Commit c6dabe37 authored by Raymond Hettinger's avatar Raymond Hettinger Committed by GitHub

bpo-33089: Multidimensional math.hypot() (GH-8474)

parent 50326927
......@@ -330,10 +330,19 @@ Trigonometric functions
Return the cosine of *x* radians.
.. function:: hypot(x, y)
.. function:: hypot(*coordinates)
Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
from the origin to point ``(x, y)``.
Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
This is the length of the vector from the origin to the point
given by the coordinates.
For a two dimensional point ``(x, y)``, this is equivalent to computing
the hypotenuse of a right triangle using the Pythagorean theorem,
``sqrt(x*x + y*y)``.
.. versionchanged:: 3.8
Added support for n-dimensional points. Formerly, only the two
dimensional case was supported.
.. function:: sin(x)
......
......@@ -16,6 +16,7 @@ NAN = float('nan')
INF = float('inf')
NINF = float('-inf')
FLOAT_MAX = sys.float_info.max
FLOAT_MIN = sys.float_info.min
# detect evidence of double-rounding: fsum is not always correctly
# rounded on machines that suffer from double rounding.
......@@ -720,16 +721,71 @@ class MathTests(unittest.TestCase):
self.assertEqual(gcd(MyIndexable(120), MyIndexable(84)), 12)
def testHypot(self):
self.assertRaises(TypeError, math.hypot)
self.ftest('hypot(0,0)', math.hypot(0,0), 0)
self.ftest('hypot(3,4)', math.hypot(3,4), 5)
self.assertEqual(math.hypot(NAN, INF), INF)
self.assertEqual(math.hypot(INF, NAN), INF)
self.assertEqual(math.hypot(NAN, NINF), INF)
self.assertEqual(math.hypot(NINF, NAN), INF)
self.assertRaises(OverflowError, math.hypot, FLOAT_MAX, FLOAT_MAX)
self.assertTrue(math.isnan(math.hypot(1.0, NAN)))
self.assertTrue(math.isnan(math.hypot(NAN, -2.0)))
from decimal import Decimal
from fractions import Fraction
hypot = math.hypot
# Test different numbers of arguments (from zero to five)
# against a straightforward pure python implementation
args = math.e, math.pi, math.sqrt(2.0), math.gamma(3.5), math.sin(2.1)
for i in range(len(args)+1):
self.assertAlmostEqual(
hypot(*args[:i]),
math.sqrt(sum(s**2 for s in args[:i]))
)
# Test allowable types (those with __float__)
self.assertEqual(hypot(12.0, 5.0), 13.0)
self.assertEqual(hypot(12, 5), 13)
self.assertEqual(hypot(Decimal(12), Decimal(5)), 13)
self.assertEqual(hypot(Fraction(12, 32), Fraction(5, 32)), Fraction(13, 32))
self.assertEqual(hypot(bool(1), bool(0), bool(1), bool(1)), math.sqrt(3))
# Test corner cases
self.assertEqual(hypot(0.0, 0.0), 0.0) # Max input is zero
self.assertEqual(hypot(-10.5), 10.5) # Negative input
self.assertEqual(hypot(), 0.0) # Negative input
self.assertEqual(1.0,
math.copysign(1.0, hypot(-0.0)) # Convert negative zero to positive zero
)
# Test handling of bad arguments
with self.assertRaises(TypeError): # Reject keyword args
hypot(x=1)
with self.assertRaises(TypeError): # Reject values without __float__
hypot(1.1, 'string', 2.2)
# Any infinity gives positive infinity.
self.assertEqual(hypot(INF), INF)
self.assertEqual(hypot(0, INF), INF)
self.assertEqual(hypot(10, INF), INF)
self.assertEqual(hypot(-10, INF), INF)
self.assertEqual(hypot(NAN, INF), INF)
self.assertEqual(hypot(INF, NAN), INF)
self.assertEqual(hypot(NINF, NAN), INF)
self.assertEqual(hypot(NAN, NINF), INF)
self.assertEqual(hypot(-INF, INF), INF)
self.assertEqual(hypot(-INF, -INF), INF)
self.assertEqual(hypot(10, -INF), INF)
# If no infinity, any NaN gives a Nan.
self.assertTrue(math.isnan(hypot(NAN)))
self.assertTrue(math.isnan(hypot(0, NAN)))
self.assertTrue(math.isnan(hypot(NAN, 10)))
self.assertTrue(math.isnan(hypot(10, NAN)))
self.assertTrue(math.isnan(hypot(NAN, NAN)))
self.assertTrue(math.isnan(hypot(NAN)))
# Verify scaling for extremely large values
fourthmax = FLOAT_MAX / 4.0
for n in range(32):
self.assertEqual(hypot(*([fourthmax]*n)), fourthmax * math.sqrt(n))
# Verify scaling for extremely small values
for exp in range(32):
scale = FLOAT_MIN / 2.0 ** exp
self.assertEqual(math.hypot(4*scale, 3*scale), 5*scale)
def testLdexp(self):
self.assertRaises(TypeError, math.ldexp)
......
Enhanced math.hypot() to support more than two dimensions.
......@@ -269,35 +269,6 @@ exit:
return return_value;
}
PyDoc_STRVAR(math_hypot__doc__,
"hypot($module, x, y, /)\n"
"--\n"
"\n"
"Return the Euclidean distance, sqrt(x*x + y*y).");
#define MATH_HYPOT_METHODDEF \
{"hypot", (PyCFunction)math_hypot, METH_FASTCALL, math_hypot__doc__},
static PyObject *
math_hypot_impl(PyObject *module, double x, double y);
static PyObject *
math_hypot(PyObject *module, PyObject *const *args, Py_ssize_t nargs)
{
PyObject *return_value = NULL;
double x;
double y;
if (!_PyArg_ParseStack(args, nargs, "dd:hypot",
&x, &y)) {
goto exit;
}
return_value = math_hypot_impl(module, x, y);
exit:
return return_value;
}
PyDoc_STRVAR(math_pow__doc__,
"pow($module, x, y, /)\n"
"--\n"
......@@ -516,4 +487,4 @@ math_isclose(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject
exit:
return return_value;
}
/*[clinic end generated code: output=e554bad553045546 input=a9049054013a1b77]*/
/*[clinic end generated code: output=1c35516a10443902 input=a9049054013a1b77]*/
......@@ -2031,49 +2031,74 @@ math_fmod_impl(PyObject *module, double x, double y)
return PyFloat_FromDouble(r);
}
/*[clinic input]
math.hypot
x: double
y: double
/
Return the Euclidean distance, sqrt(x*x + y*y).
[clinic start generated code]*/
/* AC: cannot convert yet, waiting for *args support */
static PyObject *
math_hypot_impl(PyObject *module, double x, double y)
/*[clinic end generated code: output=b7686e5be468ef87 input=7f8eea70406474aa]*/
math_hypot(PyObject *self, PyObject *args)
{
double r;
/* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
if (Py_IS_INFINITY(x))
return PyFloat_FromDouble(fabs(x));
if (Py_IS_INFINITY(y))
return PyFloat_FromDouble(fabs(y));
errno = 0;
PyFPE_START_PROTECT("in math_hypot", return 0);
r = hypot(x, y);
PyFPE_END_PROTECT(r);
if (Py_IS_NAN(r)) {
if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
errno = EDOM;
else
errno = 0;
Py_ssize_t i, n;
PyObject *item;
double *coordinates;
double max = 0.0;
double csum = 0.0;
double x, result;
int found_nan = 0;
n = PyTuple_GET_SIZE(args);
coordinates = (double *) PyObject_Malloc(n * sizeof(double));
if (coordinates == NULL)
return NULL;
for (i=0 ; i<n ; i++) {
item = PyTuple_GET_ITEM(args, i);
x = PyFloat_AsDouble(item);
if (x == -1.0 && PyErr_Occurred()) {
PyObject_Free(coordinates);
return NULL;
}
else if (Py_IS_INFINITY(r)) {
if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
errno = ERANGE;
else
errno = 0;
x = fabs(x);
coordinates[i] = x;
found_nan |= Py_IS_NAN(x);
if (x > max) {
max = x;
}
if (errno && is_error(r))
return NULL;
else
return PyFloat_FromDouble(r);
}
if (Py_IS_INFINITY(max)) {
result = max;
goto done;
}
if (found_nan) {
result = Py_NAN;
goto done;
}
if (max == 0.0) {
result = 0.0;
goto done;
}
for (i=0 ; i<n ; i++) {
x = coordinates[i] / max;
csum += x * x;
}
result = max * sqrt(csum);
done:
PyObject_Free(coordinates);
return PyFloat_FromDouble(result);
}
PyDoc_STRVAR(math_hypot_doc,
"hypot(*coordinates) -> value\n\n\
Multidimensional Euclidean distance from the origin to a point.\n\
\n\
Roughly equivalent to:\n\
sqrt(sum(x**2 for x in coordinates))\n\
\n\
For a two dimensional point (x, y), gives the hypotenuse\n\
using the Pythagorean theorem: sqrt(x*x + y*y).\n\
\n\
For example, the hypotenuse of a 3/4/5 right triangle is:\n\
\n\
>>> hypot(3.0, 4.0)\n\
5.0\n\
");
/* pow can't use math_2, but needs its own wrapper: the problem is
that an infinite result can arise either as a result of overflow
......@@ -2345,7 +2370,7 @@ static PyMethodDef math_methods[] = {
MATH_FSUM_METHODDEF
{"gamma", math_gamma, METH_O, math_gamma_doc},
MATH_GCD_METHODDEF
MATH_HYPOT_METHODDEF
{"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
MATH_ISCLOSE_METHODDEF
MATH_ISFINITE_METHODDEF
MATH_ISINF_METHODDEF
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment