cross_compiling" = yes; then
ac_cv_little_endian_double=no
else
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
#include <string.h>
int main() {
double x = 9006104071832581.0;
if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
return 0;
else
return 1;
}
_ACEOF
rm -f conftest$ac_exeext
if { (ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_link") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } && { ac_try='./conftest$ac_exeext'
{ (case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_try") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); }; }; then
ac_cv_little_endian_double=yes
else
echo "$as_me: program exited with status $ac_status" >&5
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
( exit $ac_status )
ac_cv_little_endian_double=no
fi
rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext conftest.$ac_objext conftest.$ac_ext
fi
fi
{ echo "$as_me:$LINENO: result: $ac_cv_little_endian_double" >&5
echo "${ECHO_T}$ac_cv_little_endian_double" >&6; }
if test "$ac_cv_little_endian_double" = yes
then
cat >>confdefs.h <<\_ACEOF
#define DOUBLE_IS_LITTLE_ENDIAN_IEEE754 1
_ACEOF
fi
{ echo "$as_me:$LINENO: checking whether C doubles are big-endian IEEE 754 binary64" >&5
echo $ECHO_N "checking whether C doubles are big-endian IEEE 754 binary64... $ECHO_C" >&6; }
if test "${ac_cv_big_endian_double+set}" = set; then
echo $ECHO_N "(cached) $ECHO_C" >&6
else
if test "$cross_compiling" = yes; then
ac_cv_big_endian_double=no
else
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
#include <string.h>
int main() {
double x = 9006104071832581.0;
if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
return 0;
else
return 1;
}
_ACEOF
rm -f conftest$ac_exeext
if { (ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_link") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } && { ac_try='./conftest$ac_exeext'
{ (case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_try") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); }; }; then
ac_cv_big_endian_double=yes
else
echo "$as_me: program exited with status $ac_status" >&5
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
( exit $ac_status )
ac_cv_big_endian_double=no
fi
rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext conftest.$ac_objext conftest.$ac_ext
fi
fi
{ echo "$as_me:$LINENO: result: $ac_cv_big_endian_double" >&5
echo "${ECHO_T}$ac_cv_big_endian_double" >&6; }
if test "$ac_cv_big_endian_double" = yes
then
cat >>confdefs.h <<\_ACEOF
#define DOUBLE_IS_BIG_ENDIAN_IEEE754 1
_ACEOF
fi
# Some ARM platforms use a mixed-endian representation for doubles.
# While Python doesn't currently have full support for these platforms
# (see e.g., issue 1762561), we can at least make sure that float <-> string
# conversions work.
{ echo "$as_me:$LINENO: checking whether C doubles are ARM mixed-endian IEEE 754 binary64" >&5
echo $ECHO_N "checking whether C doubles are ARM mixed-endian IEEE 754 binary64... $ECHO_C" >&6; }
if test "${ac_cv_mixed_endian_double+set}" = set; then
echo $ECHO_N "(cached) $ECHO_C" >&6
else
if test "$cross_compiling" = yes; then
ac_cv_mixed_endian_double=no
else
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
#include <string.h>
int main() {
double x = 9006104071832581.0;
if (memcmp(&x, "\x01\xff\x3f\x43\x05\x04\x03\x02", 8) == 0)
return 0;
else
return 1;
}
_ACEOF
rm -f conftest$ac_exeext
if { (ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_link") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } && { ac_try='./conftest$ac_exeext'
{ (case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_try") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); }; }; then
ac_cv_mixed_endian_double=yes
else
echo "$as_me: program exited with status $ac_status" >&5
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
( exit $ac_status )
ac_cv_mixed_endian_double=no
fi
rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext conftest.$ac_objext conftest.$ac_ext
fi
fi
{ echo "$as_me:$LINENO: result: $ac_cv_mixed_endian_double" >&5
echo "${ECHO_T}$ac_cv_mixed_endian_double" >&6; }
if test "$ac_cv_mixed_endian_double" = yes
then
cat >>confdefs.h <<\_ACEOF
#define DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754 1
_ACEOF
fi
# David Gay's code in Python/dtoa.c requires that the FPU uses 53-bit
# rounding; this is a particular problem on x86, where the x87 FPU has
# a default rounding precision of 64 bits. For gcc/x86, we try to fix
# this by:
#
# (1) using the SSE2 instruction set when available (it usually is
# on modern machines)
# (2) using inline assembler to get and set the x87 FPU control word
# otherwise.
#
# On AMD64 (aka x86-64), gcc automatically enables use of SSE2
# instructions, so we don't bother trying to detect.
if test "$GCC" = yes && test -n "`$CC -dM -E - </dev/null | grep i386`"
then
# determine whether we're already using the SSE2 instruction set for math
# (e.g., this is true by default on OS X/x86)
{ echo "$as_me:$LINENO: checking whether SSE2 instructions are already enabled for math" >&5
echo $ECHO_N "checking whether SSE2 instructions are already enabled for math... $ECHO_C" >&6; }
if test -n "`$CC -dM -E - </dev/null | grep __SSE2_MATH__`"
then
ac_sse2_enabled=yes
else
ac_sse2_enabled=no
fi
{ echo "$as_me:$LINENO: result: $ac_sse2_enabled" >&5
echo "${ECHO_T}$ac_sse2_enabled" >&6; }
# if we're not using SSE2 already, we need to either enable it
# (when available), or use inline assembler to get and set the
# 387 control word.
if test $ac_sse2_enabled = no
then
# Check cpuid for SSE2 availability. Bits 25 and 26 of edx tell
# us about SSE and SSE2 respectively.
{ echo "$as_me:$LINENO: checking whether SSE2 instructions are available on this CPU" >&5
echo $ECHO_N "checking whether SSE2 instructions are available on this CPU... $ECHO_C" >&6; }
if test "$cross_compiling" = yes; then
ac_cv_cpu_has_sse2=no
else
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
int main() {
unsigned int ax, bx, cx, dx, func;
func = 1U;
__asm__ __volatile__ (
"pushl %%ebx\n\t" /* don't clobber ebx */
"cpuid\n\t"
"movl %%ebx, %1\n\t"
"popl %%ebx"
: "=a" (ax), "=r" (bx), "=c" (cx), "=d" (dx)
: "a" (func)
: "cc" );
if ((dx & (1U << 25)) && (dx & (1U << 26)))
return 0;
else
return 1;
}
_ACEOF
rm -f conftest$ac_exeext
if { (ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_link") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } && { ac_try='./conftest$ac_exeext'
{ (case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_try") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); }; }; then
ac_cv_cpu_has_sse2=yes
else
echo "$as_me: program exited with status $ac_status" >&5
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
( exit $ac_status )
ac_cv_cpu_has_sse2=no
fi
rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext conftest.$ac_objext conftest.$ac_ext
fi
{ echo "$as_me:$LINENO: result: $ac_cv_cpu_has_sse2" >&5
echo "${ECHO_T}$ac_cv_cpu_has_sse2" >&6; }
# determine whether gcc accepts options to turn on SSE2
{ echo "$as_me:$LINENO: checking whether $CC accepts -msse2 -mfpmath=sse" >&5
echo $ECHO_N "checking whether $CC accepts -msse2 -mfpmath=sse... $ECHO_C" >&6; }
ac_save_cc="$CC"
CC="$CC -msse2 -mfpmath=sse"
if test "$cross_compiling" = yes; then
ac_cv_msse2_ok=no
else
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
int main() { return 0; }
_ACEOF
rm -f conftest$ac_exeext
if { (ac_try="$ac_link"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_link") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } && { ac_try='./conftest$ac_exeext'
{ (case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_try") 2>&5
ac_status=$?
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); }; }; then
ac_cv_msse2_ok=yes
else
echo "$as_me: program exited with status $ac_status" >&5
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
( exit $ac_status )
ac_cv_msse2_ok=no
fi
rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext conftest.$ac_objext conftest.$ac_ext
fi
CC="$ac_save_cc"
{ echo "$as_me:$LINENO: result: $ac_cv_msse2_ok" >&5
echo "${ECHO_T}$ac_cv_msse2_ok" >&6; }
if test $ac_cv_cpu_has_sse2 = yes && test $ac_cv_msse2_ok = yes
then
BASECFLAGS="$BASECFLAGS -msse2 -mfpmath=sse"
else
# SSE2 doesn't appear to be available. Check that it's okay
# to use gcc inline assembler to get and set x87 control word
cat >>confdefs.h <<\_ACEOF
#define USING_X87_FPU 1
_ACEOF
{ echo "$as_me:$LINENO: checking whether we can use gcc inline assembler to get and set x87 control word" >&5
echo $ECHO_N "checking whether we can use gcc inline assembler to get and set x87 control word... $ECHO_C" >&6; }
cat >conftest.$ac_ext <<_ACEOF
/* confdefs.h. */
_ACEOF
cat confdefs.h >>conftest.$ac_ext
cat >>conftest.$ac_ext <<_ACEOF
/* end confdefs.h. */
int
main ()
{
unsigned short cw;
__asm__ __volatile__ ("fnstcw %0" : "=m" (cw));
__asm__ __volatile__ ("fldcw %0" : : "m" (cw));
;
return 0;
}
_ACEOF
rm -f conftest.$ac_objext
if { (ac_try="$ac_compile"
case "(($ac_try" in
*\"* | *\`* | *\\*) ac_try_echo=\$ac_try;;
*) ac_try_echo=$ac_try;;
esac
eval "echo \"\$as_me:$LINENO: $ac_try_echo\"") >&5
(eval "$ac_compile") 2>conftest.er1
ac_status=$?
grep -v '^ *+' conftest.er1 >conftest.err
rm -f conftest.er1
cat conftest.err >&5
echo "$as_me:$LINENO: \$? = $ac_status" >&5
(exit $ac_status); } && {
test -z "$ac_c_werror_flag" ||
test ! -s conftest.err
} && test -s conftest.$ac_objext; then
have_gcc_asm_for_x87=yes
else
echo "$as_me: failed program was:" >&5
sed 's/^/| /' conftest.$ac_ext >&5
have_gcc_asm_for_x87=no
fi
rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext
{ echo "$as_me:$LINENO: result: $have_gcc_asm_for_x87" >&5
echo "${ECHO_T}$have_gcc_asm_for_x87" >&6; }
if test "$have_gcc_asm_for_x87" = yes
then
cat >>confdefs.h <<\_ACEOF
#define HAVE_GCC_ASM_FOR_X87 1
_ACEOF
fi
fi
fi
fi
# Detect whether system arithmetic is subject to x87-style double
# rounding issues. The result of this test has little meaning on non
......@@ -21617,10 +22060,9 @@ LIBS="$LIBS $LIBM"
# 0 otherwise. See http://bugs.python.org/issue2937 for more info.
{ echo "$as_me:$LINENO: checking for x87-style double rounding" >&5
echo $ECHO_N "checking for x87-style double rounding... $ECHO_C" >&6; }
if test "${ac_cv_x87_double_rounding+set}" = set; then
echo $ECHO_N "(cached) $ECHO_C" >&6
else
# $BASECFLAGS may affect the result
ac_save_cc="$CC"
CC="$CC $BASECFLAGS"
if test "$cross_compiling" = yes; then
ac_cv_x87_double_rounding=no
else
......@@ -21684,8 +22126,7 @@ rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext conftest.$a
fi
fi
CC="$ac_save_cc"
{ echo "$as_me:$LINENO: result: $ac_cv_x87_double_rounding" >&5
echo "${ECHO_T}$ac_cv_x87_double_rounding" >&6; }
if test "$ac_cv_x87_double_rounding" = yes
......@@ -21697,6 +22138,13 @@ _ACEOF
fi
# ************************************
# * Check for mathematical functions *
# ************************************
LIBS_SAVE=$LIBS
LIBS="$LIBS $LIBM"
# Multiprocessing check for broken sem_getvalue
{ echo "$as_me:$LINENO: checking for broken sem_getvalue" >&5
echo $ECHO_N "checking for broken sem_getvalue... $ECHO_C" >&6; }
......
......@@ -3065,12 +3065,176 @@ else AC_MSG_ERROR([proper usage is --with-libc=STRING])
fi],
[AC_MSG_RESULT(default LIBC="$LIBC")])
# ************************************
# * Check for mathematical functions *
# ************************************
# **************************************************
# * Check for various properties of floating point *
# **************************************************
LIBS_SAVE=$LIBS
LIBS="$LIBS $LIBM"
AC_MSG_CHECKING(whether C doubles are little-endian IEEE 754 binary64)
AC_CACHE_VAL(ac_cv_little_endian_double, [
AC_TRY_RUN([
#include <string.h>
int main() {
double x = 9006104071832581.0;
if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
return 0;
else
return 1;
}
],
ac_cv_little_endian_double=yes,
ac_cv_little_endian_double=no,
ac_cv_little_endian_double=no)])
AC_MSG_RESULT($ac_cv_little_endian_double)
if test "$ac_cv_little_endian_double" = yes
then
AC_DEFINE(DOUBLE_IS_LITTLE_ENDIAN_IEEE754, 1,
[Define if C doubles are 64-bit IEEE 754 binary format, stored
with the least significant byte first])
fi
AC_MSG_CHECKING(whether C doubles are big-endian IEEE 754 binary64)
AC_CACHE_VAL(ac_cv_big_endian_double, [
AC_TRY_RUN([
#include <string.h>
int main() {
double x = 9006104071832581.0;
if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
return 0;
else
return 1;
}
],
ac_cv_big_endian_double=yes,
ac_cv_big_endian_double=no,
ac_cv_big_endian_double=no)])
AC_MSG_RESULT($ac_cv_big_endian_double)
if test "$ac_cv_big_endian_double" = yes
then
AC_DEFINE(DOUBLE_IS_BIG_ENDIAN_IEEE754, 1,
[Define if C doubles are 64-bit IEEE 754 binary format, stored
with the most significant byte first])
fi
# Some ARM platforms use a mixed-endian representation for doubles.
# While Python doesn't currently have full support for these platforms
# (see e.g., issue 1762561), we can at least make sure that float <-> string
# conversions work.
AC_MSG_CHECKING(whether C doubles are ARM mixed-endian IEEE 754 binary64)
AC_CACHE_VAL(ac_cv_mixed_endian_double, [
AC_TRY_RUN([
#include <string.h>
int main() {
double x = 9006104071832581.0;
if (memcmp(&x, "\x01\xff\x3f\x43\x05\x04\x03\x02", 8) == 0)
return 0;
else
return 1;
}
],
ac_cv_mixed_endian_double=yes,
ac_cv_mixed_endian_double=no,
ac_cv_mixed_endian_double=no)])
AC_MSG_RESULT($ac_cv_mixed_endian_double)
if test "$ac_cv_mixed_endian_double" = yes
then
AC_DEFINE(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754, 1,
[Define if C doubles are 64-bit IEEE 754 binary format, stored
in ARM mixed-endian order (byte order 45670123)])
fi
# David Gay's code in Python/dtoa.c requires that the FPU uses 53-bit
# rounding; this is a particular problem on x86, where the x87 FPU has
# a default rounding precision of 64 bits. For gcc/x86, we try to fix
# this by:
#
# (1) using the SSE2 instruction set when available (it usually is
# on modern machines)
# (2) using inline assembler to get and set the x87 FPU control word
# otherwise.
#
# On AMD64 (aka x86-64), gcc automatically enables use of SSE2
# instructions, so we don't bother trying to detect.
if test "$GCC" = yes && test -n "`$CC -dM -E - </dev/null | grep i386`"
then
# determine whether we're already using the SSE2 instruction set for math
# (e.g., this is true by default on OS X/x86)
AC_MSG_CHECKING(whether SSE2 instructions are already enabled for math)
if test -n "`$CC -dM -E - </dev/null | grep __SSE2_MATH__`"
then
ac_sse2_enabled=yes
else
ac_sse2_enabled=no
fi
AC_MSG_RESULT($ac_sse2_enabled)
# if we're not using SSE2 already, we need to either enable it
# (when available), or use inline assembler to get and set the
# 387 control word.
if test $ac_sse2_enabled = no
then
# Check cpuid for SSE2 availability. Bits 25 and 26 of edx tell
# us about SSE and SSE2 respectively.
AC_MSG_CHECKING(whether SSE2 instructions are available on this CPU)
AC_TRY_RUN([
int main() {
unsigned int ax, bx, cx, dx, func;
func = 1U;
__asm__ __volatile__ (
"pushl %%ebx\n\t" /* don't clobber ebx */
"cpuid\n\t"
"movl %%ebx, %1\n\t"
"popl %%ebx"
: "=a" (ax), "=r" (bx), "=c" (cx), "=d" (dx)
: "a" (func)
: "cc" );
if ((dx & (1U << 25)) && (dx & (1U << 26)))
return 0;
else
return 1;
}
],
ac_cv_cpu_has_sse2=yes,
ac_cv_cpu_has_sse2=no,
ac_cv_cpu_has_sse2=no)
AC_MSG_RESULT($ac_cv_cpu_has_sse2)
# determine whether gcc accepts options to turn on SSE2
AC_MSG_CHECKING(whether $CC accepts -msse2 -mfpmath=sse)
ac_save_cc="$CC"
CC="$CC -msse2 -mfpmath=sse"
AC_TRY_RUN([int main() { return 0; }],
ac_cv_msse2_ok=yes,
ac_cv_msse2_ok=no,
ac_cv_msse2_ok=no)
CC="$ac_save_cc"
AC_MSG_RESULT($ac_cv_msse2_ok)
if test $ac_cv_cpu_has_sse2 = yes && test $ac_cv_msse2_ok = yes
then
BASECFLAGS="$BASECFLAGS -msse2 -mfpmath=sse"
else
# SSE2 doesn't appear to be available. Check that it's okay
# to use gcc inline assembler to get and set x87 control word
AC_DEFINE(USING_X87_FPU, 1,
[Define on x86 hardware if the x87 FPU is being used
for floating-point arithmetic])
AC_MSG_CHECKING(whether we can use gcc inline assembler to get and set x87 control word)
AC_TRY_COMPILE([], [
unsigned short cw;
__asm__ __volatile__ ("fnstcw %0" : "=m" (cw));
__asm__ __volatile__ ("fldcw %0" : : "m" (cw));
],
[have_gcc_asm_for_x87=yes], [have_gcc_asm_for_x87=no])
AC_MSG_RESULT($have_gcc_asm_for_x87)
if test "$have_gcc_asm_for_x87" = yes
then
AC_DEFINE(HAVE_GCC_ASM_FOR_X87, 1,
[Define if we can use gcc inline assembler to get and set x87 control word])
fi
fi
fi
fi
# Detect whether system arithmetic is subject to x87-style double
# rounding issues. The result of this test has little meaning on non
......@@ -3078,7 +3242,9 @@ LIBS="$LIBS $LIBM"
# mode is round-to-nearest and double rounding issues are present, and
# 0 otherwise. See http://bugs.python.org/issue2937 for more info.
AC_MSG_CHECKING(for x87-style double rounding)
AC_CACHE_VAL(ac_cv_x87_double_rounding, [
# $BASECFLAGS may affect the result
ac_save_cc="$CC"
CC="$CC $BASECFLAGS"
AC_TRY_RUN([
#include <stdlib.h>
#include <math.h>
......@@ -3101,7 +3267,8 @@ int main() {
],
ac_cv_x87_double_rounding=no,
ac_cv_x87_double_rounding=yes,
ac_cv_x87_double_rounding=no)])
ac_cv_x87_double_rounding=no)
CC="$ac_save_cc"
AC_MSG_RESULT($ac_cv_x87_double_rounding)
if test "$ac_cv_x87_double_rounding" = yes
then
......@@ -3109,6 +3276,13 @@ then
[Define if arithmetic is subject to x87-style double rounding issue])
fi
# ************************************
# * Check for mathematical functions *
# ************************************
LIBS_SAVE=$LIBS
LIBS="$LIBS $LIBM"
# Multiprocessing check for broken sem_getvalue
AC_MSG_CHECKING(for broken sem_getvalue)
AC_TRY_RUN([
......
......@@ -15,6 +15,18 @@
/* Define if you have the Mach cthreads package */
#undef C_THREADS
/* Define if C doubles are 64-bit IEEE 754 binary format, stored in ARM
mixed-endian order (byte order 45670123) */
#undef DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754
/* Define if C doubles are 64-bit IEEE 754 binary format, stored with the most
significant byte first */
#undef DOUBLE_IS_BIG_ENDIAN_IEEE754
/* Define if C doubles are 64-bit IEEE 754 binary format, stored with the
least significant byte first */
#undef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
/* Define if --enable-ipv6 is specified */
#undef ENABLE_IPV6
......@@ -232,6 +244,10 @@
/* Define to 1 if you have the `gai_strerror' function. */
#undef HAVE_GAI_STRERROR
/* Define if we can use gcc inline assembler to get and set x87 control word
*/
#undef HAVE_GCC_ASM_FOR_X87
/* Define if you have the getaddrinfo function. */
#undef HAVE_GETADDRINFO
......@@ -970,6 +986,10 @@
/* Define if you want to use computed gotos in ceval.c. */
#undef USE_COMPUTED_GOTOS
/* Define on x86 hardware if the x87 FPU is being used for floating-point
arithmetic */
#undef USING_X87_FPU
/* Define if a va_list is an array of some kind */
#undef VA_LIST_IS_ARRAY
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment