Issue #15038: Optimize python Locks on Windows

Extract cross-platform condition variable support into a separate file and
provide user-mode non-recursive locks for Windows.
parent 633c4d91
......@@ -26,6 +26,8 @@ Core and Builtins
- Issue #14673: Add Eric Snow's sys.implementation implementation.
- Issue #15038: Optimize python Locks on Windows.
Library
-------
......
<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
......@@ -481,6 +481,8 @@
<ClInclude Include="..\Parser\tokenizer.h" />
<ClInclude Include="..\PC\errmap.h" />
<ClInclude Include="..\PC\pyconfig.h" />
<ClInclude Include="..\Python\ceval_gil.h" />
<ClInclude Include="..\Python\condvar.h" />
<ClInclude Include="..\Python\importdl.h" />
<ClInclude Include="..\Python\thread_nt.h" />
</ItemGroup>
......
......@@ -402,6 +402,13 @@
<ClInclude Include="..\Python\thread_nt.h">
<Filter>Python</Filter>
</ClInclude>
<ClInclude Include="..\Include\namespaceobject.h" />
<ClInclude Include="..\Python\condvar.h">
<Filter>Python</Filter>
</ClInclude>
<ClInclude Include="..\Python\ceval_gil.h">
<Filter>Python</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\Modules\_bisectmodule.c">
......@@ -908,6 +915,7 @@
<ClCompile Include="..\Modules\_winapi.c">
<Filter>PC</Filter>
</ClCompile>
<ClCompile Include="..\Objects\namespaceobject.c" />
</ItemGroup>
<ItemGroup>
<ResourceCompile Include="..\PC\python_nt.rc">
......
......@@ -59,213 +59,49 @@ static unsigned long gil_interval = DEFAULT_INTERVAL;
(Note: this mechanism is enabled with FORCE_SWITCHING above)
*/
#ifndef _POSIX_THREADS
/* This means pthreads are not implemented in libc headers, hence the macro
not present in unistd.h. But they still can be implemented as an external
library (e.g. gnu pth in pthread emulation) */
# ifdef HAVE_PTHREAD_H
# include <pthread.h> /* _POSIX_THREADS */
# endif
#endif
#ifdef _POSIX_THREADS
/*
* POSIX support
*/
#include <pthread.h>
#define ADD_MICROSECONDS(tv, interval) \
do { \
tv.tv_usec += (long) interval; \
tv.tv_sec += tv.tv_usec / 1000000; \
tv.tv_usec %= 1000000; \
} while (0)
/* We assume all modern POSIX systems have gettimeofday() */
#ifdef GETTIMEOFDAY_NO_TZ
#define GETTIMEOFDAY(ptv) gettimeofday(ptv)
#else
#define GETTIMEOFDAY(ptv) gettimeofday(ptv, (struct timezone *)NULL)
#include "condvar.h"
#ifndef Py_HAVE_CONDVAR
#error You need either a POSIX-compatible or a Windows system!
#endif
#define MUTEX_T pthread_mutex_t
#define MUTEX_T PyMUTEX_T
#define MUTEX_INIT(mut) \
if (pthread_mutex_init(&mut, NULL)) { \
Py_FatalError("pthread_mutex_init(" #mut ") failed"); };
if (PyMUTEX_INIT(&(mut))) { \
Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
#define MUTEX_FINI(mut) \
if (pthread_mutex_destroy(&mut)) { \
Py_FatalError("pthread_mutex_destroy(" #mut ") failed"); };
if (PyMUTEX_FINI(&(mut))) { \
Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
#define MUTEX_LOCK(mut) \
if (pthread_mutex_lock(&mut)) { \
Py_FatalError("pthread_mutex_lock(" #mut ") failed"); };
if (PyMUTEX_LOCK(&(mut))) { \
Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
#define MUTEX_UNLOCK(mut) \
if (pthread_mutex_unlock(&mut)) { \
Py_FatalError("pthread_mutex_unlock(" #mut ") failed"); };
if (PyMUTEX_UNLOCK(&(mut))) { \
Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
#define COND_T pthread_cond_t
#define COND_T PyCOND_T
#define COND_INIT(cond) \
if (pthread_cond_init(&cond, NULL)) { \
Py_FatalError("pthread_cond_init(" #cond ") failed"); };
if (PyCOND_INIT(&(cond))) { \
Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
#define COND_FINI(cond) \
if (pthread_cond_destroy(&cond)) { \
Py_FatalError("pthread_cond_destroy(" #cond ") failed"); };
if (PyCOND_FINI(&(cond))) { \
Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
#define COND_SIGNAL(cond) \
if (pthread_cond_signal(&cond)) { \
Py_FatalError("pthread_cond_signal(" #cond ") failed"); };
if (PyCOND_SIGNAL(&(cond))) { \
Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
#define COND_WAIT(cond, mut) \
if (pthread_cond_wait(&cond, &mut)) { \
Py_FatalError("pthread_cond_wait(" #cond ") failed"); };
if (PyCOND_WAIT(&(cond), &(mut))) { \
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
{ \
int r; \
struct timespec ts; \
struct timeval deadline; \
\
GETTIMEOFDAY(&deadline); \
ADD_MICROSECONDS(deadline, microseconds); \
ts.tv_sec = deadline.tv_sec; \
ts.tv_nsec = deadline.tv_usec * 1000; \
\
r = pthread_cond_timedwait(&cond, &mut, &ts); \
if (r == ETIMEDOUT) \
int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
if (r < 0) \
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
timeout_result = 1; \
else if (r) \
Py_FatalError("pthread_cond_timedwait(" #cond ") failed"); \
else \
timeout_result = 0; \
} \
#elif defined(NT_THREADS)
/*
* Windows (2000 and later, as well as (hopefully) CE) support
*/
#include <windows.h>
#define MUTEX_T CRITICAL_SECTION
#define MUTEX_INIT(mut) do { \
if (!(InitializeCriticalSectionAndSpinCount(&(mut), 4000))) \
Py_FatalError("CreateMutex(" #mut ") failed"); \
} while (0)
#define MUTEX_FINI(mut) \
DeleteCriticalSection(&(mut))
#define MUTEX_LOCK(mut) \
EnterCriticalSection(&(mut))
#define MUTEX_UNLOCK(mut) \
LeaveCriticalSection(&(mut))
/* We emulate condition variables with a semaphore.
We use a Semaphore rather than an auto-reset event, because although
an auto-resent event might appear to solve the lost-wakeup bug (race
condition between releasing the outer lock and waiting) because it
maintains state even though a wait hasn't happened, there is still
a lost wakeup problem if more than one thread are interrupted in the
critical place. A semaphore solves that.
Because it is ok to signal a condition variable with no one
waiting, we need to keep track of the number of
waiting threads. Otherwise, the semaphore's state could rise
without bound.
Generic emulations of the pthread_cond_* API using
Win32 functions can be found on the Web.
The following read can be edificating (or not):
http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
*/
typedef struct COND_T
{
HANDLE sem; /* the semaphore */
int n_waiting; /* how many are unreleased */
} COND_T;
__inline static void _cond_init(COND_T *cond)
{
/* A semaphore with a large max value, The positive value
* is only needed to catch those "lost wakeup" events and
* race conditions when a timed wait elapses.
*/
if (!(cond->sem = CreateSemaphore(NULL, 0, 1000, NULL)))
Py_FatalError("CreateSemaphore() failed");
cond->n_waiting = 0;
}
__inline static void _cond_fini(COND_T *cond)
{
BOOL ok = CloseHandle(cond->sem);
if (!ok)
Py_FatalError("CloseHandle() failed");
}
__inline static void _cond_wait(COND_T *cond, MUTEX_T *mut)
{
++cond->n_waiting;
MUTEX_UNLOCK(*mut);
/* "lost wakeup bug" would occur if the caller were interrupted here,
* but we are safe because we are using a semaphore wich has an internal
* count.
*/
if (WaitForSingleObject(cond->sem, INFINITE) == WAIT_FAILED)
Py_FatalError("WaitForSingleObject() failed");
MUTEX_LOCK(*mut);
}
__inline static int _cond_timed_wait(COND_T *cond, MUTEX_T *mut,
int us)
{
DWORD r;
++cond->n_waiting;
MUTEX_UNLOCK(*mut);
r = WaitForSingleObject(cond->sem, us / 1000);
if (r == WAIT_FAILED)
Py_FatalError("WaitForSingleObject() failed");
MUTEX_LOCK(*mut);
if (r == WAIT_TIMEOUT)
--cond->n_waiting;
/* Here we have a benign race condition with _cond_signal. If the
* wait operation has timed out, but before we can acquire the
* mutex again to decrement n_waiting, a thread holding the mutex
* still sees a positive n_waiting value and may call
* ReleaseSemaphore and decrement n_waiting.
* This will cause n_waiting to be decremented twice.
* This is benign, though, because ReleaseSemaphore will also have
* been called, leaving the semaphore state positive. We may
* thus end up with semaphore in state 1, and n_waiting == -1, and
* the next time someone calls _cond_wait(), that thread will
* pass right through, decrementing the semaphore state and
* incrementing n_waiting, thus correcting the extra _cond_signal.
*/
return r == WAIT_TIMEOUT;
}
__inline static void _cond_signal(COND_T *cond) {
/* NOTE: This must be called with the mutex held */
if (cond->n_waiting > 0) {
if (!ReleaseSemaphore(cond->sem, 1, NULL))
Py_FatalError("ReleaseSemaphore() failed");
--cond->n_waiting;
}
}
#define COND_INIT(cond) \
_cond_init(&(cond))
#define COND_FINI(cond) \
_cond_fini(&(cond))
#define COND_SIGNAL(cond) \
_cond_signal(&(cond))
#define COND_WAIT(cond, mut) \
_cond_wait(&(cond), &(mut))
#define COND_TIMED_WAIT(cond, mut, us, timeout_result) do { \
(timeout_result) = _cond_timed_wait(&(cond), &(mut), us); \
} while (0)
#else
#error You need either a POSIX-compatible or a Windows system!
#endif /* _POSIX_THREADS, NT_THREADS */
/* Whether the GIL is already taken (-1 if uninitialized). This is atomic
......
/*
* Portable condition variable support for windows and pthreads.
* Everything is inline, this header can be included where needed.
*
* APIs generally return 0 on success and non-zero on error,
* and the caller needs to use its platform's error mechanism to
* discover the error (errno, or GetLastError())
*
* Note that some implementations cannot distinguish between a
* condition variable wait time-out and successful wait. Most often
* the difference is moot anyway since the wait condition must be
* re-checked.
* PyCOND_TIMEDWAIT, in addition to returning negative on error,
* thus returns 0 on regular success, 1 on timeout
* or 2 if it can't tell.
*/
#ifndef _CONDVAR_H_
#define _CONDVAR_H_
#include "Python.h"
#ifndef _POSIX_THREADS
/* This means pthreads are not implemented in libc headers, hence the macro
not present in unistd.h. But they still can be implemented as an external
library (e.g. gnu pth in pthread emulation) */
# ifdef HAVE_PTHREAD_H
# include <pthread.h> /* _POSIX_THREADS */
# endif
#endif
#ifdef _POSIX_THREADS
/*
* POSIX support
*/
#define Py_HAVE_CONDVAR
#include <pthread.h>
#define PyCOND_ADD_MICROSECONDS(tv, interval) \
do { \
tv.tv_usec += (long) interval; \
tv.tv_sec += tv.tv_usec / 1000000; \
tv.tv_usec %= 1000000; \
} while (0)
/* We assume all modern POSIX systems have gettimeofday() */
#ifdef GETTIMEOFDAY_NO_TZ
#define PyCOND_GETTIMEOFDAY(ptv) gettimeofday(ptv)
#else
#define PyCOND_GETTIMEOFDAY(ptv) gettimeofday(ptv, (struct timezone *)NULL)
#endif
/* The following functions return 0 on success, nonzero on error */
#define PyMUTEX_T pthread_mutex_t
#define PyMUTEX_INIT(mut) pthread_mutex_init((mut), NULL)
#define PyMUTEX_FINI(mut) pthread_mutex_destroy(mut)
#define PyMUTEX_LOCK(mut) pthread_mutex_lock(mut)
#define PyMUTEX_UNLOCK(mut) pthread_mutex_unlock(mut)
#define PyCOND_T pthread_cond_t
#define PyCOND_INIT(cond) pthread_cond_init((cond), NULL)
#define PyCOND_FINI(cond) pthread_cond_destroy(cond)
#define PyCOND_SIGNAL(cond) pthread_cond_signal(cond)
#define PyCOND_BROADCAST(cond) pthread_cond_broadcast(cond)
#define PyCOND_WAIT(cond, mut) pthread_cond_wait((cond), (mut))
/* return 0 for success, 1 on timeout, -1 on error */
Py_LOCAL_INLINE(int)
PyCOND_TIMEDWAIT(PyCOND_T *cond, PyMUTEX_T *mut, long us)
{
int r;
struct timespec ts;
struct timeval deadline;
PyCOND_GETTIMEOFDAY(&deadline);
PyCOND_ADD_MICROSECONDS(deadline, us);
ts.tv_sec = deadline.tv_sec;
ts.tv_nsec = deadline.tv_usec * 1000;
r = pthread_cond_timedwait((cond), (mut), &ts);
if (r == ETIMEDOUT)
return 1;
else if (r)
return -1;
else
return 0;
}
#elif defined(NT_THREADS)
/*
* Windows (XP, 2003 server and later, as well as (hopefully) CE) support
*
* Emulated condition variables ones that work with XP and later, plus
* example native support on VISTA and onwards.
*/
#define Py_HAVE_CONDVAR
/* include windows if it hasn't been done before */
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
/* options */
/* non-emulated condition variables are provided for those that want
* to target Windows Vista. Modify this macro to enable them.
*/
#ifndef _PY_EMULATED_WIN_CV
#define _PY_EMULATED_WIN_CV 1 /* use emulated condition variables */
#endif
/* fall back to emulation if not targeting Vista */
#if !defined NTDDI_VISTA || NTDDI_VERSION < NTDDI_VISTA
#undef _PY_EMULATED_WIN_CV
#define _PY_EMULATED_WIN_CV 1
#endif
#if _PY_EMULATED_WIN_CV
/* The mutex is a CriticalSection object and
The condition variables is emulated with the help of a semaphore.
Semaphores are available on Windows XP (2003 server) and later.
We use a Semaphore rather than an auto-reset event, because although
an auto-resent event might appear to solve the lost-wakeup bug (race
condition between releasing the outer lock and waiting) because it
maintains state even though a wait hasn't happened, there is still
a lost wakeup problem if more than one thread are interrupted in the
critical place. A semaphore solves that, because its state is counted,
not Boolean.
Because it is ok to signal a condition variable with no one
waiting, we need to keep track of the number of
waiting threads. Otherwise, the semaphore's state could rise
without bound. This also helps reduce the number of "spurious wakeups"
that would otherwise happen.
Generic emulations of the pthread_cond_* API using
earlier Win32 functions can be found on the Web.
The following read can be edificating (or not):
http://www.cse.wustl.edu/~schmidt/win32-cv-1.html
*/
typedef CRITICAL_SECTION PyMUTEX_T;
Py_LOCAL_INLINE(int)
PyMUTEX_INIT(PyMUTEX_T *cs)
{
InitializeCriticalSection(cs);
return 0;
}
Py_LOCAL_INLINE(int)
PyMUTEX_FINI(PyMUTEX_T *cs)
{
DeleteCriticalSection(cs);
return 0;
}
Py_LOCAL_INLINE(int)
PyMUTEX_LOCK(PyMUTEX_T *cs)
{
EnterCriticalSection(cs);
return 0;
}
Py_LOCAL_INLINE(int)
PyMUTEX_UNLOCK(PyMUTEX_T *cs)
{
LeaveCriticalSection(cs);
return 0;
}
/* The ConditionVariable object. From XP onwards it is easily emulated with
* a Semaphore
*/
typedef struct _PyCOND_T
{
HANDLE sem;
int waiting;
} PyCOND_T;
Py_LOCAL_INLINE(int)
PyCOND_INIT(PyCOND_T *cv)
{
/* A semaphore with a "large" max value, The positive value
* is only needed to catch those "lost wakeup" events and
* race conditions when a timed wait elapses.
*/
cv->sem = CreateSemaphore(NULL, 0, 100000, NULL);
if (cv->sem==NULL)
return -1;
cv->waiting = 0;
return 0;
}
Py_LOCAL_INLINE(int)
PyCOND_FINI(PyCOND_T *cv)
{
return CloseHandle(cv->sem) ? 0 : -1;
}
/* this implementation can detect a timeout. Returns 1 on timeout,
* 0 otherwise (and -1 on error)
*/
Py_LOCAL_INLINE(int)
_PyCOND_WAIT_MS(PyCOND_T *cv, PyMUTEX_T *cs, DWORD ms)
{
DWORD wait;
cv->waiting++;
PyMUTEX_UNLOCK(cs);
/* "lost wakeup bug" would occur if the caller were interrupted here,
* but we are safe because we are using a semaphore wich has an internal
* count.
*/
wait = WaitForSingleObject(cv->sem, ms);
PyMUTEX_LOCK(cs);
if (wait != WAIT_OBJECT_0)
--cv->waiting;
/* Here we have a benign race condition with PyCOND_SIGNAL.
* When failure occurs or timeout, it is possible that
* PyCOND_SIGNAL also decrements this value
* and signals releases the mutex. This is benign because it
* just means an extra spurious wakeup for a waiting thread.
*/
if (wait == WAIT_FAILED)
return -1;
/* return 0 on success, 1 on timeout */
return wait != WAIT_OBJECT_0;
}
Py_LOCAL_INLINE(int)
PyCOND_WAIT(PyCOND_T *cv, PyMUTEX_T *cs)
{
int result = _PyCOND_WAIT_MS(cv, cs, INFINITE);
return result >= 0 ? 0 : result;
}
Py_LOCAL_INLINE(int)
PyCOND_TIMEDWAIT(PyCOND_T *cv, PyMUTEX_T *cs, long us)
{
return _PyCOND_WAIT_MS(cv, cs, us/1000);
}
Py_LOCAL_INLINE(int)
PyCOND_SIGNAL(PyCOND_T *cv)
{
if (cv->waiting) {
/* notifying thread decreases the cv->waiting count so that
* a delay between notify and wakeup doesn't cause a number
* of extra ReleaseSemaphore calls
*/
cv->waiting--;
return ReleaseSemaphore(cv->sem, 1, NULL) ? 0 : -1;
}
return 0;
}
Py_LOCAL_INLINE(int)
PyCOND_BROADCAST(PyCOND_T *cv)
{
if (cv->waiting) {
return ReleaseSemaphore(cv->sem, cv->waiting, NULL) ? 0 : -1;
cv->waiting = 0;
}
return 0;
}
#else
/* Use native Win7 primitives if build target is Win7 or higher */
/* SRWLOCK is faster and better than CriticalSection */
typedef SRWLOCK PyMUTEX_T;
Py_LOCAL_INLINE(int)
PyMUTEX_INIT(PyMUTEX_T *cs)
{
InitializeSRWLock(cs);
return 0;
}
Py_LOCAL_INLINE(int)
PyMUTEX_FINI(PyMUTEX_T *cs)
{
return 0;
}
Py_LOCAL_INLINE(int)
PyMUTEX_LOCK(PyMUTEX_T *cs)
{
AcquireSRWLockExclusive(cs);
return 0;
}
Py_LOCAL_INLINE(int)
PyMUTEX_UNLOCK(PyMUTEX_T *cs)
{
ReleaseSRWLockExclusive(cs);
return 0;
}
typedef CONDITION_VARIABLE PyCOND_T;
Py_LOCAL_INLINE(int)
PyCOND_INIT(PyCOND_T *cv)
{
InitializeConditionVariable(cv);
return 0;
}
Py_LOCAL_INLINE(int)
PyCOND_FINI(PyCOND_T *cv)
{
return 0;
}
Py_LOCAL_INLINE(int)
PyCOND_WAIT(PyCOND_T *cv, PyMUTEX_T *cs)
{
return SleepConditionVariableSRW(cv, cs, INFINITE, 0) ? 0 : -1;
}
/* This implementation makes no distinction about timeouts. Signal
* 2 to indicate that we don't know.
*/
Py_LOCAL_INLINE(int)
PyCOND_TIMEDWAIT(PyCOND_T *cv, PyMUTEX_T *cs, long us)
{
return SleepConditionVariableSRW(cv, cs, us/1000, 0) ? 2 : -1;
}
Py_LOCAL_INLINE(int)
PyCOND_SIGNAL(PyCOND_T *cv)
{
WakeConditionVariable(cv);
return 0;
}
Py_LOCAL_INLINE(int)
PyCOND_BROADCAST(PyCOND_T *cv)
{
WakeAllConditionVariable(cv);
return 0;
}
#endif /* _PY_EMULATED_WIN_CV */
#endif /* _POSIX_THREADS, NT_THREADS */
#endif /* _CONDVAR_H_ */
......@@ -9,6 +9,109 @@
#include <process.h>
#endif
/* options */
#ifndef _PY_USE_CV_LOCKS
#define _PY_USE_CV_LOCKS 1 /* use locks based on cond vars */
#endif
/* Now, define a non-recursive mutex using either condition variables
* and critical sections (fast) or using operating system mutexes
* (slow)
*/
#if _PY_USE_CV_LOCKS
#include "condvar.h"
typedef struct _NRMUTEX
{
PyMUTEX_T cs;
PyCOND_T cv;
int locked;
} NRMUTEX;
typedef NRMUTEX *PNRMUTEX;
PNRMUTEX
AllocNonRecursiveMutex()
{
PNRMUTEX m = (PNRMUTEX)malloc(sizeof(NRMUTEX));
if (!m)
return NULL;
if (PyCOND_INIT(&m->cv))
goto fail;
if (PyMUTEX_INIT(&m->cs)) {
PyCOND_FINI(&m->cv);
goto fail;
}
m->locked = 0;
return m;
fail:
free(m);
return NULL;
}
VOID
FreeNonRecursiveMutex(PNRMUTEX mutex)
{
if (mutex) {
PyCOND_FINI(&mutex->cv);
PyMUTEX_FINI(&mutex->cs);
free(mutex);
}
}
DWORD
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
{
DWORD result = WAIT_OBJECT_0;
if (PyMUTEX_LOCK(&mutex->cs))
return WAIT_FAILED;
if (milliseconds == INFINITE) {
while (mutex->locked) {
if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
result = WAIT_FAILED;
break;
}
}
} else if (milliseconds != 0) {
/* wait at least until the target */
DWORD now, target = GetTickCount() + milliseconds;
while (mutex->locked) {
if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, milliseconds*1000) < 0) {
result = WAIT_FAILED;
break;
}
now = GetTickCount();
if (target <= now)
break;
milliseconds = target-now;
}
}
if (!mutex->locked) {
mutex->locked = 1;
result = WAIT_OBJECT_0;
} else if (result == WAIT_OBJECT_0)
result = WAIT_TIMEOUT;
/* else, it is WAIT_FAILED */
PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
return result;
}
BOOL
LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
BOOL result;
if (PyMUTEX_LOCK(&mutex->cs))
return FALSE;
mutex->locked = 0;
result = PyCOND_SIGNAL(&mutex->cv);
result &= PyMUTEX_UNLOCK(&mutex->cs);
return result;
}
#else /* if ! _PY_USE_CV_LOCKS */
/* NR-locks based on a kernel mutex */
#define PNRMUTEX HANDLE
PNRMUTEX
......@@ -35,6 +138,7 @@ LeaveNonRecursiveMutex(PNRMUTEX mutex)
{
return ReleaseSemaphore(mutex, 1, NULL);
}
#endif /* _PY_USE_CV_LOCKS */
long PyThread_get_thread_ident(void);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment