Commit dc9b2555 authored by Nick Coghlan's avatar Nick Coghlan

Issue #14814: addition of the ipaddress module (stage 1 - code and tests)

parent 7db768cf
......@@ -851,6 +851,15 @@ already exists. It is based on the C11 'x' mode to fopen().
(Contributed by David Townshend in :issue:`12760`)
ipaddress
---------
The new :mod:`ipaddress` module provides tools for creating and manipulating
objects representing IPv4 and IPv6 addresses, networks and interfaces (i.e.
an IP address associated with a specific IP subnet).
(Contributed by Google and Peter Moody in :pep:`3144`)
lzma
----
......
#!/usr/bin/python3
#
# Copyright 2007 Google Inc.
# Licensed to PSF under a Contributor Agreement.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
"""A fast, lightweight IPv4/IPv6 manipulation library in Python.
This library is used to create/poke/manipulate IPv4 and IPv6 addresses
and networks.
"""
__version__ = '1.0'
import struct
IPV4LENGTH = 32
IPV6LENGTH = 128
class AddressValueError(ValueError):
"""A Value Error related to the address."""
class NetmaskValueError(ValueError):
"""A Value Error related to the netmask."""
def ip_address(address, version=None):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP address. Either IPv4 or
IPv6 addresses may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
version: An Integer, 4 or 6. If set, don't try to automatically
determine what the IP address type is. important for things
like ip_address(1), which could be IPv4, '192.0.2.1', or IPv6,
'2001:db8::1'.
Returns:
An IPv4Address or IPv6Address object.
Raises:
ValueError: if the string passed isn't either a v4 or a v6
address.
"""
if version:
if version == 4:
return IPv4Address(address)
elif version == 6:
return IPv6Address(address)
try:
return IPv4Address(address)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Address(address)
except (AddressValueError, NetmaskValueError):
pass
raise ValueError('%r does not appear to be an IPv4 or IPv6 address' %
address)
def ip_network(address, version=None, strict=True):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP network. Either IPv4 or
IPv6 networks may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
version: An Integer, if set, don't try to automatically
determine what the IP address type is. important for things
like ip_network(1), which could be IPv4, '192.0.2.1/32', or IPv6,
'2001:db8::1/128'.
Returns:
An IPv4Network or IPv6Network object.
Raises:
ValueError: if the string passed isn't either a v4 or a v6
address. Or if the network has host bits set.
"""
if version:
if version == 4:
return IPv4Network(address, strict)
elif version == 6:
return IPv6Network(address, strict)
try:
return IPv4Network(address, strict)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Network(address, strict)
except (AddressValueError, NetmaskValueError):
pass
raise ValueError('%r does not appear to be an IPv4 or IPv6 network' %
address)
def ip_interface(address, version=None):
"""Take an IP string/int and return an object of the correct type.
Args:
address: A string or integer, the IP address. Either IPv4 or
IPv6 addresses may be supplied; integers less than 2**32 will
be considered to be IPv4 by default.
version: An Integer, if set, don't try to automatically
determine what the IP address type is. important for things
like ip_network(1), which could be IPv4, '192.0.2.1/32', or IPv6,
'2001:db8::1/128'.
Returns:
An IPv4Network or IPv6Network object.
Raises:
ValueError: if the string passed isn't either a v4 or a v6
address.
Notes:
The IPv?Interface classes describe an Address on a particular
Network, so they're basically a combination of both the Address
and Network classes.
"""
if version:
if version == 4:
return IPv4Interface(address)
elif version == 6:
return IPv6Interface(address)
try:
return IPv4Interface(address)
except (AddressValueError, NetmaskValueError):
pass
try:
return IPv6Interface(address)
except (AddressValueError, NetmaskValueError):
pass
raise ValueError('%r does not appear to be an IPv4 or IPv6 network' %
address)
def v4_int_to_packed(address):
"""The binary representation of this address.
Args:
address: An integer representation of an IPv4 IP address.
Returns:
The binary representation of this address.
Raises:
ValueError: If the integer is too large to be an IPv4 IP
address.
"""
if address > _BaseV4._ALL_ONES:
raise ValueError('Address too large for IPv4')
return struct.pack('!I', address)
def v6_int_to_packed(address):
"""The binary representation of this address.
Args:
address: An integer representation of an IPv4 IP address.
Returns:
The binary representation of this address.
"""
return struct.pack('!QQ', address >> 64, address & (2**64 - 1))
def _find_address_range(addresses):
"""Find a sequence of addresses.
Args:
addresses: a list of IPv4 or IPv6 addresses.
Returns:
A tuple containing the first and last IP addresses in the sequence.
"""
first = last = addresses[0]
for ip in addresses[1:]:
if ip._ip == last._ip + 1:
last = ip
else:
break
return (first, last)
def _get_prefix_length(number1, number2, bits):
"""Get the number of leading bits that are same for two numbers.
Args:
number1: an integer.
number2: another integer.
bits: the maximum number of bits to compare.
Returns:
The number of leading bits that are the same for two numbers.
"""
for i in range(bits):
if number1 >> i == number2 >> i:
return bits - i
return 0
def _count_righthand_zero_bits(number, bits):
"""Count the number of zero bits on the right hand side.
Args:
number: an integer.
bits: maximum number of bits to count.
Returns:
The number of zero bits on the right hand side of the number.
"""
if number == 0:
return bits
for i in range(bits):
if (number >> i) % 2:
return i
def summarize_address_range(first, last):
"""Summarize a network range given the first and last IP addresses.
Example:
>>> summarize_address_range(IPv4Address('192.0.2.0'),
IPv4Address('192.0.2.130'))
[IPv4Network('192.0.2.0/25'), IPv4Network('192.0.2.128/31'),
IPv4Network('192.0.2.130/32')]
Args:
first: the first IPv4Address or IPv6Address in the range.
last: the last IPv4Address or IPv6Address in the range.
Returns:
An iterator of the summarized IPv(4|6) network objects.
Raise:
TypeError:
If the first and last objects are not IP addresses.
If the first and last objects are not the same version.
ValueError:
If the last object is not greater than the first.
If the version is not 4 or 6.
"""
if not (isinstance(first, _BaseAddress) and isinstance(last, _BaseAddress)):
raise TypeError('first and last must be IP addresses, not networks')
if first.version != last.version:
raise TypeError("%s and %s are not of the same version" % (
str(first), str(last)))
if first > last:
raise ValueError('last IP address must be greater than first')
networks = []
if first.version == 4:
ip = IPv4Network
elif first.version == 6:
ip = IPv6Network
else:
raise ValueError('unknown IP version')
ip_bits = first._max_prefixlen
first_int = first._ip
last_int = last._ip
while first_int <= last_int:
nbits = _count_righthand_zero_bits(first_int, ip_bits)
current = None
while nbits >= 0:
addend = 2**nbits - 1
current = first_int + addend
nbits -= 1
if current <= last_int:
break
prefix = _get_prefix_length(first_int, current, ip_bits)
net = ip('%s/%d' % (str(first), prefix))
yield net
#networks.append(net)
if current == ip._ALL_ONES:
break
first_int = current + 1
first = ip_address(first_int, version=first._version)
def _collapse_addresses_recursive(addresses):
"""Loops through the addresses, collapsing concurrent netblocks.
Example:
ip1 = IPv4Network('192.0.2.0/26')
ip2 = IPv4Network('192.0.2.64/26')
ip3 = IPv4Network('192.0.2.128/26')
ip4 = IPv4Network('192.0.2.192/26')
_collapse_addresses_recursive([ip1, ip2, ip3, ip4]) ->
[IPv4Network('192.0.2.0/24')]
This shouldn't be called directly; it is called via
collapse_addresses([]).
Args:
addresses: A list of IPv4Network's or IPv6Network's
Returns:
A list of IPv4Network's or IPv6Network's depending on what we were
passed.
"""
ret_array = []
optimized = False
for cur_addr in addresses:
if not ret_array:
ret_array.append(cur_addr)
continue
if (cur_addr.network_address >= ret_array[-1].network_address and
cur_addr.broadcast_address <= ret_array[-1].broadcast_address):
optimized = True
elif cur_addr == list(ret_array[-1].supernet().subnets())[1]:
ret_array.append(ret_array.pop().supernet())
optimized = True
else:
ret_array.append(cur_addr)
if optimized:
return _collapse_addresses_recursive(ret_array)
return ret_array
def collapse_addresses(addresses):
"""Collapse a list of IP objects.
Example:
collapse_addresses([IPv4Network('192.0.2.0/25'),
IPv4Network('192.0.2.128/25')]) ->
[IPv4Network('192.0.2.0/24')]
Args:
addresses: An iterator of IPv4Network or IPv6Network objects.
Returns:
An iterator of the collapsed IPv(4|6)Network objects.
Raises:
TypeError: If passed a list of mixed version objects.
"""
i = 0
addrs = []
ips = []
nets = []
# split IP addresses and networks
for ip in addresses:
if isinstance(ip, _BaseAddress):
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
str(ip), str(ips[-1])))
ips.append(ip)
elif ip._prefixlen == ip._max_prefixlen:
if ips and ips[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
str(ip), str(ips[-1])))
try:
ips.append(ip.ip)
except AttributeError:
ips.append(ip.network_address)
else:
if nets and nets[-1]._version != ip._version:
raise TypeError("%s and %s are not of the same version" % (
str(ip), str(ips[-1])))
nets.append(ip)
# sort and dedup
ips = sorted(set(ips))
nets = sorted(set(nets))
while i < len(ips):
(first, last) = _find_address_range(ips[i:])
i = ips.index(last) + 1
addrs.extend(summarize_address_range(first, last))
return iter(_collapse_addresses_recursive(sorted(
addrs + nets, key=_BaseNetwork._get_networks_key)))
def get_mixed_type_key(obj):
"""Return a key suitable for sorting between networks and addresses.
Address and Network objects are not sortable by default; they're
fundamentally different so the expression
IPv4Address('192.0.2.0') <= IPv4Network('192.0.2.0/24')
doesn't make any sense. There are some times however, where you may wish
to have ipaddress sort these for you anyway. If you need to do this, you
can use this function as the key= argument to sorted().
Args:
obj: either a Network or Address object.
Returns:
appropriate key.
"""
if isinstance(obj, _BaseNetwork):
return obj._get_networks_key()
elif isinstance(obj, _BaseAddress):
return obj._get_address_key()
return NotImplemented
class _IPAddressBase(object):
"""The mother class."""
@property
def exploded(self):
"""Return the longhand version of the IP address as a string."""
return self._explode_shorthand_ip_string()
@property
def compressed(self):
"""Return the shorthand version of the IP address as a string."""
return str(self)
def _ip_int_from_prefix(self, prefixlen=None):
"""Turn the prefix length netmask into a int for comparison.
Args:
prefixlen: An integer, the prefix length.
Returns:
An integer.
"""
if not prefixlen and prefixlen != 0:
prefixlen = self._prefixlen
return self._ALL_ONES ^ (self._ALL_ONES >> prefixlen)
def _prefix_from_ip_int(self, ip_int, mask=32):
"""Return prefix length from the decimal netmask.
Args:
ip_int: An integer, the IP address.
mask: The netmask. Defaults to 32.
Returns:
An integer, the prefix length.
"""
while mask:
if ip_int & 1 == 1:
break
ip_int >>= 1
mask -= 1
return mask
def _ip_string_from_prefix(self, prefixlen=None):
"""Turn a prefix length into a dotted decimal string.
Args:
prefixlen: An integer, the netmask prefix length.
Returns:
A string, the dotted decimal netmask string.
"""
if not prefixlen:
prefixlen = self._prefixlen
return self._string_from_ip_int(self._ip_int_from_prefix(prefixlen))
class _BaseAddress(_IPAddressBase):
"""A generic IP object.
This IP class contains the version independent methods which are
used by single IP addresses.
"""
def __init__(self, address):
if (not isinstance(address, bytes)
and '/' in str(address)):
raise AddressValueError(address)
def __index__(self):
return self._ip
def __int__(self):
return self._ip
def __hex__(self):
return hex(self._ip)
def __eq__(self, other):
try:
return (self._ip == other._ip
and self._version == other._version)
except AttributeError:
return NotImplemented
def __ne__(self, other):
eq = self.__eq__(other)
if eq is NotImplemented:
return NotImplemented
return not eq
def __le__(self, other):
gt = self.__gt__(other)
if gt is NotImplemented:
return NotImplemented
return not gt
def __ge__(self, other):
lt = self.__lt__(other)
if lt is NotImplemented:
return NotImplemented
return not lt
def __lt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseAddress):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self._ip != other._ip:
return self._ip < other._ip
return False
def __gt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseAddress):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self._ip != other._ip:
return self._ip > other._ip
return False
# Shorthand for Integer addition and subtraction. This is not
# meant to ever support addition/subtraction of addresses.
def __add__(self, other):
if not isinstance(other, int):
return NotImplemented
return ip_address(int(self) + other, version=self._version)
def __sub__(self, other):
if not isinstance(other, int):
return NotImplemented
return ip_address(int(self) - other, version=self._version)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, str(self))
def __str__(self):
return '%s' % self._string_from_ip_int(self._ip)
def __hash__(self):
return hash(hex(int(self._ip)))
def _get_address_key(self):
return (self._version, self)
@property
def version(self):
raise NotImplementedError('BaseIP has no version')
class _BaseNetwork(_IPAddressBase):
"""A generic IP object.
This IP class contains the version independent methods which are
used by networks.
"""
def __init__(self, address):
self._cache = {}
def __index__(self):
return int(self.network_address) ^ self.prefixlen
def __int__(self):
return int(self.network_address)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, str(self))
def hosts(self):
"""Generate Iterator over usable hosts in a network.
This is like __iter__ except it doesn't return the network
or broadcast addresses.
"""
cur = int(self.network_address) + 1
bcast = int(self.broadcast_address) - 1
while cur <= bcast:
cur += 1
yield ip_address(cur - 1, version=self._version)
def __iter__(self):
cur = int(self.network_address)
bcast = int(self.broadcast_address)
while cur <= bcast:
cur += 1
yield ip_address(cur - 1, version=self._version)
def __getitem__(self, n):
network = int(self.network_address)
broadcast = int(self.broadcast_address)
if n >= 0:
if network + n > broadcast:
raise IndexError
return ip_address(network + n, version=self._version)
else:
n += 1
if broadcast + n < network:
raise IndexError
return ip_address(broadcast + n, version=self._version)
def __lt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseNetwork):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self.network_address != other.network_address:
return self.network_address < other.network_address
if self.netmask != other.netmask:
return self.netmask < other.netmask
return False
def __gt__(self, other):
if self._version != other._version:
raise TypeError('%s and %s are not of the same version' % (
str(self), str(other)))
if not isinstance(other, _BaseNetwork):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
if self.network_address != other.network_address:
return self.network_address > other.network_address
if self.netmask != other.netmask:
return self.netmask > other.netmask
return False
def __le__(self, other):
gt = self.__gt__(other)
if gt is NotImplemented:
return NotImplemented
return not gt
def __ge__(self, other):
lt = self.__lt__(other)
if lt is NotImplemented:
return NotImplemented
return not lt
def __eq__(self, other):
if not isinstance(other, _BaseNetwork):
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
return (self._version == other._version and
self.network_address == other.network_address and
int(self.netmask) == int(other.netmask))
def __ne__(self, other):
eq = self.__eq__(other)
if eq is NotImplemented:
return NotImplemented
return not eq
def __str__(self):
return '%s/%s' % (str(self.ip),
str(self._prefixlen))
def __hash__(self):
return hash(int(self.network_address) ^ int(self.netmask))
def __contains__(self, other):
# always false if one is v4 and the other is v6.
if self._version != other._version:
return False
# dealing with another network.
if isinstance(other, _BaseNetwork):
return False
# dealing with another address
else:
# address
return (int(self.network_address) <= int(other._ip) <=
int(self.broadcast_address))
def overlaps(self, other):
"""Tell if self is partly contained in other."""
return self.network_address in other or (
self.broadcast_address in other or (
other.network_address in self or (
other.broadcast_address in self)))
@property
def broadcast_address(self):
x = self._cache.get('broadcast_address')
if x is None:
x = ip_address(int(self.network_address) | int(self.hostmask),
version=self._version)
self._cache['broadcast_address'] = x
return x
@property
def hostmask(self):
x = self._cache.get('hostmask')
if x is None:
x = ip_address(int(self.netmask) ^ self._ALL_ONES,
version=self._version)
self._cache['hostmask'] = x
return x
@property
def network(self):
return ip_network('%s/%d' % (str(self.network_address),
self.prefixlen))
@property
def with_prefixlen(self):
return '%s/%d' % (str(self.ip), self._prefixlen)
@property
def with_netmask(self):
return '%s/%s' % (str(self.ip), str(self.netmask))
@property
def with_hostmask(self):
return '%s/%s' % (str(self.ip), str(self.hostmask))
@property
def num_addresses(self):
"""Number of hosts in the current subnet."""
return int(self.broadcast_address) - int(self.network_address) + 1
@property
def version(self):
raise NotImplementedError('BaseNet has no version')
@property
def prefixlen(self):
return self._prefixlen
def address_exclude(self, other):
"""Remove an address from a larger block.
For example:
addr1 = ip_network('192.0.2.0/28')
addr2 = ip_network('192.0.2.1/32')
addr1.address_exclude(addr2) =
[IPv4Network('192.0.2.0/32'), IPv4Network('192.0.2.2/31'),
IPv4Network('192.0.2.4/30'), IPv4Network('192.0.2.8/29')]
or IPv6:
addr1 = ip_network('2001:db8::1/32')
addr2 = ip_network('2001:db8::1/128')
addr1.address_exclude(addr2) =
[ip_network('2001:db8::1/128'),
ip_network('2001:db8::2/127'),
ip_network('2001:db8::4/126'),
ip_network('2001:db8::8/125'),
...
ip_network('2001:db8:8000::/33')]
Args:
other: An IPv4Network or IPv6Network object of the same type.
Returns:
An iterator of the the IPv(4|6)Network objects which is self
minus other.
Raises:
TypeError: If self and other are of difffering address
versions, or if other is not a network object.
ValueError: If other is not completely contained by self.
"""
if not self._version == other._version:
raise TypeError("%s and %s are not of the same version" % (
str(self), str(other)))
if not isinstance(other, _BaseNetwork):
raise TypeError("%s is not a network object" % str(other))
if not (other.network_address >= self.network_address and
other.broadcast_address <= self.broadcast_address):
raise ValueError('%s not contained in %s' % (str(other), str(self)))
if other == self:
raise StopIteration
ret_addrs = []
# Make sure we're comparing the network of other.
other = ip_network('%s/%s' % (str(other.network_address),
str(other.prefixlen)),
version=other._version)
s1, s2 = self.subnets()
while s1 != other and s2 != other:
if (other.network_address >= s1.network_address and
other.broadcast_address <= s1.broadcast_address):
yield s2
s1, s2 = s1.subnets()
elif (other.network_address >= s2.network_address and
other.broadcast_address <= s2.broadcast_address):
yield s1
s1, s2 = s2.subnets()
else:
# If we got here, there's a bug somewhere.
raise AssertionError('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(str(s1), str(s2), str(other)))
if s1 == other:
yield s2
elif s2 == other:
yield s1
else:
# If we got here, there's a bug somewhere.
raise AssertionError('Error performing exclusion: '
's1: %s s2: %s other: %s' %
(str(s1), str(s2), str(other)))
def compare_networks(self, other):
"""Compare two IP objects.
This is only concerned about the comparison of the integer
representation of the network addresses. This means that the
host bits aren't considered at all in this method. If you want
to compare host bits, you can easily enough do a
'HostA._ip < HostB._ip'
Args:
other: An IP object.
Returns:
If the IP versions of self and other are the same, returns:
-1 if self < other:
eg: IPv4Network('192.0.2.0/25') < IPv4Network('192.0.2.128/25')
IPv6Network('2001:db8::1000/124') <
IPv6Network('2001:db8::2000/124')
0 if self == other
eg: IPv4Network('192.0.2.0/24') == IPv4Network('192.0.2.0/24')
IPv6Network('2001:db8::1000/124') ==
IPv6Network('2001:db8::1000/124')
1 if self > other
eg: IPv4Network('192.0.2.128/25') > IPv4Network('192.0.2.0/25')
IPv6Network('2001:db8::2000/124') >
IPv6Network('2001:db8::1000/124')
Raises:
TypeError if the IP versions are different.
"""
# does this need to raise a ValueError?
if self._version != other._version:
raise TypeError('%s and %s are not of the same type' % (
str(self), str(other)))
# self._version == other._version below here:
if self.network_address < other.network_address:
return -1
if self.network_address > other.network_address:
return 1
# self.network_address == other.network_address below here:
if self.netmask < other.netmask:
return -1
if self.netmask > other.netmask:
return 1
return 0
def _get_networks_key(self):
"""Network-only key function.
Returns an object that identifies this address' network and
netmask. This function is a suitable "key" argument for sorted()
and list.sort().
"""
return (self._version, self.network_address, self.netmask)
def subnets(self, prefixlen_diff=1, new_prefix=None):
"""The subnets which join to make the current subnet.
In the case that self contains only one IP
(self._prefixlen == 32 for IPv4 or self._prefixlen == 128
for IPv6), yield an iterator with just ourself.
Args:
prefixlen_diff: An integer, the amount the prefix length
should be increased by. This should not be set if
new_prefix is also set.
new_prefix: The desired new prefix length. This must be a
larger number (smaller prefix) than the existing prefix.
This should not be set if prefixlen_diff is also set.
Returns:
An iterator of IPv(4|6) objects.
Raises:
ValueError: The prefixlen_diff is too small or too large.
OR
prefixlen_diff and new_prefix are both set or new_prefix
is a smaller number than the current prefix (smaller
number means a larger network)
"""
if self._prefixlen == self._max_prefixlen:
yield self
return
if new_prefix is not None:
if new_prefix < self._prefixlen:
raise ValueError('new prefix must be longer')
if prefixlen_diff != 1:
raise ValueError('cannot set prefixlen_diff and new_prefix')
prefixlen_diff = new_prefix - self._prefixlen
if prefixlen_diff < 0:
raise ValueError('prefix length diff must be > 0')
new_prefixlen = self._prefixlen + prefixlen_diff
if not self._is_valid_netmask(str(new_prefixlen)):
raise ValueError(
'prefix length diff %d is invalid for netblock %s' % (
new_prefixlen, str(self)))
first = ip_network('%s/%s' % (str(self.network_address),
str(self._prefixlen + prefixlen_diff)),
version=self._version)
yield first
current = first
while True:
broadcast = current.broadcast_address
if broadcast == self.broadcast_address:
return
new_addr = ip_address(int(broadcast) + 1, version=self._version)
current = ip_network('%s/%s' % (str(new_addr), str(new_prefixlen)),
version=self._version)
yield current
def masked(self):
"""Return the network object with the host bits masked out."""
return ip_network('%s/%d' % (self.network_address, self._prefixlen),
version=self._version)
def supernet(self, prefixlen_diff=1, new_prefix=None):
"""The supernet containing the current network.
Args:
prefixlen_diff: An integer, the amount the prefix length of
the network should be decreased by. For example, given a
/24 network and a prefixlen_diff of 3, a supernet with a
/21 netmask is returned.
Returns:
An IPv4 network object.
Raises:
ValueError: If self.prefixlen - prefixlen_diff < 0. I.e., you have a
negative prefix length.
OR
If prefixlen_diff and new_prefix are both set or new_prefix is a
larger number than the current prefix (larger number means a
smaller network)
"""
if self._prefixlen == 0:
return self
if new_prefix is not None:
if new_prefix > self._prefixlen:
raise ValueError('new prefix must be shorter')
if prefixlen_diff != 1:
raise ValueError('cannot set prefixlen_diff and new_prefix')
prefixlen_diff = self._prefixlen - new_prefix
if self.prefixlen - prefixlen_diff < 0:
raise ValueError(
'current prefixlen is %d, cannot have a prefixlen_diff of %d' %
(self.prefixlen, prefixlen_diff))
# TODO (pmoody): optimize this.
t = ip_network('%s/%d' % (str(self.network_address),
self.prefixlen - prefixlen_diff),
version=self._version, strict=False)
return ip_network('%s/%d' % (str(t.network_address), t.prefixlen),
version=t._version)
class _BaseV4(object):
"""Base IPv4 object.
The following methods are used by IPv4 objects in both single IP
addresses and networks.
"""
# Equivalent to 255.255.255.255 or 32 bits of 1's.
_ALL_ONES = (2**IPV4LENGTH) - 1
_DECIMAL_DIGITS = frozenset('0123456789')
def __init__(self, address):
self._version = 4
self._max_prefixlen = IPV4LENGTH
def _explode_shorthand_ip_string(self):
return str(self)
def _ip_int_from_string(self, ip_str):
"""Turn the given IP string into an integer for comparison.
Args:
ip_str: A string, the IP ip_str.
Returns:
The IP ip_str as an integer.
Raises:
AddressValueError: if ip_str isn't a valid IPv4 Address.
"""
octets = ip_str.split('.')
if len(octets) != 4:
raise AddressValueError(ip_str)
packed_ip = 0
for oc in octets:
try:
packed_ip = (packed_ip << 8) | self._parse_octet(oc)
except ValueError:
raise AddressValueError(ip_str)
return packed_ip
def _parse_octet(self, octet_str):
"""Convert a decimal octet into an integer.
Args:
octet_str: A string, the number to parse.
Returns:
The octet as an integer.
Raises:
ValueError: if the octet isn't strictly a decimal from [0..255].
"""
# Whitelist the characters, since int() allows a lot of bizarre stuff.
if not self._DECIMAL_DIGITS.issuperset(octet_str):
raise ValueError
octet_int = int(octet_str, 10)
# Disallow leading zeroes, because no clear standard exists on
# whether these should be interpreted as decimal or octal.
if octet_int > 255 or (octet_str[0] == '0' and len(octet_str) > 1):
raise ValueError
return octet_int
def _string_from_ip_int(self, ip_int):
"""Turns a 32-bit integer into dotted decimal notation.
Args:
ip_int: An integer, the IP address.
Returns:
The IP address as a string in dotted decimal notation.
"""
octets = []
for _ in range(4):
octets.insert(0, str(ip_int & 0xFF))
ip_int >>= 8
return '.'.join(octets)
@property
def max_prefixlen(self):
return self._max_prefixlen
@property
def version(self):
return self._version
@property
def is_reserved(self):
"""Test if the address is otherwise IETF reserved.
Returns:
A boolean, True if the address is within the
reserved IPv4 Network range.
"""
reserved_network = IPv4Network('240.0.0.0/4')
if isinstance(self, _BaseAddress):
return self in reserved_network
return (self.network_address in reserved_network and
self.broadcast_address in reserved_network)
@property
def is_private(self):
"""Test if this address is allocated for private networks.
Returns:
A boolean, True if the address is reserved per RFC 1918.
"""
private_10 = IPv4Network('10.0.0.0/8')
private_172 = IPv4Network('172.16.0.0/12')
private_192 = IPv4Network('192.168.0.0/16')
if isinstance(self, _BaseAddress):
return (self in private_10 or self in private_172 or
self in private_192)
else:
return ((self.network_address in private_10 and
self.broadcast_address in private_10) or
(self.network_address in private_172 and
self.broadcast_address in private_172) or
(self.network_address in private_192 and
self.broadcast_address in private_192))
@property
def is_multicast(self):
"""Test if the address is reserved for multicast use.
Returns:
A boolean, True if the address is multicast.
See RFC 3171 for details.
"""
multicast_network = IPv4Network('224.0.0.0/4')
if isinstance(self, _BaseAddress):
return self in IPv4Network('224.0.0.0/4')
return (self.network_address in multicast_network and
self.broadcast_address in multicast_network)
@property
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 5735 3.
"""
unspecified_address = IPv4Address('0.0.0.0')
if isinstance(self, _BaseAddress):
return self in unspecified_address
return (self.network_address == self.broadcast_address ==
unspecified_address)
@property
def is_loopback(self):
"""Test if the address is a loopback address.
Returns:
A boolean, True if the address is a loopback per RFC 3330.
"""
loopback_address = IPv4Network('127.0.0.0/8')
if isinstance(self, _BaseAddress):
return self in loopback_address
return (self.network_address in loopback_address and
self.broadcast_address in loopback_address)
@property
def is_link_local(self):
"""Test if the address is reserved for link-local.
Returns:
A boolean, True if the address is link-local per RFC 3927.
"""
linklocal_network = IPv4Network('169.254.0.0/16')
if isinstance(self, _BaseAddress):
return self in linklocal_network
return (self.network_address in linklocal_network and
self.broadcast_address in linklocal_network)
class IPv4Address(_BaseV4, _BaseAddress):
"""Represent and manipulate single IPv4 Addresses."""
def __init__(self, address):
"""
Args:
address: A string or integer representing the IP
Additionally, an integer can be passed, so
IPv4Address('192.0.2.1') == IPv4Address(3221225985).
or, more generally
IPv4Address(int(IPv4Address('192.0.2.1'))) ==
IPv4Address('192.0.2.1')
Raises:
AddressValueError: If ipaddressisn't a valid IPv4 address.
"""
_BaseAddress.__init__(self, address)
_BaseV4.__init__(self, address)
# Efficient constructor from integer.
if isinstance(address, int):
self._ip = address
if address < 0 or address > self._ALL_ONES:
raise AddressValueError(address)
return
# Constructing from a packed address
if isinstance(address, bytes) and len(address) == 4:
self._ip = struct.unpack('!I', address)[0]
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP string.
addr_str = str(address)
self._ip = self._ip_int_from_string(addr_str)
@property
def packed(self):
"""The binary representation of this address."""
return v4_int_to_packed(self._ip)
class IPv4Interface(IPv4Address):
# the valid octets for host and netmasks. only useful for IPv4.
_valid_mask_octets = set((255, 254, 252, 248, 240, 224, 192, 128, 0))
def __init__(self, address):
if isinstance(address, (bytes, int)):
IPv4Address.__init__(self, address)
self.network = IPv4Network(self._ip)
self._prefixlen = self._max_prefixlen
return
addr = str(address).split('/')
if len(addr) > 2:
raise AddressValueError(address)
IPv4Address.__init__(self, addr[0])
self.network = IPv4Network(address, strict=False)
self._prefixlen = self.network._prefixlen
self.netmask = self.network.netmask
self.hostmask = self.network.hostmask
def __str__(self):
return '%s/%d' % (self._string_from_ip_int(self._ip),
self.network.prefixlen)
def __eq__(self, other):
try:
return (IPv4Address.__eq__(self, other) and
self.network == other.network)
except AttributeError:
return NotImplemented
def __hash__(self):
return self._ip ^ self._prefixlen ^ int(self.network.network_address)
def _is_valid_netmask(self, netmask):
"""Verify that the netmask is valid.
Args:
netmask: A string, either a prefix or dotted decimal
netmask.
Returns:
A boolean, True if the prefix represents a valid IPv4
netmask.
"""
mask = netmask.split('.')
if len(mask) == 4:
if [x for x in mask if int(x) not in self._valid_mask_octets]:
return False
if [y for idx, y in enumerate(mask) if idx > 0 and
y > mask[idx - 1]]:
return False
return True
try:
netmask = int(netmask)
except ValueError:
return False
return 0 <= netmask <= self._max_prefixlen
def _is_hostmask(self, ip_str):
"""Test if the IP string is a hostmask (rather than a netmask).
Args:
ip_str: A string, the potential hostmask.
Returns:
A boolean, True if the IP string is a hostmask.
"""
bits = ip_str.split('.')
try:
parts = [int(x) for x in bits if int(x) in self._valid_mask_octets]
except ValueError:
return False
if len(parts) != len(bits):
return False
if parts[0] < parts[-1]:
return True
return False
@property
def prefixlen(self):
return self._prefixlen
@property
def ip(self):
return IPv4Address(self._ip)
@property
def with_prefixlen(self):
return self
@property
def with_netmask(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self.netmask)
@property
def with_hostmask(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self.hostmask)
class IPv4Network(_BaseV4, _BaseNetwork):
"""This class represents and manipulates 32-bit IPv4 network + addresses..
Attributes: [examples for IPv4Network('192.0.2.0/27')]
.network_address: IPv4Address('192.0.2.0')
.hostmask: IPv4Address('0.0.0.31')
.broadcast_address: IPv4Address('192.0.2.32')
.netmask: IPv4Address('255.255.255.224')
.prefixlen: 27
"""
# the valid octets for host and netmasks. only useful for IPv4.
_valid_mask_octets = set((255, 254, 252, 248, 240, 224, 192, 128, 0))
def __init__(self, address, strict=True):
"""Instantiate a new IPv4 network object.
Args:
address: A string or integer representing the IP [& network].
'192.0.2.0/24'
'192.0.2.0/255.255.255.0'
'192.0.0.2/0.0.0.255'
are all functionally the same in IPv4. Similarly,
'192.0.2.1'
'192.0.2.1/255.255.255.255'
'192.0.2.1/32'
are also functionaly equivalent. That is to say, failing to
provide a subnetmask will create an object with a mask of /32.
If the mask (portion after the / in the argument) is given in
dotted quad form, it is treated as a netmask if it starts with a
non-zero field (e.g. /255.0.0.0 == /8) and as a hostmask if it
starts with a zero field (e.g. 0.255.255.255 == /8), with the
single exception of an all-zero mask which is treated as a
netmask == /0. If no mask is given, a default of /32 is used.
Additionally, an integer can be passed, so
IPv4Network('192.0.2.1') == IPv4Network(3221225985)
or, more generally
IPv4Interface(int(IPv4Interface('192.0.2.1'))) ==
IPv4Interface('192.0.2.1')
Raises:
AddressValueError: If ipaddressisn't a valid IPv4 address.
NetmaskValueError: If the netmask isn't valid for
an IPv4 address.
ValueError: If strict was True and a network address was not
supplied.
"""
_BaseV4.__init__(self, address)
_BaseNetwork.__init__(self, address)
# Constructing from a packed address
if isinstance(address, bytes) and len(address) == 4:
self.network_address = IPv4Address(
struct.unpack('!I', address)[0])
self._prefixlen = self._max_prefixlen
self.netmask = IPv4Address(self._ALL_ONES)
#fixme: address/network test here
return
# Efficient constructor from integer.
if isinstance(address, int):
self._prefixlen = self._max_prefixlen
self.netmask = IPv4Address(self._ALL_ONES)
if address < 0 or address > self._ALL_ONES:
raise AddressValueError(address)
self.network_address = IPv4Address(address)
#fixme: address/network test here.
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP prefix string.
addr = str(address).split('/')
self.network_address = IPv4Address(self._ip_int_from_string(addr[0]))
if len(addr) > 2:
raise AddressValueError(address)
if len(addr) == 2:
mask = addr[1].split('.')
if len(mask) == 4:
# We have dotted decimal netmask.
if self._is_valid_netmask(addr[1]):
self.netmask = IPv4Address(self._ip_int_from_string(
addr[1]))
elif self._is_hostmask(addr[1]):
self.netmask = IPv4Address(
self._ip_int_from_string(addr[1]) ^ self._ALL_ONES)
else:
raise NetmaskValueError('%s is not a valid netmask'
% addr[1])
self._prefixlen = self._prefix_from_ip_int(int(self.netmask))
else:
# We have a netmask in prefix length form.
if not self._is_valid_netmask(addr[1]):
raise NetmaskValueError(addr[1])
self._prefixlen = int(addr[1])
self.netmask = IPv4Address(self._ip_int_from_prefix(
self._prefixlen))
else:
self._prefixlen = self._max_prefixlen
self.netmask = IPv4Address(self._ip_int_from_prefix(
self._prefixlen))
if strict:
if (IPv4Address(int(self.network_address) & int(self.netmask)) !=
self.network_address):
raise ValueError('%s has host bits set' % self)
self.network_address = IPv4Address(int(self.network_address) &
int(self.netmask))
if self._prefixlen == (self._max_prefixlen - 1):
self.hosts = self.__iter__
@property
def packed(self):
"""The binary representation of this address."""
return v4_int_to_packed(self.network_address)
def __str__(self):
return '%s/%d' % (str(self.network_address),
self.prefixlen)
def _is_valid_netmask(self, netmask):
"""Verify that the netmask is valid.
Args:
netmask: A string, either a prefix or dotted decimal
netmask.
Returns:
A boolean, True if the prefix represents a valid IPv4
netmask.
"""
mask = netmask.split('.')
if len(mask) == 4:
if [x for x in mask if int(x) not in self._valid_mask_octets]:
return False
if [y for idx, y in enumerate(mask) if idx > 0 and
y > mask[idx - 1]]:
return False
return True
try:
netmask = int(netmask)
except ValueError:
return False
return 0 <= netmask <= self._max_prefixlen
def _is_hostmask(self, ip_str):
"""Test if the IP string is a hostmask (rather than a netmask).
Args:
ip_str: A string, the potential hostmask.
Returns:
A boolean, True if the IP string is a hostmask.
"""
bits = ip_str.split('.')
try:
parts = [int(x) for x in bits if int(x) in self._valid_mask_octets]
except ValueError:
return False
if len(parts) != len(bits):
return False
if parts[0] < parts[-1]:
return True
return False
@property
def with_prefixlen(self):
return '%s/%d' % (str(self.network_address), self._prefixlen)
@property
def with_netmask(self):
return '%s/%s' % (str(self.network_address), str(self.netmask))
@property
def with_hostmask(self):
return '%s/%s' % (str(self.network_address), str(self.hostmask))
class _BaseV6(object):
"""Base IPv6 object.
The following methods are used by IPv6 objects in both single IP
addresses and networks.
"""
_ALL_ONES = (2**IPV6LENGTH) - 1
_HEXTET_COUNT = 8
_HEX_DIGITS = frozenset('0123456789ABCDEFabcdef')
def __init__(self, address):
self._version = 6
self._max_prefixlen = IPV6LENGTH
def _ip_int_from_string(self, ip_str):
"""Turn an IPv6 ip_str into an integer.
Args:
ip_str: A string, the IPv6 ip_str.
Returns:
An int, the IPv6 address
Raises:
AddressValueError: if ip_str isn't a valid IPv6 Address.
"""
parts = ip_str.split(':')
# An IPv6 address needs at least 2 colons (3 parts).
if len(parts) < 3:
raise AddressValueError(ip_str)
# If the address has an IPv4-style suffix, convert it to hexadecimal.
if '.' in parts[-1]:
ipv4_int = IPv4Address(parts.pop())._ip
parts.append('%x' % ((ipv4_int >> 16) & 0xFFFF))
parts.append('%x' % (ipv4_int & 0xFFFF))
# An IPv6 address can't have more than 8 colons (9 parts).
if len(parts) > self._HEXTET_COUNT + 1:
raise AddressValueError(ip_str)
# Disregarding the endpoints, find '::' with nothing in between.
# This indicates that a run of zeroes has been skipped.
try:
skip_index, = (
[i for i in range(1, len(parts) - 1) if not parts[i]] or
[None])
except ValueError:
# Can't have more than one '::'
raise AddressValueError(ip_str)
# parts_hi is the number of parts to copy from above/before the '::'
# parts_lo is the number of parts to copy from below/after the '::'
if skip_index is not None:
# If we found a '::', then check if it also covers the endpoints.
parts_hi = skip_index
parts_lo = len(parts) - skip_index - 1
if not parts[0]:
parts_hi -= 1
if parts_hi:
raise AddressValueError(ip_str) # ^: requires ^::
if not parts[-1]:
parts_lo -= 1
if parts_lo:
raise AddressValueError(ip_str) # :$ requires ::$
parts_skipped = self._HEXTET_COUNT - (parts_hi + parts_lo)
if parts_skipped < 1:
raise AddressValueError(ip_str)
else:
# Otherwise, allocate the entire address to parts_hi. The endpoints
# could still be empty, but _parse_hextet() will check for that.
if len(parts) != self._HEXTET_COUNT:
raise AddressValueError(ip_str)
parts_hi = len(parts)
parts_lo = 0
parts_skipped = 0
try:
# Now, parse the hextets into a 128-bit integer.
ip_int = 0
for i in range(parts_hi):
ip_int <<= 16
ip_int |= self._parse_hextet(parts[i])
ip_int <<= 16 * parts_skipped
for i in range(-parts_lo, 0):
ip_int <<= 16
ip_int |= self._parse_hextet(parts[i])
return ip_int
except ValueError:
raise AddressValueError(ip_str)
def _parse_hextet(self, hextet_str):
"""Convert an IPv6 hextet string into an integer.
Args:
hextet_str: A string, the number to parse.
Returns:
The hextet as an integer.
Raises:
ValueError: if the input isn't strictly a hex number from [0..FFFF].
"""
# Whitelist the characters, since int() allows a lot of bizarre stuff.
if not self._HEX_DIGITS.issuperset(hextet_str):
raise ValueError
hextet_int = int(hextet_str, 16)
if hextet_int > 0xFFFF:
raise ValueError
return hextet_int
def _compress_hextets(self, hextets):
"""Compresses a list of hextets.
Compresses a list of strings, replacing the longest continuous
sequence of "0" in the list with "" and adding empty strings at
the beginning or at the end of the string such that subsequently
calling ":".join(hextets) will produce the compressed version of
the IPv6 address.
Args:
hextets: A list of strings, the hextets to compress.
Returns:
A list of strings.
"""
best_doublecolon_start = -1
best_doublecolon_len = 0
doublecolon_start = -1
doublecolon_len = 0
for index in range(len(hextets)):
if hextets[index] == '0':
doublecolon_len += 1
if doublecolon_start == -1:
# Start of a sequence of zeros.
doublecolon_start = index
if doublecolon_len > best_doublecolon_len:
# This is the longest sequence of zeros so far.
best_doublecolon_len = doublecolon_len
best_doublecolon_start = doublecolon_start
else:
doublecolon_len = 0
doublecolon_start = -1
if best_doublecolon_len > 1:
best_doublecolon_end = (best_doublecolon_start +
best_doublecolon_len)
# For zeros at the end of the address.
if best_doublecolon_end == len(hextets):
hextets += ['']
hextets[best_doublecolon_start:best_doublecolon_end] = ['']
# For zeros at the beginning of the address.
if best_doublecolon_start == 0:
hextets = [''] + hextets
return hextets
def _string_from_ip_int(self, ip_int=None):
"""Turns a 128-bit integer into hexadecimal notation.
Args:
ip_int: An integer, the IP address.
Returns:
A string, the hexadecimal representation of the address.
Raises:
ValueError: The address is bigger than 128 bits of all ones.
"""
if not ip_int and ip_int != 0:
ip_int = int(self._ip)
if ip_int > self._ALL_ONES:
raise ValueError('IPv6 address is too large')
hex_str = '%032x' % ip_int
hextets = []
for x in range(0, 32, 4):
hextets.append('%x' % int(hex_str[x:x+4], 16))
hextets = self._compress_hextets(hextets)
return ':'.join(hextets)
def _explode_shorthand_ip_string(self):
"""Expand a shortened IPv6 address.
Args:
ip_str: A string, the IPv6 address.
Returns:
A string, the expanded IPv6 address.
"""
if isinstance(self, IPv6Network):
ip_str = str(self.network_address)
elif isinstance(self, IPv6Interface):
ip_str = str(self.ip)
else:
ip_str = str(self)
ip_int = self._ip_int_from_string(ip_str)
parts = []
for i in range(self._HEXTET_COUNT):
parts.append('%04x' % (ip_int & 0xFFFF))
ip_int >>= 16
parts.reverse()
if isinstance(self, (_BaseNetwork, IPv6Interface)):
return '%s/%d' % (':'.join(parts), self.prefixlen)
return ':'.join(parts)
@property
def max_prefixlen(self):
return self._max_prefixlen
@property
def packed(self):
"""The binary representation of this address."""
return v6_int_to_packed(self._ip)
@property
def version(self):
return self._version
@property
def is_multicast(self):
"""Test if the address is reserved for multicast use.
Returns:
A boolean, True if the address is a multicast address.
See RFC 2373 2.7 for details.
"""
multicast_network = IPv6Network('ff00::/8')
if isinstance(self, _BaseAddress):
return self in multicast_network
return (self.network_address in multicast_network and
self.broadcast_address in multicast_network)
@property
def is_reserved(self):
"""Test if the address is otherwise IETF reserved.
Returns:
A boolean, True if the address is within one of the
reserved IPv6 Network ranges.
"""
reserved_networks = [IPv6Network('::/8'), IPv6Network('100::/8'),
IPv6Network('200::/7'), IPv6Network('400::/6'),
IPv6Network('800::/5'), IPv6Network('1000::/4'),
IPv6Network('4000::/3'), IPv6Network('6000::/3'),
IPv6Network('8000::/3'), IPv6Network('A000::/3'),
IPv6Network('C000::/3'), IPv6Network('E000::/4'),
IPv6Network('F000::/5'), IPv6Network('F800::/6'),
IPv6Network('FE00::/9')]
if isinstance(self, _BaseAddress):
return len([x for x in reserved_networks if self in x]) > 0
return len([x for x in reserved_networks if self.network_address in x
and self.broadcast_address in x]) > 0
@property
def is_link_local(self):
"""Test if the address is reserved for link-local.
Returns:
A boolean, True if the address is reserved per RFC 4291.
"""
linklocal_network = IPv6Network('fe80::/10')
if isinstance(self, _BaseAddress):
return self in linklocal_network
return (self.network_address in linklocal_network and
self.broadcast_address in linklocal_network)
@property
def is_site_local(self):
"""Test if the address is reserved for site-local.
Note that the site-local address space has been deprecated by RFC 3879.
Use is_private to test if this address is in the space of unique local
addresses as defined by RFC 4193.
Returns:
A boolean, True if the address is reserved per RFC 3513 2.5.6.
"""
sitelocal_network = IPv6Network('fec0::/10')
if isinstance(self, _BaseAddress):
return self in sitelocal_network
return (self.network_address in sitelocal_network and
self.broadcast_address in sitelocal_network)
@property
def is_private(self):
"""Test if this address is allocated for private networks.
Returns:
A boolean, True if the address is reserved per RFC 4193.
"""
private_network = IPv6Network('fc00::/7')
if isinstance(self, _BaseAddress):
return self in private_network
return (self.network_address in private_network and
self.broadcast_address in private_network)
@property
def ipv4_mapped(self):
"""Return the IPv4 mapped address.
Returns:
If the IPv6 address is a v4 mapped address, return the
IPv4 mapped address. Return None otherwise.
"""
if (self._ip >> 32) != 0xFFFF:
return None
return IPv4Address(self._ip & 0xFFFFFFFF)
@property
def teredo(self):
"""Tuple of embedded teredo IPs.
Returns:
Tuple of the (server, client) IPs or None if the address
doesn't appear to be a teredo address (doesn't start with
2001::/32)
"""
if (self._ip >> 96) != 0x20010000:
return None
return (IPv4Address((self._ip >> 64) & 0xFFFFFFFF),
IPv4Address(~self._ip & 0xFFFFFFFF))
@property
def sixtofour(self):
"""Return the IPv4 6to4 embedded address.
Returns:
The IPv4 6to4-embedded address if present or None if the
address doesn't appear to contain a 6to4 embedded address.
"""
if (self._ip >> 112) != 0x2002:
return None
return IPv4Address((self._ip >> 80) & 0xFFFFFFFF)
@property
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 2373 2.5.2.
"""
if isinstance(self, (IPv6Network, IPv6Interface)):
return int(self.network_address) == 0 and getattr(
self, '_prefixlen', 128) == 128
return self._ip == 0
@property
def is_loopback(self):
"""Test if the address is a loopback address.
Returns:
A boolean, True if the address is a loopback address as defined in
RFC 2373 2.5.3.
"""
if isinstance(self, IPv6Network):
return int(self.network) == 1 and getattr(
self, '_prefixlen', 128) == 128
elif isinstance(self, IPv6Interface):
return int(self.network.network_address) == 1 and getattr(
self, '_prefixlen', 128) == 128
return self._ip == 1
class IPv6Address(_BaseV6, _BaseAddress):
"""Represent and manipulate single IPv6 Addresses.
"""
def __init__(self, address):
"""Instantiate a new IPv6 address object.
Args:
address: A string or integer representing the IP
Additionally, an integer can be passed, so
IPv6Address('2001:db8::') ==
IPv6Address(42540766411282592856903984951653826560)
or, more generally
IPv6Address(int(IPv6Address('2001:db8::'))) ==
IPv6Address('2001:db8::')
Raises:
AddressValueError: If address isn't a valid IPv6 address.
"""
_BaseAddress.__init__(self, address)
_BaseV6.__init__(self, address)
# Efficient constructor from integer.
if isinstance(address, int):
self._ip = address
if address < 0 or address > self._ALL_ONES:
raise AddressValueError(address)
return
# Constructing from a packed address
if isinstance(address, bytes) and len(address) == 16:
tmp = struct.unpack('!QQ', address)
self._ip = (tmp[0] << 64) | tmp[1]
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP string.
addr_str = str(address)
if not addr_str:
raise AddressValueError('')
self._ip = self._ip_int_from_string(addr_str)
class IPv6Interface(IPv6Address):
def __init__(self, address):
if isinstance(address, (bytes, int)):
IPv6Address.__init__(self, address)
self.network = IPv6Network(self._ip)
self._prefixlen = self._max_prefixlen
return
addr = str(address).split('/')
IPv6Address.__init__(self, addr[0])
self.network = IPv6Network(address, strict=False)
self.netmask = self.network.netmask
self._prefixlen = self.network._prefixlen
self.hostmask = self.network.hostmask
def __str__(self):
return '%s/%d' % (self._string_from_ip_int(self._ip),
self.network.prefixlen)
def __eq__(self, other):
try:
return (IPv6Address.__eq__(self, other) and
self.network == other.network)
except AttributeError:
return NotImplemented
def __hash__(self):
return self._ip ^ self._prefixlen ^ int(self.network.network_address)
@property
def prefixlen(self):
return self._prefixlen
@property
def ip(self):
return IPv6Address(self._ip)
@property
def with_prefixlen(self):
return self
@property
def with_netmask(self):
return self.with_prefixlen
@property
def with_hostmask(self):
return '%s/%s' % (self._string_from_ip_int(self._ip),
self.hostmask)
class IPv6Network(_BaseV6, _BaseNetwork):
"""This class represents and manipulates 128-bit IPv6 networks.
Attributes: [examples for IPv6('2001:db8::1000/124')]
.network_address: IPv6Address('2001:db8::1000')
.hostmask: IPv6Address('::f')
.broadcast_address: IPv6Address('2001:db8::100f')
.netmask: IPv6Address('ffff:ffff:ffff:ffff:ffff:ffff:ffff:fff0')
.prefixlen: 124
"""
def __init__(self, address, strict=True):
"""Instantiate a new IPv6 Network object.
Args:
address: A string or integer representing the IPv6 network or the IP
and prefix/netmask.
'2001:db8::/128'
'2001:db8:0000:0000:0000:0000:0000:0000/128'
'2001:db8::'
are all functionally the same in IPv6. That is to say,
failing to provide a subnetmask will create an object with
a mask of /128.
Additionally, an integer can be passed, so
IPv6Network('2001:db8::') ==
IPv6Network(42540766411282592856903984951653826560)
or, more generally
IPv6Network(int(IPv6Network('2001:db8::'))) ==
IPv6Network('2001:db8::')
strict: A boolean. If true, ensure that we have been passed
A true network address, eg, 2001:db8::1000/124 and not an
IP address on a network, eg, 2001:db8::1/124.
Raises:
AddressValueError: If address isn't a valid IPv6 address.
NetmaskValueError: If the netmask isn't valid for
an IPv6 address.
ValueError: If strict was True and a network address was not
supplied.
"""
_BaseV6.__init__(self, address)
_BaseNetwork.__init__(self, address)
# Efficient constructor from integer.
if isinstance(address, int):
if address < 0 or address > self._ALL_ONES:
raise AddressValueError(address)
self.network_address = IPv6Address(address)
self._prefixlen = self._max_prefixlen
self.netmask = IPv6Address(self._ALL_ONES)
if strict:
if (IPv6Address(int(self.network_address) &
int(self.netmask)) != self.network_address):
raise ValueError('%s has host bits set' % str(self))
self.network_address = IPv6Address(int(self.network_address) &
int(self.netmask))
return
# Constructing from a packed address
if isinstance(address, bytes) and len(address) == 16:
tmp = struct.unpack('!QQ', address)
self.network_address = IPv6Address((tmp[0] << 64) | tmp[1])
self._prefixlen = self._max_prefixlen
self.netmask = IPv6Address(self._ALL_ONES)
if strict:
if (IPv6Address(int(self.network_address) &
int(self.netmask)) != self.network_address):
raise ValueError('%s has host bits set' % str(self))
self.network_address = IPv6Address(int(self.network_address) &
int(self.netmask))
return
# Assume input argument to be string or any object representation
# which converts into a formatted IP prefix string.
addr = str(address).split('/')
if len(addr) > 2:
raise AddressValueError(address)
self.network_address = IPv6Address(self._ip_int_from_string(addr[0]))
if len(addr) == 2:
if self._is_valid_netmask(addr[1]):
self._prefixlen = int(addr[1])
else:
raise NetmaskValueError(addr[1])
else:
self._prefixlen = self._max_prefixlen
self.netmask = IPv6Address(self._ip_int_from_prefix(self._prefixlen))
if strict:
if (IPv6Address(int(self.network_address) & int(self.netmask)) !=
self.network_address):
raise ValueError('%s has host bits set' % str(self))
self.network_address = IPv6Address(int(self.network_address) &
int(self.netmask))
if self._prefixlen == (self._max_prefixlen - 1):
self.hosts = self.__iter__
def __str__(self):
return '%s/%d' % (str(self.network_address),
self.prefixlen)
def _is_valid_netmask(self, prefixlen):
"""Verify that the netmask/prefixlen is valid.
Args:
prefixlen: A string, the netmask in prefix length format.
Returns:
A boolean, True if the prefix represents a valid IPv6
netmask.
"""
try:
prefixlen = int(prefixlen)
except ValueError:
return False
return 0 <= prefixlen <= self._max_prefixlen
@property
def with_netmask(self):
return self.with_prefixlen
@property
def with_prefixlen(self):
return '%s/%d' % (str(self.network_address), self._prefixlen)
@property
def with_netmask(self):
return '%s/%s' % (str(self.network_address), str(self.netmask))
@property
def with_hostmask(self):
return '%s/%s' % (str(self.network_address), str(self.hostmask))
#!/usr/bin/python3
#
# Copyright 2007 Google Inc.
# Licensed to PSF under a Contributor Agreement.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Unittest for ipaddressmodule."""
import unittest
import time
import ipaddress
# Compatibility function to cast str to bytes objects
_cb = lambda bytestr: bytes(bytestr, 'charmap')
class IpaddrUnitTest(unittest.TestCase):
def setUp(self):
self.ipv4_address = ipaddress.IPv4Address('1.2.3.4')
self.ipv4_interface = ipaddress.IPv4Interface('1.2.3.4/24')
self.ipv4_network = ipaddress.IPv4Network('1.2.3.0/24')
#self.ipv4_hostmask = ipaddress.IPv4Interface('10.0.0.1/0.255.255.255')
self.ipv6_address = ipaddress.IPv6Interface(
'2001:658:22a:cafe:200:0:0:1')
self.ipv6_interface = ipaddress.IPv6Interface(
'2001:658:22a:cafe:200:0:0:1/64')
self.ipv6_network = ipaddress.IPv6Network('2001:658:22a:cafe::/64')
def testRepr(self):
self.assertEqual("IPv4Interface('1.2.3.4/32')",
repr(ipaddress.IPv4Interface('1.2.3.4')))
self.assertEqual("IPv6Interface('::1/128')",
repr(ipaddress.IPv6Interface('::1')))
# issue57
def testAddressIntMath(self):
self.assertEqual(ipaddress.IPv4Address('1.1.1.1') + 255,
ipaddress.IPv4Address('1.1.2.0'))
self.assertEqual(ipaddress.IPv4Address('1.1.1.1') - 256,
ipaddress.IPv4Address('1.1.0.1'))
self.assertEqual(ipaddress.IPv6Address('::1') + (2**16 - 2),
ipaddress.IPv6Address('::ffff'))
self.assertEqual(ipaddress.IPv6Address('::ffff') - (2**16 - 2),
ipaddress.IPv6Address('::1'))
def testInvalidStrings(self):
def AssertInvalidIP(ip_str):
self.assertRaises(ValueError, ipaddress.ip_address, ip_str)
AssertInvalidIP("")
AssertInvalidIP("016.016.016.016")
AssertInvalidIP("016.016.016")
AssertInvalidIP("016.016")
AssertInvalidIP("016")
AssertInvalidIP("000.000.000.000")
AssertInvalidIP("000")
AssertInvalidIP("0x0a.0x0a.0x0a.0x0a")
AssertInvalidIP("0x0a.0x0a.0x0a")
AssertInvalidIP("0x0a.0x0a")
AssertInvalidIP("0x0a")
AssertInvalidIP("42.42.42.42.42")
AssertInvalidIP("42.42.42")
AssertInvalidIP("42.42")
AssertInvalidIP("42")
AssertInvalidIP("42..42.42")
AssertInvalidIP("42..42.42.42")
AssertInvalidIP("42.42.42.42.")
AssertInvalidIP("42.42.42.42...")
AssertInvalidIP(".42.42.42.42")
AssertInvalidIP("...42.42.42.42")
AssertInvalidIP("42.42.42.-0")
AssertInvalidIP("42.42.42.+0")
AssertInvalidIP(".")
AssertInvalidIP("...")
AssertInvalidIP("bogus")
AssertInvalidIP("bogus.com")
AssertInvalidIP("192.168.0.1.com")
AssertInvalidIP("12345.67899.-54321.-98765")
AssertInvalidIP("257.0.0.0")
AssertInvalidIP("42.42.42.-42")
AssertInvalidIP("3ffe::1.net")
AssertInvalidIP("3ffe::1::1")
AssertInvalidIP("1::2::3::4:5")
AssertInvalidIP("::7:6:5:4:3:2:")
AssertInvalidIP(":6:5:4:3:2:1::")
AssertInvalidIP("2001::db:::1")
AssertInvalidIP("FEDC:9878")
AssertInvalidIP("+1.+2.+3.4")
AssertInvalidIP("1.2.3.4e0")
AssertInvalidIP("::7:6:5:4:3:2:1:0")
AssertInvalidIP("7:6:5:4:3:2:1:0::")
AssertInvalidIP("9:8:7:6:5:4:3::2:1")
AssertInvalidIP("0:1:2:3::4:5:6:7")
AssertInvalidIP("3ffe:0:0:0:0:0:0:0:1")
AssertInvalidIP("3ffe::10000")
AssertInvalidIP("3ffe::goog")
AssertInvalidIP("3ffe::-0")
AssertInvalidIP("3ffe::+0")
AssertInvalidIP("3ffe::-1")
AssertInvalidIP(":")
AssertInvalidIP(":::")
AssertInvalidIP("::1.2.3")
AssertInvalidIP("::1.2.3.4.5")
AssertInvalidIP("::1.2.3.4:")
AssertInvalidIP("1.2.3.4::")
AssertInvalidIP("2001:db8::1:")
AssertInvalidIP(":2001:db8::1")
AssertInvalidIP(":1:2:3:4:5:6:7")
AssertInvalidIP("1:2:3:4:5:6:7:")
AssertInvalidIP(":1:2:3:4:5:6:")
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv4Interface, '')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv4Interface,
'google.com')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv4Interface,
'::1.2.3.4')
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv6Interface, '')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Interface,
'google.com')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Interface,
'1.2.3.4')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Interface,
'cafe:cafe::/128/190')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Interface,
'1234:axy::b')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Address,
'1234:axy::b')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Address,
'2001:db8:::1')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Address,
'2001:888888::1')
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv4Address(1)._ip_int_from_string,
'1.a.2.3')
self.assertEqual(False, ipaddress.IPv4Interface(1)._is_hostmask(
'1.a.2.3'))
def testGetNetwork(self):
self.assertEqual(int(self.ipv4_network.network_address), 16909056)
self.assertEqual(str(self.ipv4_network.network_address), '1.2.3.0')
self.assertEqual(int(self.ipv6_network.network_address),
42540616829182469433403647294022090752)
self.assertEqual(str(self.ipv6_network.network_address),
'2001:658:22a:cafe::')
self.assertEqual(str(self.ipv6_network.hostmask),
'::ffff:ffff:ffff:ffff')
def testBadVersionComparison(self):
# These should always raise TypeError
v4addr = ipaddress.ip_address('1.1.1.1')
v4net = ipaddress.ip_network('1.1.1.1')
v6addr = ipaddress.ip_address('::1')
v6net = ipaddress.ip_address('::1')
self.assertRaises(TypeError, v4addr.__lt__, v6addr)
self.assertRaises(TypeError, v4addr.__gt__, v6addr)
self.assertRaises(TypeError, v4net.__lt__, v6net)
self.assertRaises(TypeError, v4net.__gt__, v6net)
self.assertRaises(TypeError, v6addr.__lt__, v4addr)
self.assertRaises(TypeError, v6addr.__gt__, v4addr)
self.assertRaises(TypeError, v6net.__lt__, v4net)
self.assertRaises(TypeError, v6net.__gt__, v4net)
def testMixedTypeComparison(self):
v4addr = ipaddress.ip_address('1.1.1.1')
v4net = ipaddress.ip_network('1.1.1.1/32')
v6addr = ipaddress.ip_address('::1')
v6net = ipaddress.ip_network('::1/128')
self.assertFalse(v4net.__contains__(v6net))
self.assertFalse(v6net.__contains__(v4net))
self.assertRaises(TypeError, lambda: v4addr < v4net)
self.assertRaises(TypeError, lambda: v4addr > v4net)
self.assertRaises(TypeError, lambda: v4net < v4addr)
self.assertRaises(TypeError, lambda: v4net > v4addr)
self.assertRaises(TypeError, lambda: v6addr < v6net)
self.assertRaises(TypeError, lambda: v6addr > v6net)
self.assertRaises(TypeError, lambda: v6net < v6addr)
self.assertRaises(TypeError, lambda: v6net > v6addr)
# with get_mixed_type_key, you can sort addresses and network.
self.assertEqual([v4addr, v4net],
sorted([v4net, v4addr],
key=ipaddress.get_mixed_type_key))
self.assertEqual([v6addr, v6net],
sorted([v6net, v6addr],
key=ipaddress.get_mixed_type_key))
def testIpFromInt(self):
self.assertEqual(self.ipv4_interface._ip,
ipaddress.IPv4Interface(16909060)._ip)
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv4Interface, 2**32)
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv4Interface, -1)
ipv4 = ipaddress.ip_network('1.2.3.4')
ipv6 = ipaddress.ip_network('2001:658:22a:cafe:200:0:0:1')
self.assertEqual(ipv4, ipaddress.ip_network(int(ipv4)))
self.assertEqual(ipv6, ipaddress.ip_network(int(ipv6)))
v6_int = 42540616829182469433547762482097946625
self.assertEqual(self.ipv6_interface._ip,
ipaddress.IPv6Interface(v6_int)._ip)
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv6Interface, 2**128)
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv6Interface, -1)
self.assertEqual(ipaddress.ip_network(self.ipv4_address._ip).version, 4)
self.assertEqual(ipaddress.ip_network(self.ipv6_address._ip).version, 6)
def testIpFromPacked(self):
ip = ipaddress.ip_network
self.assertEqual(self.ipv4_interface._ip,
ipaddress.ip_interface(_cb('\x01\x02\x03\x04'))._ip)
self.assertEqual(ip('255.254.253.252'),
ip(_cb('\xff\xfe\xfd\xfc')))
self.assertRaises(ValueError, ipaddress.ip_network, _cb('\x00' * 3))
self.assertRaises(ValueError, ipaddress.ip_network, _cb('\x00' * 5))
self.assertEqual(self.ipv6_interface.ip,
ipaddress.ip_interface(
_cb('\x20\x01\x06\x58\x02\x2a\xca\xfe'
'\x02\x00\x00\x00\x00\x00\x00\x01')).ip)
self.assertEqual(ip('ffff:2:3:4:ffff::'),
ip(_cb('\xff\xff\x00\x02\x00\x03\x00\x04' +
'\xff\xff' + '\x00' * 6)))
self.assertEqual(ip('::'),
ip(_cb('\x00' * 16)))
self.assertRaises(ValueError, ip, _cb('\x00' * 15))
self.assertRaises(ValueError, ip, _cb('\x00' * 17))
def testGetIp(self):
self.assertEqual(int(self.ipv4_interface.ip), 16909060)
self.assertEqual(str(self.ipv4_interface.ip), '1.2.3.4')
self.assertEqual(int(self.ipv6_interface.ip),
42540616829182469433547762482097946625)
self.assertEqual(str(self.ipv6_interface.ip),
'2001:658:22a:cafe:200::1')
def testGetNetmask(self):
self.assertEqual(int(self.ipv4_network.netmask), 4294967040)
self.assertEqual(str(self.ipv4_network.netmask), '255.255.255.0')
self.assertEqual(int(self.ipv6_network.netmask),
340282366920938463444927863358058659840)
self.assertEqual(self.ipv6_network.prefixlen, 64)
def testZeroNetmask(self):
ipv4_zero_netmask = ipaddress.IPv4Interface('1.2.3.4/0')
self.assertEqual(int(ipv4_zero_netmask.network.netmask), 0)
self.assertTrue(ipv4_zero_netmask.network._is_valid_netmask(
str(0)))
ipv6_zero_netmask = ipaddress.IPv6Interface('::1/0')
self.assertEqual(int(ipv6_zero_netmask.network.netmask), 0)
self.assertTrue(ipv6_zero_netmask.network._is_valid_netmask(
str(0)))
def testGetBroadcast(self):
self.assertEqual(int(self.ipv4_network.broadcast_address), 16909311)
self.assertEqual(str(self.ipv4_network.broadcast_address), '1.2.3.255')
self.assertEqual(int(self.ipv6_network.broadcast_address),
42540616829182469451850391367731642367)
self.assertEqual(str(self.ipv6_network.broadcast_address),
'2001:658:22a:cafe:ffff:ffff:ffff:ffff')
def testGetPrefixlen(self):
self.assertEqual(self.ipv4_interface.prefixlen, 24)
self.assertEqual(self.ipv6_interface.prefixlen, 64)
def testGetSupernet(self):
self.assertEqual(self.ipv4_network.supernet().prefixlen, 23)
self.assertEqual(str(self.ipv4_network.supernet().network_address),
'1.2.2.0')
self.assertEqual(
ipaddress.IPv4Interface('0.0.0.0/0').network.supernet(),
ipaddress.IPv4Network('0.0.0.0/0'))
self.assertEqual(self.ipv6_network.supernet().prefixlen, 63)
self.assertEqual(str(self.ipv6_network.supernet().network_address),
'2001:658:22a:cafe::')
self.assertEqual(ipaddress.IPv6Interface('::0/0').network.supernet(),
ipaddress.IPv6Network('::0/0'))
def testGetSupernet3(self):
self.assertEqual(self.ipv4_network.supernet(3).prefixlen, 21)
self.assertEqual(str(self.ipv4_network.supernet(3).network_address),
'1.2.0.0')
self.assertEqual(self.ipv6_network.supernet(3).prefixlen, 61)
self.assertEqual(str(self.ipv6_network.supernet(3).network_address),
'2001:658:22a:caf8::')
def testGetSupernet4(self):
self.assertRaises(ValueError, self.ipv4_network.supernet,
prefixlen_diff=2, new_prefix=1)
self.assertRaises(ValueError, self.ipv4_network.supernet, new_prefix=25)
self.assertEqual(self.ipv4_network.supernet(prefixlen_diff=2),
self.ipv4_network.supernet(new_prefix=22))
self.assertRaises(ValueError, self.ipv6_network.supernet,
prefixlen_diff=2, new_prefix=1)
self.assertRaises(ValueError, self.ipv6_network.supernet, new_prefix=65)
self.assertEqual(self.ipv6_network.supernet(prefixlen_diff=2),
self.ipv6_network.supernet(new_prefix=62))
def testHosts(self):
self.assertEqual([ipaddress.IPv4Address('2.0.0.0'),
ipaddress.IPv4Address('2.0.0.1')],
list(ipaddress.ip_network('2.0.0.0/31').hosts()))
def testFancySubnetting(self):
self.assertEqual(sorted(self.ipv4_network.subnets(prefixlen_diff=3)),
sorted(self.ipv4_network.subnets(new_prefix=27)))
self.assertRaises(ValueError, list,
self.ipv4_network.subnets(new_prefix=23))
self.assertRaises(ValueError, list,
self.ipv4_network.subnets(prefixlen_diff=3,
new_prefix=27))
self.assertEqual(sorted(self.ipv6_network.subnets(prefixlen_diff=4)),
sorted(self.ipv6_network.subnets(new_prefix=68)))
self.assertRaises(ValueError, list,
self.ipv6_network.subnets(new_prefix=63))
self.assertRaises(ValueError, list,
self.ipv6_network.subnets(prefixlen_diff=4,
new_prefix=68))
def testGetSubnets(self):
self.assertEqual(list(self.ipv4_network.subnets())[0].prefixlen, 25)
self.assertEqual(str(list(
self.ipv4_network.subnets())[0].network_address),
'1.2.3.0')
self.assertEqual(str(list(
self.ipv4_network.subnets())[1].network_address),
'1.2.3.128')
self.assertEqual(list(self.ipv6_network.subnets())[0].prefixlen, 65)
def testGetSubnetForSingle32(self):
ip = ipaddress.IPv4Network('1.2.3.4/32')
subnets1 = [str(x) for x in ip.subnets()]
subnets2 = [str(x) for x in ip.subnets(2)]
self.assertEqual(subnets1, ['1.2.3.4/32'])
self.assertEqual(subnets1, subnets2)
def testGetSubnetForSingle128(self):
ip = ipaddress.IPv6Network('::1/128')
subnets1 = [str(x) for x in ip.subnets()]
subnets2 = [str(x) for x in ip.subnets(2)]
self.assertEqual(subnets1, ['::1/128'])
self.assertEqual(subnets1, subnets2)
def testSubnet2(self):
ips = [str(x) for x in self.ipv4_network.subnets(2)]
self.assertEqual(
ips,
['1.2.3.0/26', '1.2.3.64/26', '1.2.3.128/26', '1.2.3.192/26'])
ipsv6 = [str(x) for x in self.ipv6_network.subnets(2)]
self.assertEqual(
ipsv6,
['2001:658:22a:cafe::/66',
'2001:658:22a:cafe:4000::/66',
'2001:658:22a:cafe:8000::/66',
'2001:658:22a:cafe:c000::/66'])
def testSubnetFailsForLargeCidrDiff(self):
self.assertRaises(ValueError, list,
self.ipv4_interface.network.subnets(9))
self.assertRaises(ValueError, list,
self.ipv4_network.subnets(9))
self.assertRaises(ValueError, list,
self.ipv6_interface.network.subnets(65))
self.assertRaises(ValueError, list,
self.ipv6_network.subnets(65))
def testSupernetFailsForLargeCidrDiff(self):
self.assertRaises(ValueError,
self.ipv4_interface.network.supernet, 25)
self.assertRaises(ValueError,
self.ipv6_interface.network.supernet, 65)
def testSubnetFailsForNegativeCidrDiff(self):
self.assertRaises(ValueError, list,
self.ipv4_interface.network.subnets(-1))
self.assertRaises(ValueError, list,
self.ipv4_network.network.subnets(-1))
self.assertRaises(ValueError, list,
self.ipv6_interface.network.subnets(-1))
self.assertRaises(ValueError, list,
self.ipv6_network.subnets(-1))
def testGetNum_Addresses(self):
self.assertEqual(self.ipv4_network.num_addresses, 256)
self.assertEqual(list(self.ipv4_network.subnets())[0].num_addresses, 128)
self.assertEqual(self.ipv4_network.supernet().num_addresses, 512)
self.assertEqual(self.ipv6_network.num_addresses, 18446744073709551616)
self.assertEqual(list(self.ipv6_network.subnets())[0].num_addresses,
9223372036854775808)
self.assertEqual(self.ipv6_network.supernet().num_addresses,
36893488147419103232)
def testContains(self):
self.assertTrue(ipaddress.IPv4Interface('1.2.3.128/25') in
self.ipv4_network)
self.assertFalse(ipaddress.IPv4Interface('1.2.4.1/24') in
self.ipv4_network)
# We can test addresses and string as well.
addr1 = ipaddress.IPv4Address('1.2.3.37')
self.assertTrue(addr1 in self.ipv4_network)
# issue 61, bad network comparison on like-ip'd network objects
# with identical broadcast addresses.
self.assertFalse(ipaddress.IPv4Network('1.1.0.0/16').__contains__(
ipaddress.IPv4Network('1.0.0.0/15')))
def testBadAddress(self):
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv4Interface,
'poop')
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv4Interface, '1.2.3.256')
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Interface,
'poopv6')
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv4Interface, '1.2.3.4/32/24')
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv4Interface, '10/8')
self.assertRaises(ipaddress.AddressValueError,
ipaddress.IPv6Interface, '10/8')
def testBadNetMask(self):
self.assertRaises(ipaddress.NetmaskValueError,
ipaddress.IPv4Interface, '1.2.3.4/')
self.assertRaises(ipaddress.NetmaskValueError,
ipaddress.IPv4Interface, '1.2.3.4/33')
self.assertRaises(ipaddress.NetmaskValueError,
ipaddress.IPv4Interface, '1.2.3.4/254.254.255.256')
self.assertRaises(ipaddress.NetmaskValueError,
ipaddress.IPv4Interface, '1.1.1.1/240.255.0.0')
self.assertRaises(ipaddress.NetmaskValueError,
ipaddress.IPv6Interface, '::1/')
self.assertRaises(ipaddress.NetmaskValueError,
ipaddress.IPv6Interface, '::1/129')
def testNth(self):
self.assertEqual(str(self.ipv4_network[5]), '1.2.3.5')
self.assertRaises(IndexError, self.ipv4_network.__getitem__, 256)
self.assertEqual(str(self.ipv6_network[5]),
'2001:658:22a:cafe::5')
def testGetitem(self):
# http://code.google.com/p/ipaddr-py/issues/detail?id=15
addr = ipaddress.IPv4Network('172.31.255.128/255.255.255.240')
self.assertEqual(28, addr.prefixlen)
addr_list = list(addr)
self.assertEqual('172.31.255.128', str(addr_list[0]))
self.assertEqual('172.31.255.128', str(addr[0]))
self.assertEqual('172.31.255.143', str(addr_list[-1]))
self.assertEqual('172.31.255.143', str(addr[-1]))
self.assertEqual(addr_list[-1], addr[-1])
def testEqual(self):
self.assertTrue(self.ipv4_interface ==
ipaddress.IPv4Interface('1.2.3.4/24'))
self.assertFalse(self.ipv4_interface ==
ipaddress.IPv4Interface('1.2.3.4/23'))
self.assertFalse(self.ipv4_interface ==
ipaddress.IPv6Interface('::1.2.3.4/24'))
self.assertFalse(self.ipv4_interface == '')
self.assertFalse(self.ipv4_interface == [])
self.assertFalse(self.ipv4_interface == 2)
self.assertTrue(self.ipv6_interface ==
ipaddress.IPv6Interface('2001:658:22a:cafe:200::1/64'))
self.assertFalse(self.ipv6_interface ==
ipaddress.IPv6Interface('2001:658:22a:cafe:200::1/63'))
self.assertFalse(self.ipv6_interface ==
ipaddress.IPv4Interface('1.2.3.4/23'))
self.assertFalse(self.ipv6_interface == '')
self.assertFalse(self.ipv6_interface == [])
self.assertFalse(self.ipv6_interface == 2)
def testNotEqual(self):
self.assertFalse(self.ipv4_interface !=
ipaddress.IPv4Interface('1.2.3.4/24'))
self.assertTrue(self.ipv4_interface !=
ipaddress.IPv4Interface('1.2.3.4/23'))
self.assertTrue(self.ipv4_interface !=
ipaddress.IPv6Interface('::1.2.3.4/24'))
self.assertTrue(self.ipv4_interface != '')
self.assertTrue(self.ipv4_interface != [])
self.assertTrue(self.ipv4_interface != 2)
self.assertTrue(self.ipv4_address !=
ipaddress.IPv4Address('1.2.3.5'))
self.assertTrue(self.ipv4_address != '')
self.assertTrue(self.ipv4_address != [])
self.assertTrue(self.ipv4_address != 2)
self.assertFalse(self.ipv6_interface !=
ipaddress.IPv6Interface('2001:658:22a:cafe:200::1/64'))
self.assertTrue(self.ipv6_interface !=
ipaddress.IPv6Interface('2001:658:22a:cafe:200::1/63'))
self.assertTrue(self.ipv6_interface !=
ipaddress.IPv4Interface('1.2.3.4/23'))
self.assertTrue(self.ipv6_interface != '')
self.assertTrue(self.ipv6_interface != [])
self.assertTrue(self.ipv6_interface != 2)
self.assertTrue(self.ipv6_address !=
ipaddress.IPv4Address('1.2.3.4'))
self.assertTrue(self.ipv6_address != '')
self.assertTrue(self.ipv6_address != [])
self.assertTrue(self.ipv6_address != 2)
def testSlash32Constructor(self):
self.assertEqual(str(ipaddress.IPv4Interface(
'1.2.3.4/255.255.255.255')), '1.2.3.4/32')
def testSlash128Constructor(self):
self.assertEqual(str(ipaddress.IPv6Interface('::1/128')),
'::1/128')
def testSlash0Constructor(self):
self.assertEqual(str(ipaddress.IPv4Interface('1.2.3.4/0.0.0.0')),
'1.2.3.4/0')
def testCollapsing(self):
# test only IP addresses including some duplicates
ip1 = ipaddress.IPv4Address('1.1.1.0')
ip2 = ipaddress.IPv4Address('1.1.1.1')
ip3 = ipaddress.IPv4Address('1.1.1.2')
ip4 = ipaddress.IPv4Address('1.1.1.3')
ip5 = ipaddress.IPv4Address('1.1.1.4')
ip6 = ipaddress.IPv4Address('1.1.1.0')
# check that addreses are subsumed properly.
collapsed = ipaddress.collapse_addresses(
[ip1, ip2, ip3, ip4, ip5, ip6])
self.assertEqual(list(collapsed), [ipaddress.IPv4Network('1.1.1.0/30'),
ipaddress.IPv4Network('1.1.1.4/32')])
# test a mix of IP addresses and networks including some duplicates
ip1 = ipaddress.IPv4Address('1.1.1.0')
ip2 = ipaddress.IPv4Address('1.1.1.1')
ip3 = ipaddress.IPv4Address('1.1.1.2')
ip4 = ipaddress.IPv4Address('1.1.1.3')
#ip5 = ipaddress.IPv4Interface('1.1.1.4/30')
#ip6 = ipaddress.IPv4Interface('1.1.1.4/30')
# check that addreses are subsumed properly.
collapsed = ipaddress.collapse_addresses([ip1, ip2, ip3, ip4])
self.assertEqual(list(collapsed), [ipaddress.IPv4Network('1.1.1.0/30')])
# test only IP networks
ip1 = ipaddress.IPv4Network('1.1.0.0/24')
ip2 = ipaddress.IPv4Network('1.1.1.0/24')
ip3 = ipaddress.IPv4Network('1.1.2.0/24')
ip4 = ipaddress.IPv4Network('1.1.3.0/24')
ip5 = ipaddress.IPv4Network('1.1.4.0/24')
# stored in no particular order b/c we want CollapseAddr to call [].sort
ip6 = ipaddress.IPv4Network('1.1.0.0/22')
# check that addreses are subsumed properly.
collapsed = ipaddress.collapse_addresses([ip1, ip2, ip3, ip4, ip5,
ip6])
self.assertEqual(list(collapsed), [ipaddress.IPv4Network('1.1.0.0/22'),
ipaddress.IPv4Network('1.1.4.0/24')])
# test that two addresses are supernet'ed properly
collapsed = ipaddress.collapse_addresses([ip1, ip2])
self.assertEqual(list(collapsed), [ipaddress.IPv4Network('1.1.0.0/23')])
# test same IP networks
ip_same1 = ip_same2 = ipaddress.IPv4Network('1.1.1.1/32')
self.assertEqual(list(ipaddress.collapse_addresses(
[ip_same1, ip_same2])),
[ip_same1])
# test same IP addresses
ip_same1 = ip_same2 = ipaddress.IPv4Address('1.1.1.1')
self.assertEqual(list(ipaddress.collapse_addresses(
[ip_same1, ip_same2])),
[ipaddress.ip_network('1.1.1.1/32')])
ip1 = ipaddress.IPv6Network('2001::/100')
ip2 = ipaddress.IPv6Network('2001::/120')
ip3 = ipaddress.IPv6Network('2001::/96')
# test that ipv6 addresses are subsumed properly.
collapsed = ipaddress.collapse_addresses([ip1, ip2, ip3])
self.assertEqual(list(collapsed), [ip3])
# the toejam test
ip1 = ipaddress.ip_address('1.1.1.1')
ip2 = ipaddress.ip_address('::1')
self.assertRaises(TypeError, ipaddress.collapse_addresses,
[ip1, ip2])
def testSummarizing(self):
#ip = ipaddress.ip_address
#ipnet = ipaddress.ip_network
summarize = ipaddress.summarize_address_range
ip1 = ipaddress.ip_address('1.1.1.0')
ip2 = ipaddress.ip_address('1.1.1.255')
# test a /24 is sumamrized properly
self.assertEqual(list(summarize(ip1, ip2))[0],
ipaddress.ip_network('1.1.1.0/24'))
# test an IPv4 range that isn't on a network byte boundary
ip2 = ipaddress.ip_address('1.1.1.8')
self.assertEqual(list(summarize(ip1, ip2)),
[ipaddress.ip_network('1.1.1.0/29'),
ipaddress.ip_network('1.1.1.8')])
ip1 = ipaddress.ip_address('1::')
ip2 = ipaddress.ip_address('1:ffff:ffff:ffff:ffff:ffff:ffff:ffff')
# test a IPv6 is sumamrized properly
self.assertEqual(list(summarize(ip1, ip2))[0],
ipaddress.ip_network('1::/16'))
# test an IPv6 range that isn't on a network byte boundary
ip2 = ipaddress.ip_address('2::')
self.assertEqual(list(summarize(ip1, ip2)),
[ipaddress.ip_network('1::/16'),
ipaddress.ip_network('2::/128')])
# test exception raised when first is greater than last
self.assertRaises(ValueError, list,
summarize(ipaddress.ip_address('1.1.1.0'),
ipaddress.ip_address('1.1.0.0')))
# test exception raised when first and last aren't IP addresses
self.assertRaises(TypeError, list,
summarize(ipaddress.ip_network('1.1.1.0'),
ipaddress.ip_network('1.1.0.0')))
self.assertRaises(TypeError, list,
summarize(ipaddress.ip_network('1.1.1.0'),
ipaddress.ip_network('1.1.0.0')))
# test exception raised when first and last are not same version
self.assertRaises(TypeError, list,
summarize(ipaddress.ip_address('::'),
ipaddress.ip_network('1.1.0.0')))
def testAddressComparison(self):
self.assertTrue(ipaddress.ip_address('1.1.1.1') <=
ipaddress.ip_address('1.1.1.1'))
self.assertTrue(ipaddress.ip_address('1.1.1.1') <=
ipaddress.ip_address('1.1.1.2'))
self.assertTrue(ipaddress.ip_address('::1') <=
ipaddress.ip_address('::1'))
self.assertTrue(ipaddress.ip_address('::1') <=
ipaddress.ip_address('::2'))
def testNetworkComparison(self):
# ip1 and ip2 have the same network address
ip1 = ipaddress.IPv4Network('1.1.1.0/24')
ip2 = ipaddress.IPv4Network('1.1.1.1/32')
ip3 = ipaddress.IPv4Network('1.1.2.0/24')
self.assertTrue(ip1 < ip3)
self.assertTrue(ip3 > ip2)
#self.assertEqual(ip1.compare_networks(ip2), 0)
#self.assertTrue(ip1._get_networks_key() == ip2._get_networks_key())
self.assertEqual(ip1.compare_networks(ip3), -1)
self.assertTrue(ip1._get_networks_key() < ip3._get_networks_key())
ip1 = ipaddress.IPv6Network('2001:2000::/96')
ip2 = ipaddress.IPv6Network('2001:2001::/96')
ip3 = ipaddress.IPv6Network('2001:ffff:2000::/96')
self.assertTrue(ip1 < ip3)
self.assertTrue(ip3 > ip2)
self.assertEqual(ip1.compare_networks(ip3), -1)
self.assertTrue(ip1._get_networks_key() < ip3._get_networks_key())
# Test comparing different protocols.
# Should always raise a TypeError.
ipv6 = ipaddress.IPv6Interface('::/0')
ipv4 = ipaddress.IPv4Interface('0.0.0.0/0')
self.assertRaises(TypeError, ipv4.__lt__, ipv6)
self.assertRaises(TypeError, ipv4.__gt__, ipv6)
self.assertRaises(TypeError, ipv6.__lt__, ipv4)
self.assertRaises(TypeError, ipv6.__gt__, ipv4)
# Regression test for issue 19.
ip1 = ipaddress.ip_network('10.1.2.128/25')
self.assertFalse(ip1 < ip1)
self.assertFalse(ip1 > ip1)
ip2 = ipaddress.ip_network('10.1.3.0/24')
self.assertTrue(ip1 < ip2)
self.assertFalse(ip2 < ip1)
self.assertFalse(ip1 > ip2)
self.assertTrue(ip2 > ip1)
ip3 = ipaddress.ip_network('10.1.3.0/25')
self.assertTrue(ip2 < ip3)
self.assertFalse(ip3 < ip2)
self.assertFalse(ip2 > ip3)
self.assertTrue(ip3 > ip2)
# Regression test for issue 28.
ip1 = ipaddress.ip_network('10.10.10.0/31')
ip2 = ipaddress.ip_network('10.10.10.0')
ip3 = ipaddress.ip_network('10.10.10.2/31')
ip4 = ipaddress.ip_network('10.10.10.2')
sorted = [ip1, ip2, ip3, ip4]
unsorted = [ip2, ip4, ip1, ip3]
unsorted.sort()
self.assertEqual(sorted, unsorted)
unsorted = [ip4, ip1, ip3, ip2]
unsorted.sort()
self.assertEqual(sorted, unsorted)
self.assertRaises(TypeError, ip1.__lt__,
ipaddress.ip_address('10.10.10.0'))
self.assertRaises(TypeError, ip2.__lt__,
ipaddress.ip_address('10.10.10.0'))
# <=, >=
self.assertTrue(ipaddress.ip_network('1.1.1.1') <=
ipaddress.ip_network('1.1.1.1'))
self.assertTrue(ipaddress.ip_network('1.1.1.1') <=
ipaddress.ip_network('1.1.1.2'))
self.assertFalse(ipaddress.ip_network('1.1.1.2') <=
ipaddress.ip_network('1.1.1.1'))
self.assertTrue(ipaddress.ip_network('::1') <=
ipaddress.ip_network('::1'))
self.assertTrue(ipaddress.ip_network('::1') <=
ipaddress.ip_network('::2'))
self.assertFalse(ipaddress.ip_network('::2') <=
ipaddress.ip_network('::1'))
def testStrictNetworks(self):
self.assertRaises(ValueError, ipaddress.ip_network, '192.168.1.1/24')
self.assertRaises(ValueError, ipaddress.ip_network, '::1/120')
def testOverlaps(self):
other = ipaddress.IPv4Network('1.2.3.0/30')
other2 = ipaddress.IPv4Network('1.2.2.0/24')
other3 = ipaddress.IPv4Network('1.2.2.64/26')
self.assertTrue(self.ipv4_network.overlaps(other))
self.assertFalse(self.ipv4_network.overlaps(other2))
self.assertTrue(other2.overlaps(other3))
def testEmbeddedIpv4(self):
ipv4_string = '192.168.0.1'
ipv4 = ipaddress.IPv4Interface(ipv4_string)
v4compat_ipv6 = ipaddress.IPv6Interface('::%s' % ipv4_string)
self.assertEqual(int(v4compat_ipv6.ip), int(ipv4.ip))
v4mapped_ipv6 = ipaddress.IPv6Interface('::ffff:%s' % ipv4_string)
self.assertNotEqual(v4mapped_ipv6.ip, ipv4.ip)
self.assertRaises(ipaddress.AddressValueError, ipaddress.IPv6Interface,
'2001:1.1.1.1:1.1.1.1')
# Issue 67: IPv6 with embedded IPv4 address not recognized.
def testIPv6AddressTooLarge(self):
# RFC4291 2.5.5.2
self.assertEqual(ipaddress.ip_address('::FFFF:192.0.2.1'),
ipaddress.ip_address('::FFFF:c000:201'))
# RFC4291 2.2 (part 3) x::d.d.d.d
self.assertEqual(ipaddress.ip_address('FFFF::192.0.2.1'),
ipaddress.ip_address('FFFF::c000:201'))
def testIPVersion(self):
self.assertEqual(self.ipv4_address.version, 4)
self.assertEqual(self.ipv6_address.version, 6)
def testMaxPrefixLength(self):
self.assertEqual(self.ipv4_interface.max_prefixlen, 32)
self.assertEqual(self.ipv6_interface.max_prefixlen, 128)
def testPacked(self):
self.assertEqual(self.ipv4_address.packed,
_cb('\x01\x02\x03\x04'))
self.assertEqual(ipaddress.IPv4Interface('255.254.253.252').packed,
_cb('\xff\xfe\xfd\xfc'))
self.assertEqual(self.ipv6_address.packed,
_cb('\x20\x01\x06\x58\x02\x2a\xca\xfe'
'\x02\x00\x00\x00\x00\x00\x00\x01'))
self.assertEqual(ipaddress.IPv6Interface('ffff:2:3:4:ffff::').packed,
_cb('\xff\xff\x00\x02\x00\x03\x00\x04\xff\xff'
+ '\x00' * 6))
self.assertEqual(ipaddress.IPv6Interface('::1:0:0:0:0').packed,
_cb('\x00' * 6 + '\x00\x01' + '\x00' * 8))
def testIpStrFromPrefixlen(self):
ipv4 = ipaddress.IPv4Interface('1.2.3.4/24')
self.assertEqual(ipv4._ip_string_from_prefix(), '255.255.255.0')
self.assertEqual(ipv4._ip_string_from_prefix(28), '255.255.255.240')
def testIpType(self):
ipv4net = ipaddress.ip_network('1.2.3.4')
ipv4addr = ipaddress.ip_address('1.2.3.4')
ipv6net = ipaddress.ip_network('::1.2.3.4')
ipv6addr = ipaddress.ip_address('::1.2.3.4')
self.assertEqual(ipaddress.IPv4Network, type(ipv4net))
self.assertEqual(ipaddress.IPv4Address, type(ipv4addr))
self.assertEqual(ipaddress.IPv6Network, type(ipv6net))
self.assertEqual(ipaddress.IPv6Address, type(ipv6addr))
def testReservedIpv4(self):
# test networks
self.assertEqual(True, ipaddress.ip_interface(
'224.1.1.1/31').is_multicast)
self.assertEqual(False, ipaddress.ip_network('240.0.0.0').is_multicast)
self.assertEqual(True, ipaddress.ip_interface(
'192.168.1.1/17').is_private)
self.assertEqual(False, ipaddress.ip_network('192.169.0.0').is_private)
self.assertEqual(True, ipaddress.ip_network(
'10.255.255.255').is_private)
self.assertEqual(False, ipaddress.ip_network('11.0.0.0').is_private)
self.assertEqual(True, ipaddress.ip_network(
'172.31.255.255').is_private)
self.assertEqual(False, ipaddress.ip_network('172.32.0.0').is_private)
self.assertEqual(True,
ipaddress.ip_interface(
'169.254.100.200/24').is_link_local)
self.assertEqual(False,
ipaddress.ip_interface(
'169.255.100.200/24').is_link_local)
self.assertEqual(True,
ipaddress.ip_network(
'127.100.200.254/32').is_loopback)
self.assertEqual(True, ipaddress.ip_network(
'127.42.0.0/16').is_loopback)
self.assertEqual(False, ipaddress.ip_network('128.0.0.0').is_loopback)
# test addresses
self.assertEqual(True, ipaddress.ip_address('224.1.1.1').is_multicast)
self.assertEqual(False, ipaddress.ip_address('240.0.0.0').is_multicast)
self.assertEqual(True, ipaddress.ip_address('192.168.1.1').is_private)
self.assertEqual(False, ipaddress.ip_address('192.169.0.0').is_private)
self.assertEqual(True, ipaddress.ip_address(
'10.255.255.255').is_private)
self.assertEqual(False, ipaddress.ip_address('11.0.0.0').is_private)
self.assertEqual(True, ipaddress.ip_address(
'172.31.255.255').is_private)
self.assertEqual(False, ipaddress.ip_address('172.32.0.0').is_private)
self.assertEqual(True,
ipaddress.ip_address('169.254.100.200').is_link_local)
self.assertEqual(False,
ipaddress.ip_address('169.255.100.200').is_link_local)
self.assertEqual(True,
ipaddress.ip_address('127.100.200.254').is_loopback)
self.assertEqual(True, ipaddress.ip_address('127.42.0.0').is_loopback)
self.assertEqual(False, ipaddress.ip_address('128.0.0.0').is_loopback)
self.assertEqual(True, ipaddress.ip_network('0.0.0.0').is_unspecified)
def testReservedIpv6(self):
self.assertEqual(True, ipaddress.ip_network('ffff::').is_multicast)
self.assertEqual(True, ipaddress.ip_network(2**128-1).is_multicast)
self.assertEqual(True, ipaddress.ip_network('ff00::').is_multicast)
self.assertEqual(False, ipaddress.ip_network('fdff::').is_multicast)
self.assertEqual(True, ipaddress.ip_network('fecf::').is_site_local)
self.assertEqual(True, ipaddress.ip_network(
'feff:ffff:ffff:ffff::').is_site_local)
self.assertEqual(False, ipaddress.ip_network(
'fbf:ffff::').is_site_local)
self.assertEqual(False, ipaddress.ip_network('ff00::').is_site_local)
self.assertEqual(True, ipaddress.ip_network('fc00::').is_private)
self.assertEqual(True, ipaddress.ip_network(
'fc00:ffff:ffff:ffff::').is_private)
self.assertEqual(False, ipaddress.ip_network('fbff:ffff::').is_private)
self.assertEqual(False, ipaddress.ip_network('fe00::').is_private)
self.assertEqual(True, ipaddress.ip_network('fea0::').is_link_local)
self.assertEqual(True, ipaddress.ip_network(
'febf:ffff::').is_link_local)
self.assertEqual(False, ipaddress.ip_network(
'fe7f:ffff::').is_link_local)
self.assertEqual(False, ipaddress.ip_network('fec0::').is_link_local)
self.assertEqual(True, ipaddress.ip_interface('0:0::0:01').is_loopback)
self.assertEqual(False, ipaddress.ip_interface('::1/127').is_loopback)
self.assertEqual(False, ipaddress.ip_network('::').is_loopback)
self.assertEqual(False, ipaddress.ip_network('::2').is_loopback)
self.assertEqual(True, ipaddress.ip_network('0::0').is_unspecified)
self.assertEqual(False, ipaddress.ip_network('::1').is_unspecified)
self.assertEqual(False, ipaddress.ip_network('::/127').is_unspecified)
# test addresses
self.assertEqual(True, ipaddress.ip_address('ffff::').is_multicast)
self.assertEqual(True, ipaddress.ip_address(2**128-1).is_multicast)
self.assertEqual(True, ipaddress.ip_address('ff00::').is_multicast)
self.assertEqual(False, ipaddress.ip_address('fdff::').is_multicast)
self.assertEqual(True, ipaddress.ip_address('fecf::').is_site_local)
self.assertEqual(True, ipaddress.ip_address(
'feff:ffff:ffff:ffff::').is_site_local)
self.assertEqual(False, ipaddress.ip_address(
'fbf:ffff::').is_site_local)
self.assertEqual(False, ipaddress.ip_address('ff00::').is_site_local)
self.assertEqual(True, ipaddress.ip_address('fc00::').is_private)
self.assertEqual(True, ipaddress.ip_address(
'fc00:ffff:ffff:ffff::').is_private)
self.assertEqual(False, ipaddress.ip_address('fbff:ffff::').is_private)
self.assertEqual(False, ipaddress.ip_address('fe00::').is_private)
self.assertEqual(True, ipaddress.ip_address('fea0::').is_link_local)
self.assertEqual(True, ipaddress.ip_address(
'febf:ffff::').is_link_local)
self.assertEqual(False, ipaddress.ip_address(
'fe7f:ffff::').is_link_local)
self.assertEqual(False, ipaddress.ip_address('fec0::').is_link_local)
self.assertEqual(True, ipaddress.ip_address('0:0::0:01').is_loopback)
self.assertEqual(True, ipaddress.ip_address('::1').is_loopback)
self.assertEqual(False, ipaddress.ip_address('::2').is_loopback)
self.assertEqual(True, ipaddress.ip_address('0::0').is_unspecified)
self.assertEqual(False, ipaddress.ip_address('::1').is_unspecified)
# some generic IETF reserved addresses
self.assertEqual(True, ipaddress.ip_address('100::').is_reserved)
self.assertEqual(True, ipaddress.ip_network('4000::1/128').is_reserved)
def testIpv4Mapped(self):
self.assertEqual(ipaddress.ip_address('::ffff:192.168.1.1').ipv4_mapped,
ipaddress.ip_address('192.168.1.1'))
self.assertEqual(ipaddress.ip_address('::c0a8:101').ipv4_mapped, None)
self.assertEqual(ipaddress.ip_address('::ffff:c0a8:101').ipv4_mapped,
ipaddress.ip_address('192.168.1.1'))
def testAddrExclude(self):
addr1 = ipaddress.ip_network('10.1.1.0/24')
addr2 = ipaddress.ip_network('10.1.1.0/26')
addr3 = ipaddress.ip_network('10.2.1.0/24')
addr4 = ipaddress.ip_address('10.1.1.0')
self.assertEqual(sorted(list(addr1.address_exclude(addr2))),
[ipaddress.ip_network('10.1.1.64/26'),
ipaddress.ip_network('10.1.1.128/25')])
self.assertRaises(ValueError, list, addr1.address_exclude(addr3))
self.assertRaises(TypeError, list, addr1.address_exclude(addr4))
self.assertEqual(list(addr1.address_exclude(addr1)), [])
def testHash(self):
self.assertEqual(hash(ipaddress.ip_network('10.1.1.0/24')),
hash(ipaddress.ip_network('10.1.1.0/24')))
self.assertEqual(hash(ipaddress.ip_address('10.1.1.0')),
hash(ipaddress.ip_address('10.1.1.0')))
# i70
self.assertEqual(hash(ipaddress.ip_address('1.2.3.4')),
hash(ipaddress.ip_address(
int(ipaddress.ip_address('1.2.3.4')._ip))))
ip1 = ipaddress.ip_address('10.1.1.0')
ip2 = ipaddress.ip_address('1::')
dummy = {}
dummy[self.ipv4_address] = None
dummy[self.ipv6_address] = None
dummy[ip1] = None
dummy[ip2] = None
self.assertTrue(self.ipv4_address in dummy)
self.assertTrue(ip2 in dummy)
def testCopyConstructor(self):
addr1 = ipaddress.ip_network('10.1.1.0/24')
addr2 = ipaddress.ip_network(addr1)
addr3 = ipaddress.ip_interface('2001:658:22a:cafe:200::1/64')
addr4 = ipaddress.ip_interface(addr3)
addr5 = ipaddress.IPv4Address('1.1.1.1')
addr6 = ipaddress.IPv6Address('2001:658:22a:cafe:200::1')
self.assertEqual(addr1, addr2)
self.assertEqual(addr3, addr4)
self.assertEqual(addr5, ipaddress.IPv4Address(addr5))
self.assertEqual(addr6, ipaddress.IPv6Address(addr6))
def testCompressIPv6Address(self):
test_addresses = {
'1:2:3:4:5:6:7:8': '1:2:3:4:5:6:7:8/128',
'2001:0:0:4:0:0:0:8': '2001:0:0:4::8/128',
'2001:0:0:4:5:6:7:8': '2001::4:5:6:7:8/128',
'2001:0:3:4:5:6:7:8': '2001:0:3:4:5:6:7:8/128',
'2001:0:3:4:5:6:7:8': '2001:0:3:4:5:6:7:8/128',
'0:0:3:0:0:0:0:ffff': '0:0:3::ffff/128',
'0:0:0:4:0:0:0:ffff': '::4:0:0:0:ffff/128',
'0:0:0:0:5:0:0:ffff': '::5:0:0:ffff/128',
'1:0:0:4:0:0:7:8': '1::4:0:0:7:8/128',
'0:0:0:0:0:0:0:0': '::/128',
'0:0:0:0:0:0:0:0/0': '::/0',
'0:0:0:0:0:0:0:1': '::1/128',
'2001:0658:022a:cafe:0000:0000:0000:0000/66':
'2001:658:22a:cafe::/66',
'::1.2.3.4': '::102:304/128',
'1:2:3:4:5:ffff:1.2.3.4': '1:2:3:4:5:ffff:102:304/128',
'::7:6:5:4:3:2:1': '0:7:6:5:4:3:2:1/128',
'::7:6:5:4:3:2:0': '0:7:6:5:4:3:2:0/128',
'7:6:5:4:3:2:1::': '7:6:5:4:3:2:1:0/128',
'0:6:5:4:3:2:1::': '0:6:5:4:3:2:1:0/128',
}
for uncompressed, compressed in list(test_addresses.items()):
self.assertEqual(compressed, str(ipaddress.IPv6Interface(
uncompressed)))
def testExplodeShortHandIpStr(self):
addr1 = ipaddress.IPv6Interface('2001::1')
addr2 = ipaddress.IPv6Address('2001:0:5ef5:79fd:0:59d:a0e5:ba1')
addr3 = ipaddress.IPv6Network('2001::/96')
self.assertEqual('2001:0000:0000:0000:0000:0000:0000:0001/128',
addr1.exploded)
self.assertEqual('0000:0000:0000:0000:0000:0000:0000:0001/128',
ipaddress.IPv6Interface('::1/128').exploded)
# issue 77
self.assertEqual('2001:0000:5ef5:79fd:0000:059d:a0e5:0ba1',
addr2.exploded)
self.assertEqual('2001:0000:0000:0000:0000:0000:0000:0000/96',
addr3.exploded)
def testIntRepresentation(self):
self.assertEqual(16909060, int(self.ipv4_address))
self.assertEqual(42540616829182469433547762482097946625,
int(self.ipv6_address))
def testHexRepresentation(self):
self.assertEqual(hex(0x1020304),
hex(self.ipv4_address))
self.assertEqual(hex(0x20010658022ACAFE0200000000000001),
hex(self.ipv6_address))
def testForceVersion(self):
self.assertEqual(ipaddress.ip_network(1).version, 4)
self.assertEqual(ipaddress.ip_network(1, version=6).version, 6)
def testWithStar(self):
self.assertEqual(str(self.ipv4_interface.with_prefixlen), "1.2.3.4/24")
self.assertEqual(str(self.ipv4_interface.with_netmask),
"1.2.3.4/255.255.255.0")
self.assertEqual(str(self.ipv4_interface.with_hostmask),
"1.2.3.4/0.0.0.255")
self.assertEqual(str(self.ipv6_interface.with_prefixlen),
'2001:658:22a:cafe:200::1/64')
# rfc3513 sec 2.3 says that ipv6 only uses cidr notation for
# subnets
self.assertEqual(str(self.ipv6_interface.with_netmask),
'2001:658:22a:cafe:200::1/64')
# this probably don't make much sense, but it's included for
# compatibility with ipv4
self.assertEqual(str(self.ipv6_interface.with_hostmask),
'2001:658:22a:cafe:200::1/::ffff:ffff:ffff:ffff')
def testNetworkElementCaching(self):
# V4 - make sure we're empty
self.assertFalse('network_address' in self.ipv4_network._cache)
self.assertFalse('broadcast_address' in self.ipv4_network._cache)
self.assertFalse('hostmask' in self.ipv4_network._cache)
# V4 - populate and test
self.assertEqual(self.ipv4_network.network_address,
ipaddress.IPv4Address('1.2.3.0'))
self.assertEqual(self.ipv4_network.broadcast_address,
ipaddress.IPv4Address('1.2.3.255'))
self.assertEqual(self.ipv4_network.hostmask,
ipaddress.IPv4Address('0.0.0.255'))
# V4 - check we're cached
self.assertTrue('broadcast_address' in self.ipv4_network._cache)
self.assertTrue('hostmask' in self.ipv4_network._cache)
# V6 - make sure we're empty
self.assertFalse('broadcast_address' in self.ipv6_network._cache)
self.assertFalse('hostmask' in self.ipv6_network._cache)
# V6 - populate and test
self.assertEqual(self.ipv6_network.network_address,
ipaddress.IPv6Address('2001:658:22a:cafe::'))
self.assertEqual(self.ipv6_interface.network.network_address,
ipaddress.IPv6Address('2001:658:22a:cafe::'))
self.assertEqual(
self.ipv6_network.broadcast_address,
ipaddress.IPv6Address('2001:658:22a:cafe:ffff:ffff:ffff:ffff'))
self.assertEqual(self.ipv6_network.hostmask,
ipaddress.IPv6Address('::ffff:ffff:ffff:ffff'))
self.assertEqual(
self.ipv6_interface.network.broadcast_address,
ipaddress.IPv6Address('2001:658:22a:cafe:ffff:ffff:ffff:ffff'))
self.assertEqual(self.ipv6_interface.network.hostmask,
ipaddress.IPv6Address('::ffff:ffff:ffff:ffff'))
# V6 - check we're cached
self.assertTrue('broadcast_address' in self.ipv6_network._cache)
self.assertTrue('hostmask' in self.ipv6_network._cache)
self.assertTrue('broadcast_address' in self.ipv6_interface.network._cache)
self.assertTrue('hostmask' in self.ipv6_interface.network._cache)
def testTeredo(self):
# stolen from wikipedia
server = ipaddress.IPv4Address('65.54.227.120')
client = ipaddress.IPv4Address('192.0.2.45')
teredo_addr = '2001:0000:4136:e378:8000:63bf:3fff:fdd2'
self.assertEqual((server, client),
ipaddress.ip_address(teredo_addr).teredo)
bad_addr = '2000::4136:e378:8000:63bf:3fff:fdd2'
self.assertFalse(ipaddress.ip_address(bad_addr).teredo)
bad_addr = '2001:0001:4136:e378:8000:63bf:3fff:fdd2'
self.assertFalse(ipaddress.ip_address(bad_addr).teredo)
# i77
teredo_addr = ipaddress.IPv6Address('2001:0:5ef5:79fd:0:59d:a0e5:ba1')
self.assertEqual((ipaddress.IPv4Address('94.245.121.253'),
ipaddress.IPv4Address('95.26.244.94')),
teredo_addr.teredo)
def testsixtofour(self):
sixtofouraddr = ipaddress.ip_address('2002:ac1d:2d64::1')
bad_addr = ipaddress.ip_address('2000:ac1d:2d64::1')
self.assertEqual(ipaddress.IPv4Address('172.29.45.100'),
sixtofouraddr.sixtofour)
self.assertFalse(bad_addr.sixtofour)
if __name__ == '__main__':
unittest.main()
......@@ -702,6 +702,7 @@ Florian Mladitsch
Doug Moen
The Dragon De Monsyne
Skip Montanaro
Peter Moody
Paul Moore
Derek Morr
James A Morrison
......
......@@ -42,6 +42,8 @@ Core and Builtins
Library
-------
- PEP 3144, Issue #14814: Added the ipaddress module
- Issue #14426: Correct the Date format in Expires attribute of Set-Cookie
Header in Cookie.py.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment